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Distance searching problemDistance searching problem

� Search problem:

� Data type� Data type

� The method of comparison

� Query formulation� Query formulation

� Extensibility:

� A single indexing technique applied to many specific � A single indexing technique applied to many specific 

search problems quite different in nature
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Distance searching problemDistance searching problem

� Traditional search:

� Exact (partial, range) retrieval� Exact (partial, range) retrieval

� Sortable domains of data (numbers, strings)

Perspective search:� Perspective search:

� Proximity

� Similarity

� Dissimilarity

� Distance

� Not sortable domains (Hamming distance, color 

histograms)
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Distance searching problemDistance searching problem

Definition (divide and conquer):

� Let D be a domain, d a distance measure on � Let D be a domain, d a distance measure on 

objects from D

� Given a set X ⊆ D of n elements:Given a set X ⊆ D of n elements:

preprocess or structure the data so that proximity preprocess or structure the data so that proximity 
queries are answered efficiently.
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Distance searching problemDistance searching problem

� Metric space as similarity search abstraction

� Distances used for searching� Distances used for searching

� No coordinates – no data space partitioning

� Vector versus metric spaces� Vector versus metric spaces

� Three reasons for metric indexes:� Three reasons for metric indexes:

� No other possibility

Comparable performance for special cases� Comparable performance for special cases

� High extensibility
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Metric spaceMetric space

� M = (D,d)

Data domain D� Data domain D

� Total (distance) function d: D ×D→  (metric function or Total (distance) function d: D ×D→ (metric function or 

metric)

� The metric space postulates:� The metric space postulates:

� Non negativity

� Symmetry ),(),(,,
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� Triangle inequality ),(),(),(,,, zydyxdzxdzyx +≤∈∀ D
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Metric spaceMetric space

� Another specification:

� (p1) non negativity

(p2) symmetry ),(),(,,

0),(,,

xydyxdyx

yxdyx

=∈∀
≥∈∀

D

D

� (p2) symmetry

� (p3) reflexivity
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� (p4) positiveness

� (p5) triangle inequality ),(),(),(,,,

0),(,,

zydyxdzxdzyx

yxdyxyx

+≤∈∀
>⇒≠∈∀

D

D

Similarity Search: Part I, Chapter 1 9



Pseudo metricPseudo metric

� Property (p4) does not hold

� If all objects at distance 0 are considered as single � If all objects at distance 0 are considered as single 

objects, we get the metric space:

� To be proved ),(),(,0),( =∈∀⇒= zydzxdzyxd D

� Since
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Quasi metricQuasi metric

� Property (p2 - symmetry) does not hold, e.g.

� Locations in cities – one way streets� Locations in cities – one way streets

Transformation to the metric space:� Transformation to the metric space:

+= ),(),(),( xydyxdyxd asymasymsym +=
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Super metricSuper metric

� Also called the ultra metric

� Stronger constraint on (p5)� Stronger constraint on (p5)

)},(),,(max{),(,, zydyxdzxdzyx ≤∈∀   :D

� At least two sides of equal length  - isosceles 

triangletriangle

� Used in evolutionary biology (phylogenetic trees)
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Foundations of metric space searchingFoundations of metric space searching

1. distance searching problem in metric spaces 

2. metric distance measures2. metric distance measures

3. similarity queries

4. basic partitioning principles

5. principles of similarity query execution5. principles of similarity query execution

6. policies to avoid distance computations

metric space transformations7. metric space transformations

8. principles of approximate similarity search8. principles of approximate similarity search

9. advanced issues
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Distance measuresDistance measures

� Discrete

� functions which return only a small (predefined) set of � functions which return only a small (predefined) set of 

values

� Continuous

functions in which the cardinality of the set of values � functions in which the cardinality of the set of values 

returned is very large or infinite.
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Minkowski distancesMinkowski distances

� Also called the Lp metrics

� Defined on n dimensional vectors� Defined on n dimensional vectors

p
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Special casesSpecial cases

� L1 – Manhattan (City-Block) distance

� L – Euclidean distance� L2 – Euclidean distance

� L∞ – maximum (infinity) distance∞

||max 1 ii

n

i
yxL −=

=∞

L1 L2 L6 L∞
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Quadratic form distanceQuadratic form distance

� Correlated dimensions – cross talk – e.g. color 

histogramshistograms

)()(),( yxMyxyxd T

M

rrrrrr −⋅⋅−=

� M – positive semidefinite matrix n × n

)()(),( yxMyxyxdM −⋅⋅−=

� M – positive semidefinite matrix n × n

� if M = diag(w1, ! ,wn) → weighted Euclidean distance
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ExampleExample

� 3-dim vectors of blue, red, and orange colors:

� Pure red:

� Pure orange: )1,0,0(

)0,1,0(

=
=

orange

red

v

v
r

r

� Pure orange:

� Pure blue: )0,0,1(

)1,0,0(

=

=

blue

orange

v

v
r

� Blue and orange images are equidistant from red � Blue and orange images are equidistant from red 
one

2),(),( 22 == blueredorangered vvLvvL
rrrr

2),(),( 22 == blueredorangered vvLvvL
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Example (continue)Example (continue)

� Human color perception:

� Red and orange are more alike than red and blue.� Red and orange are more alike than red and blue.

� Matrix specification:






= 0.91.00.0

0.00.01.0

M

blue

red











=
1.00.90.0

0.91.00.0M red

orange 1.00.90.0
b

lu
e

re
d

o
ra

n
g
e

� Distance of red and orange is 2.0

o
ra

n
g
e

� Distance of red and blue is 2
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Edit distanceEdit distance

� Also called the Levenstein distance:

� minimum number of atomic operations to transform string x� minimum number of atomic operations to transform string x

into string y

� insert character c into string x at position i

xcxxxxcixins LL),,( =
� delete character at position i in string x

=

nii xcxxxxcixins LL 121),,( −=

� replace character at position i in x with c

nii xxxxxixdel LL 1121),( +−=
� replace character at position i in x with c

nii xcxxxxcixreplace LL 1121),,( +−=

Similarity Search: Part I, Chapter 1 20



Edit distance - weightsEdit distance - weights

� If the weights (costs) of insert and delete operations 

differ, the edit distance is not symmetric.differ, the edit distance is not symmetric.

Example: w = 2, w = 1, w = 1� Example: winsert = 2, wdelete = 1, wreplace = 1

dedit(“combine”,”combination”) = 9dedit(“combine”,”combination”) = 9

replacement e → a, insertion t,i,o,n

d (“combination”,” combine”) = 5dedit(“combination”,” combine”) = 5

replacement a → e, deletion t,i,o,n
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Edit distance - generalizationsEdit distance - generalizations

� Replacement of different characters can be 

different: a → b different from a → c different: a → b different from a → c 

If it is symmetric, it is still the metric: a → b must be � If it is symmetric, it is still the metric: a → b must be 

the same as b → a 

� Edit distance can be generalized to tree structures� Edit distance can be generalized to tree structures

Similarity Search: Part I, Chapter 1 22



Jaccard’s coefficientJaccard’s coefficient

� Distance measure for sets A and B
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� Tanimoto similarity for vectors
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Hausdorff distanceHausdorff distance

� Distance measure for sets

� Compares elements by a distance de� Compares elements by a distance de

Measures the extent to which each point of the Measures the extent to which each point of the 
“model” set A lies near some point of the “image” set 
B and vice versa.B and vice versa.

Two sets are within Hausdorff distance r from each Two sets are within Hausdorff distance r from each 
other if and only if any point of one set is within the 
distance r from some point of the other set.distance r from some point of the other set.
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Hausdorff distance (cont.)Hausdorff distance (cont.)
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Foundations of metric space searchingFoundations of metric space searching

1. distance searching problem in metric spaces 

2. metric distance measures2. metric distance measures

3. similarity queries

4. basic partitioning principles

5. principles of similarity query execution5. principles of similarity query execution

6. policies to avoid distance computations

metric space transformations7. metric space transformations

8. principles of approximate similarity search8. principles of approximate similarity search

9. advanced issues
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Similarity QueriesSimilarity Queries

� Range query

� Nearest neighbor query� Nearest neighbor query

� Reverse nearest neighbor query

� Similarity join

� Combined queries� Combined queries

� Complex queries
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Similarity Range QuerySimilarity Range Query

r
q

� range query

R(q,r) = { x ∈ X | d(q,x) ≤ r }� R(q,r) = { x ∈ X | d(q,x) ≤ r }

! all museums up to 2km from my hotel !
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Nearest Neighbor QueryNearest Neighbor Query

� the nearest neighbor query
� NN(q) = xNN(q) = x

� x ∈ X, ∀y ∈ X, d(q,x) ≤ d(q,y)

� k-nearest neighbor query
� k-NN(q,k) = A

A ⊆ X |A| = k

k=5

� A ⊆ X, |A| = k

� ∀x ∈ A, y ∈ X – A, d(q,x) ≤ d(q,y) q

! five closest museums to my hotel !
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Reverse Nearest NeighborReverse Nearest Neighbor

)(:,{)( xkNNqRxXRqkRNN

∉−∈∀
∧∈∈∀⊆=

)}(: xkNNqRXx ∉−∈∀

… all hotels with a specific museum as a nearest 

cultural heritage cite …cultural heritage cite …
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Example of 2-RNNExample of 2-RNN

Objects o4, o5, and o6 4 5 6 

have q between their 

two nearest neighbor.
o4 o1

o
two nearest neighbor.

o

q
o2

o3o5
o3

o6
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Similarity QueriesSimilarity Queries

� similarity join of two data sets

0,, µ ≥⊆⊆ YX DD
}),(:),{(),,(

0,,

µµ
µ

≤×∈=
≥⊆⊆

yxdYXyxYXJ

YX DD

µµµµ
}),(:),{(),,( µµ ≤×∈= yxdYXyxYXJ

� similarity self join � X = Y

!pairs of hotels and museums

which are five minutes walk which are five minutes walk 

apart !
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Combined QueriesCombined Queries

� Range + Nearest neighbors

}),(),(),(

:,||,{),(

rxqdyqdxqd

RXyRxkRXRrqkNN

≤∧≤
−∈∈∀∧≤⊆=
}),(),(),( rxqdyqdxqd ≤∧≤

� Nearest neighbor + similarity joins

by analogy� by analogy

Similarity Search: Part I, Chapter 1 33



Complex QueriesComplex Queries

� Find the best matches of circular shape objects with 

red colorred color

The best match for circular shape or red color needs � The best match for circular shape or red color needs 

not be the best match combined!!!
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The A
0
AlgorithmThe A

0
Algorithm

� For each predicate i

� objects delivered in decreasing similarity� objects delivered in decreasing similarity

� incrementally build sets Xi with best matches till 

kXi =∩∀ || kXi ii =∩∀ ||

� For all ii Xo ∪∈� For all 

� consider all query predicates

� establish the final rank (fuzzy algebra, weighted sets, etc.)

ii

� establish the final rank (fuzzy algebra, weighted sets, etc.)
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Foundations of Metric Space SearchingFoundations of Metric Space Searching

1. distance searching problem in metric spaces 

2. metric distance measures2. metric distance measures

3. similarity queries

4. basic partitioning principles

5. principles of similarity query execution5. principles of similarity query execution

6. policies to avoid distance computations

metric space transformations7. metric space transformations

8. principles of approximate similarity search8. principles of approximate similarity search

9. advanced issues
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Partitioning PrinciplesPartitioning Principles

� Given a set X ⊆ D in M=(D,d) three basic 

partitioning principles have been defined:partitioning principles have been defined:

� Ball partitioning� Ball partitioning

� Generalized hyper-plane partitioning

� Excluded middle partitioning� Excluded middle partitioning
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Ball partitioningBall partitioning

� Inner set:  { x ∈ X | d(p,x) ≤ dm }

� Outer set: { x ∈ X | d(p,x) > d }� Outer set: { x ∈ X | d(p,x) > dm }

p
dm

p
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Multi-way ball partitioningMulti-way ball partitioning

� Inner set:   { x ∈ X | d(p,x) ≤ dm1 }

� Middle set: { x ∈ X | d(p,x) > d ∧ d(p,x) ≤ d }� Middle set: { x ∈ X | d(p,x) > dm1 ∧ d(p,x) ≤ dm2}

� Outer set:   { x ∈ X | d(p,x) > dm2 }m2

dm2

p
dm1
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Generalized Hyper-plane PartitioningGeneralized Hyper-plane Partitioning

� { x ∈ X | d(p1,x) ≤ d(p2,x) }

� { x ∈ X | d(p ,x) > d(p ,x) }� { x ∈ X | d(p1,x) > d(p2,x) }

p2

p1
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Excluded Middle PartitioningExcluded Middle Partitioning

� Inner set:  { x ∈ X | d(p,x) ≤ dm - ρ }

� Outer set: { x ∈ X | d(p,x) > dm + ρ }� Outer set: { x ∈ X | d(p,x) > dm + ρ }

2ρ

dm

2ρ

d
p

dm
p

dm

� Excluded set: otherwise
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Foundations of metric space searchingFoundations of metric space searching

1. distance searching problem in metric spaces 

2. metric distance measures2. metric distance measures

3. similarity queries

4. basic partitioning principles

5. principles of similarity query execution5. principles of similarity query execution

6. policies to avoid distance computations

metric space transformations7. metric space transformations

8. principles of approximate similarity search8. principles of approximate similarity search

9. advanced issues
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Basic StrategiesBasic Strategies

� Costs to answer a query are influenced by

� Partitioning principle� Partitioning principle

� Query execution algorithm

� Sequential organization & range query R(q,r)

� All database objects are consecutively scanned and d(q,o) 

are evaluated.

� Whenever d(q,o) ≤ r, o is reported on result

R(q,4):

q 3

R(q,4):

10 8 1
……
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Basic Strategies (cont.)Basic Strategies (cont.)

� Sequential organization & k-NN query 3-NN(q)

� Initially: take the first k objects and order them with respect � Initially: take the first k objects and order them with respect 

to the distance from q.

� All other objects are consecutively scanned and d(q,o) are � All other objects are consecutively scanned and d(q,o) are 

evaluated.

� If d(q,oi) ≤ d(q,ok), oi is inserted to a correct position in � If d(q,oi) ≤ d(q,ok), oi is inserted to a correct position in 

answer and the last neighbor ok is eliminated.

3-NN(q):

9q

3-NN(q):

1 13q

……
1083

Answer:
831 311
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Hypothetical Index OrganizationHypothetical Index Organization

� A hierarchy of entries (nodes) N=(G,R(G))

� G = {e | e is object or e is another entry}� G = {e | e is object or e is another entry}

� Bounding regionR(G)  covers all elements of G.

E.g. ball region: ∀o, d(o,p) ≤ r� E.g. ball region: ∀o, d(o,p) ≤ r

Each element belongs exactly to one G.
r

� Each element belongs exactly to one G.

� There is one root entry G.
p

r

� Any similarity query Q returns a set of objects

� We can define R(Q) which covers all objects in response.
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Example of Index OrganizationExample of Index Organization

� Using ball regions

� Root node organizes four objects and two ball regions.� Root node organizes four objects and two ball regions.

� Child ball regions has two and three objects respectively.

o o8
o9

o1 o2 o3 o4
o1

o

o2

o8

o5 o6 o7 o8 o9
o5

o3
o4

o6 o7o6 o7
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Range Search AlgorithmRange Search Algorithm

Given Q=R(q,r):

� Start at the root.� Start at the root.

� In the current node N=(G,R(G)), process all In the current node N=(G,R(G)), process all 

elements:

� object element oj ∈G:� object element oj ∈G:
� if d(q,oj) ≤ r, report oj on output.

� non-object element N’=(G’,R(G’))∈G

if R(G’) and R(Q) intersect, recursively search in N’.� if R(G’) and R(Q) intersect, recursively search in N’.
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Range Search Algorithm (cont.)Range Search Algorithm (cont.)

R(q,r):R(q,r):

� Start inspecting elements in B1.B1

� B3 is not intersected.

Inspect elements in B . o o
o9

B1

q

� Inspect elements in B2.

� Search is complete.

o1
o2

o8

B2

� Search is complete.

o5

o o

o3
o4

B3
o1 o2 o3 o4 B3 B2

B1

o6
o7

B3
o1 o2 o3 o4 B3 B2

Response = o8 , o9
o5 o6 o7 o8 o9
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Nearest Neighbor Search AlgorithmNearest Neighbor Search Algorithm

� No query radius is given.

� We do not know the distance to the k-th nearest neighbor.� We do not know the distance to the k-th nearest neighbor.

� To allow filtering of unnecessary branches

The query radius is defined as the distance to the current � The query radius is defined as the distance to the current 

k-th neighbor.

� Priority queue PR is maintained.

� It contains regions that may include objects relevant to the � It contains regions that may include objects relevant to the 

query.

� The regions are sorted with decreasing relevance.The regions are sorted with decreasing relevance.
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NN Search Algorithm (cont.)NN Search Algorithm (cont.)

Given Q=k-NN(q):Given Q=k-NN(q):

� Assumptions:

� The query region R(Q) is limited by the distance (r) to the 

current k-th neighbor in the response.current k-th neighbor in the response.

� Whenever PR is updated, its entries are sorted with 
decreasing proximity to q.

� Objects in the response are sorted with increasing distance 
to q. The response can contain k objects at maximum.

Initialization:� Initialization:
� Put the root node to PR.

Pick k database objects at random and insert them into � Pick k database objects at random and insert them into 
response.
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NN Search Algorithm (cont.)NN Search Algorithm (cont.)

� While PR is not empty, repeat:

Pick an entry N=(G,R(G)) from PR.� Pick an entry N=(G,R(G)) from PR.

� For each object element oj ∈G:
� if d(q,oj) ≤ r, add oj to the response. Update r and R(Q).

� Remove entries from PR that cannot intersect the query.

� For each non-object element N’=(G’,R(G’))∈G

� if R(G’) and R(Q) intersect, insert N’ into PR.� if R(G’) and R(Q) intersect, insert N’ into PR.

� The response contains k nearest neighbors to q.
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NN Search Algorithm (cont.)
3-NN(q):

NN Search Algorithm (cont.)

� Pick three random objects.

� Process B1� Process B1

� Skip B3 B1
B

q3

� Process B2

� PR is empty, quit.

o1
o2

o8
o9
B2

� PR is empty, quit.

o

o3
o4o o o o B B

B1

Final result

B2B1

o5
o4

o6
o7B3

Processing: 

o1 o4 o3 o2 B3 B2

B1B2PR=

Response= o8, o1, o3o8, o1, o4o8, o1, o2
o5 o6 o7 o8 o9 o8, o9, o1
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Incremental Similarity SearchIncremental Similarity Search

� Hypothetical index structure is slightly modified:
� Elements of type 0 are objects e0.� Elements of type 0 are objects e0.

� Elements e1 are ball regions (B2, B3) containing only 

objects, i.e. elements e0 .
B

objects, i.e. elements e0 .

� Elements e2 contain

elements e0 and e1 , e.g., B1.
o1

o

o8
o9

B1 B2

elements e0 and e1 , e.g., B1.

� Elements have associated distance

functions from the query object q: o3

o2

functions from the query object q:

� d0(q,e0 ) – for elements of type e0.

� dt(q,et ) – for elements of type et.

o5

o3
o4

o6
o7B3t t t

� E.g., dt(q,et)=d(q,p)-r (et is a ball with p and r).

� For correctness: dt(q,et) ≤ d0(q,e0)

o6B3

Similarity Search: Part I, Chapter 1 53



Incremental NN SearchIncremental NN Search

� Based on priority queue PR again

� Each element et in PR knows also the distance dt(q,et).� Each element et in PR knows also the distance dt(q,et).

� Entries in the queue are sorted with respect to these 

distances.distances.

� Initialization:

Insert the root element with the distance 0 into PR.� Insert the root element with the distance 0 into PR.
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Incremental NN Search (cont.)Incremental NN Search (cont.)

� While PR is not empty do

� et ← the first element from PR� et ← the first element from PR

� if t = 0 (et is an object) then report et as the next nearest 

neighbor.neighbor.

� else insert each child element el of et with the distance 

dl(q,el ) into PR.dl(q,el ) into PR.
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Incremental NN Search (cont.)

NN(q):

Incremental NN Search (cont.)

NN(q):

o
o9

B1
B2

q

B o1
o2

o8
9

o4 o3 o2 o1B3 B2

B1

o5

o

o3
o4

B3
o5 o6 o7 o8 o9

o6
o7

B3
o5 o6 o7 o8 o9

B1B2o8o9o1Processing: o2B3o5o4o6o3o7

(o4 ,6)(o2 ,4)(o1 ,3)(o6 ,7) (o3 ,7)(B2 ,0)(B3 ,5)(o4 ,6) (o2 ,4)(o1 ,3)(o9 ,2)(o1 ,3)(o6 ,7) (o3 ,7)(o6 ,7)(o2 ,4)(o4 ,6)(o5 ,5) (B3 ,5)(o3 ,7) (o3 ,7)(o4 ,6)(B3 ,5)(o4 ,6)(B3, 5)(o2 ,4)(B3 ,5)(o4 ,6)(o3 ,7)(o4 ,6)(B3 ,5)(o2 ,4)(o1 ,3)(o1 ,3)(o8 ,1)(o9 ,2)(o1 ,3)(o2 ,4)(B1 ,0) (o3 ,7)(o3 ,7)(o4 ,6)(o3 ,7)(o3 ,7)(o3 ,7)(o4 ,6)(o3 ,7)(o4 ,6)(B3 ,5)(o4 ,6)(o3 ,7)(o4 ,6)(B3 ,5)(o2 ,4)(B3 ,5)(o2 ,4)(o1 ,3)(o2 ,4)(B3 ,5)(o4 ,6)

Response = 

Queue = (o3 ,7)

o8 , o9 , o1 , o2

(o7 ,8)(o7 ,8)

, o5

(o3 ,7) (o7 ,8)

, o4

(o3 ,7) (o7 ,8)

, o6

(o7 ,8)

, o3 , o7
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Foundations of metric space searchingFoundations of metric space searching

1. distance searching problem in metric spaces 

2. metric distance measures2. metric distance measures

3. similarity queries

4. basic partitioning principles

5. principles of similarity query execution5. principles of similarity query execution

6. policies to avoid distance computations

metric space transformations7. metric space transformations

8. principles of approximate similarity search8. principles of approximate similarity search

9. advanced issues
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Avoiding Distance ComputationsAvoiding Distance Computations

� In metric spaces, the distance measure is expensive

� E.g. edit distance, quadratic form distance, …� E.g. edit distance, quadratic form distance, …

� Limit the number of distance evaluations

It speeds up processing of similarity queries� It speeds up processing of similarity queries

� Pruning strategies

� object-pivot

� range-pivot� range-pivot

� pivot-pivot

� double-pivot� double-pivot

� pivot filtering
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Explanatory ExampleExplanatory Example

� An index structure is built over 11 objects {o1,!,o11}

� applies ball-partitioning� applies ball-partitioning

p1

p p

o9

o11
o3

o

o5

p2 p3
p3

p1

p2

o1o4

o6

� Range query R(q,r)

o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8 q o10 o2
o7

o8

o6

� Range query R(q,r)

� Sequential scan needs 11 distance computations.

Reported objects: {o ,o }� Reported objects: {o4 ,o6}
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Object-Pivot Distance ConstraintObject-Pivot Distance Constraint

� Usually applied in leaf nodes

� Assume the left-most leaf is visited� Assume the left-most leaf is visited

� Distances from q to o4 ,o6 ,o10 must be computed
pp1

p2 p3

o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8

� During insertion

Distances p to o ,o ,o were computed� Distances p2 to o4 ,o6 ,o10 were computed
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Object-Pivot Constraint (cont.)Object-Pivot Constraint (cont.)

� Having d(p2,o4), d(p2,o6), d(p2,o10) and d(p2,q)

� some distance calculations can be omitted� some distance calculations can be omitted

� Estimation of d(q,o10)

using only distances we cannot determine position of o� using only distances we cannot determine position of o10

� o10 can lie anywhere on the dotted circle

o10o4

p

o6
q

p2

r

o6
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Object-Pivot Constraint (cont.)Object-Pivot Constraint (cont.)
o10
o

o10
o

� o10 has two 
o6

o4
o6

o4
o10 has two 
extreme 
positions

p2

o10o4

p2r

o10o4

q
r

o6
q

r

o6

� Lower bound on d(q,o ) is |d(p ,o ) - d(q,p ) |� Lower bound on d(q,o10) is |d(p2,o10) - d(q,p2) |
� If greater than the query radius, an object cannot qualify (o10)

Upper bound on d(q,o ) is d(q,p ) + d(p ,o )� Upper bound on d(q,o10) is d(q,p2) + d(p2,o10)
� If less than the query radius, an object directly qualifies! (o6)
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Object-Pivot Constraint (summary)Object-Pivot Constraint (summary)

� Given a metric space M=(D,d) and three objects 

q,p,o ∈D, the distance d(q,o) can be constrained:q,p,o ∈D, the distance d(q,o) can be constrained:

),(),(),(),(),( opdpqdoqdopdpqd +≤≤−
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Range-Pivot Distance ConstraintRange-Pivot Distance Constraint

� Some structures do not store all distances between 

database objects oi and a pivot pdatabase objects oi and a pivot p

� a range [rl, rh] of distances between p and all oi is stored

Assume the left-most leaf is to be entered� Assume the left-most leaf is to be entered

� Using the range of distances to leaf objects, we can decide 

whether to enter or notwhether to enter or not
p1

p2 p3p2

o o o o o o

p3

o o o o o

?

o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8
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Range-Pivot Constraint (cont.)

� Knowing interval [rl, rh] of distance in the leaf, we 

Range-Pivot Constraint (cont.)

Knowing interval [rl, rh] of distance in the leaf, we 
can optimize

p2r

o10o4

r
p2r

o10o4

r
p2r

o10o4

r

o6
q

p2r

r

rl

o6
q

p2r

r

rl

o6
q

p2r

rh

rl

Lower bound is r - d(q,p )

rh rhrh

� Lower bound is rl - d(q,p2)
� If greater than the query radius r, no object can qualify

� Upper bound is rh + d(q,p2)
� If less than the query radius r, all objects qualify!
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Range-Pivot Constraint (cont.)Range-Pivot Constraint (cont.)

� We have considered one position of q

� Three are possible:� Three are possible:

o
rh

o
rh

o
rh

p rl p rl
q

p rl
q

q

q
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Range-Pivot Constraint (summary)Range-Pivot Constraint (summary)

� Given a metric space M=(D,d) and objects p,o∈D
such that r ≤ d(o,p) ≤ r . Given q∈D with known such that rl ≤ d(o,p) ≤ rh. Given q∈D with known 

d(q,p). The distance d(q,o) is restricted by:

rpqdoqdpqdrrpqd +≤≤−− ),(),(}0),,(,),(max{ hlh rpqdoqdpqdrrpqd +≤≤−− ),(),(}0),,(,),(max{
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Pivot-Pivot Distance ConstraintPivot-Pivot Distance Constraint

� In internal nodes we can do more

� Assume the root node is examined� Assume the root node is examined

p1
? ?

p2 p3

? ?

We can apply the range-pivot constraint to decide 

o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8

� We can apply the range-pivot constraint to decide 

which sub-trees must be visited

� The ranges are known since during building phase all data 

objects were compared with p1.
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Pivot-Pivot Constraint (cont.)Pivot-Pivot Constraint (cont.)

� Suppose we have followed the left branch (to p2)

� Knowing the distance d(p ,p ) and using d(q,p )� Knowing the distance d(p1,p2) and using d(q,p1)

� we can apply the object-pivot constraint → d(q,p2)∈[rl’,rh’]

p1

p p

o11 o5

p2

o o o o o o

p3

o o o o o

p1

p2
o10

o1

o4

We also know range of distances 

o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8
p2

q

o6

r’h

r’� We also know range of distances 

in p2’s sub-trees: d(o,p2)∈[rl,rh]

r’l
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Pivot-Pivot Constraint (cont.)Pivot-Pivot Constraint (cont.)

� Having
� d(q,p2)∈[rl’,rh’] o11 o5� d(q,p2)∈[rl’,rh’]

� d(o,p2)∈[rl ,rh]

o11

p1

p o

o1

o5

o4

r’h rh

p2

q

o10

o6

Both ranges intersect → lower bound on d(q,o) is 0!

rlr’l

� Both ranges intersect → lower bound on d(q,o) is 0!

� Upper bound is rh+rh’Upper bound is rh+rh’
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Pivot-Pivot Constraint (cont.)Pivot-Pivot Constraint (cont.)

� If ranges do not intersect, there are two possibilities.

� The first is: [r ,r ] is less than [r ’,r ’]� The first is: [rl,rh] is less than [rl’,rh’]

� The lower bound (left) is rl’ - rh

A view of the upper bound r +r ’ (right)� A view of the upper bound rh+rh’ (right)

r’

p2
r’h

r’l

rl

rh

p2

rl rh
rh + r’h

p2

q

o

r’l - rh

p2

q

o

r’hr’l

� The second is inverse - the lower limit is rl - rh’
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Pivot-Pivot Constraint (summary)Pivot-Pivot Constraint (summary)

� Given a metric space M=(D,d) and objects q,p,o∈D
such that r ≤ d(o,p) ≤ r and r ’ ≤ d(q,p) ≤ r ’. The such that rl ≤ d(o,p) ≤ rh and rl’ ≤ d(q,p) ≤ rh’. The 
distance d(q,o) can be restricted by:

{ } hhhlhl rroqdrrrr +′≤≤′−−′ ),(0,,max{ } hhhlhl rroqdrrrr +′≤≤′−−′ ),(0,,max
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Double-Pivot Distance ConstraintDouble-Pivot Distance Constraint

� Previous constraints use just one pivot along with 

ball partitioning.ball partitioning.

� Applying generalized hyper-plane, we have two 

pivots.pivots.

� No upper bound on d(q,o) can be defined!

o

p2q

o

p1

Equidistant line

Similarity Search: Part I, Chapter 1 73

Equidistant line



Double-Pivot Constraint (cont.)Double-Pivot Constraint (cont.)

� If q and o are in different subspaces
� Lower bound is (d(q,p1) – d(q,p2))/2

p2q

o

p1
� Lower bound is (d(q,p1) – d(q,p2))/2

� Hyperbola shows the positions with 
constant lower bound.

� Moving q up (so “visual” distance 
q’

� Moving q up (so “visual” distance 
from equidistant line is preserved), 
decreases the lower bound.

pq

o

p

� If q and o are in the same subspace

p2qp1

� If q and o are in the same subspace

� the lower bound is zero
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Double-Pivot Constraint (summary)Double-Pivot Constraint (summary)

� Given a metric space M=(D,d) and objects 

o,p ,p ∈D such that d(o,p ) ≤ d(o,p ). Given a query o,p1,p2∈D such that d(o,p1) ≤ d(o,p2). Given a query 

object q∈D with d(q,p1) and d(q,p2). The distance 

d(q,o) can be lower-bounded by:d(q,o) can be lower-bounded by:

),(),( pqdpqd  −
),(0,

2

),(),(
max 21 oqd

pqdpqd ≤






 −

2 
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Pivot FilteringPivot Filtering

� Extended object-pivot constraint

� Uses more pivots� Uses more pivots

� Uses triangle inequality for pruning

All distances between objects and a pivot p are � All distances between objects and a pivot p are 

known

� Prune object o ∈ X if any holds

� d(p,o) < d(p,q) – r� d(p,o) < d(p,q) – r

� d(p,o) > d(p,q) + r
q

r

p
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Pivot Filtering (cont.)Pivot Filtering (cont.)

� Filtering with two pivots

� Only Objects in the dark blue � Only Objects in the dark blue 

region have to be checked.

� Effectiveness is improved 

using more pivots. p
r

o2

using more pivots. p1
q

r

o
p2

o1

o3
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Pivot Filtering (summary)Pivot Filtering (summary)

� Given a metric space M=(D,d) and a set of pivots

P = { p , p , p ,!, p }. We define a mapping P = { p1, p2, p3,!, pn }. We define a mapping 

function Ψ: (D,d) → (n,L∞) as follows:

Ψ(o) = (d(o,p1), !, d(o,pn))Ψ(o) = (d(o,p1), !, d(o,pn))

Then, we can bound the distance d(q,o) from below:Then, we can bound the distance d(q,o) from below:

L (Ψ(o), Ψ(q)) ≤ d(q,o)L∞(Ψ(o), Ψ(q)) ≤ d(q,o)
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Pivot Filtering (consideration)Pivot Filtering (consideration)

Given a range query R(q,r)� Given a range query R(q,r)

� We want to report all objects o such that d(q,o) ≤ r

� Apply the pivot filtering

� We can discard objects for which� We can discard objects for which

� L∞(Ψ(o), Ψ(q)) > r holds, i.e. the lower bound on d(q,o) is 

greater than r.greater than r.

� The mapping Ψ is contractive:

� No eliminated object can qualify.

� Some qualifying objects need not be relevant.

� These objects have to be checked against the original 

function d().
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Constraints & Explanatory Example 1Constraints & Explanatory Example 1

� Range query R(q,r) = {o4,o6,o8}

� Sequential scan: 11 distance computations� Sequential scan: 11 distance computations

� No constraint: 3+8 distance computations

p1o9

o11
o3 o5 p1

p2 p3

o9

p3
p1

p

o1o4

o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8

p2

q o10 o2
o7

o

o6

o8
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Constraints & Explanatory Example 2Constraints & Explanatory Example 2

� Range query R(q,r) = {o4,o6,o8}

� Only object-pivot in leaves: 3+2 distance computations� Only object-pivot in leaves: 3+2 distance computations

� o6 is included without computing d(q,o6)

� o ,o ,o ,o ,o are eliminated without computing.� o10 ,o2 ,o9 ,o3 ,o7 are eliminated without computing.

p
o11

o3 o p1

p2 p3

o9

p

o3

p1

o1

o5

o4

o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8

p3
p1

p2

q o10 o2
o

o6

o7
o8
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Constraints & Explanatory Example 3Constraints & Explanatory Example 3

� Range query R(q,r) = {o4,o6,o8}

� Only range-pivot: 3+6 distance computations� Only range-pivot: 3+6 distance computations

� o2 ,o9 are pruned.

� Only range-pivot +pivot-pivot: 3+6 distance computations� Only range-pivot +pivot-pivot: 3+6 distance computations

o11
o

p1

p2 p3

o9

o11
o3

p

o1

o5

o4

o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8

p3
p1

p2

q o10 o2

o4

o6
o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8q o10 o2

o7
o8
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Constraints & Explanatory Example 4Constraints & Explanatory Example 4

� Range query R(q,r) = {o4,o6,o8}

� Assume: objects know distances to pivots along paths to the � Assume: objects know distances to pivots along paths to the 

root.

� Only pivot filtering: 3+3 distance computations (to o4 , o6 , o8)� Only pivot filtering: 3+3 distance computations (to o4 , o6 , o8)

� All constraints together: 3+2 distance computations (to o4 ,o8)

o11

p1

p2 p3

o9

o11
o3

o1

o5

o4
p2

o o o o o o

p3

o o o o o

p3
p1

p2

q o10

o1

o2

o4

o6
o4 o6 o10 o1 o5 o11 o2 o9 o3 o7 o8q o10 o2

o7
o8
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Foundations of metric space searchingFoundations of metric space searching

1. distance searching problem in metric spaces 

2. metric distance measures2. metric distance measures

3. similarity queries

4. basic partitioning principles

5. principles of similarity query execution5. principles of similarity query execution

6. policies to avoid distance computations

metric space transformations7. metric space transformations

8. principles of approximate similarity search8. principles of approximate similarity search

9. advanced issues
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Metric Space TransformationMetric Space Transformation

� Change one metric space into another

� Transformation of the original objects� Transformation of the original objects

� Changing the metric function

� Transforming both the function and the objects� Transforming both the function and the objects

� Metric space embedding

� Cheaper distance function� Cheaper distance function

� User-defined search functions
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Metric Space TransformationMetric Space Transformation

� M1 = (D1, d1) M2 = (D2, d2)

� Function 21: DD →f� Function

))(),((),(:, ofofdoodoo ≈∈∀ D

21: DD →f

))(),((),(:, 212211121 ofofdoodoo ≈∈∀ D

� Transformed distances need not be equal
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Lower Bounding Metric FunctionsLower Bounding Metric Functions

� Bounds on transformations

� Exploitable by index structures� Exploitable by index structures

� Having functions d1,d2: D→D
d is a lower-bounding distance function of d� d1 is a lower-bounding distance function of d2

),(),(:, oodoodoo ≤∈∀ D ),(),(:, 21221121 oodoodoo ≤∈∀ D
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Lower Bounding Functions (cont.)Lower Bounding Functions (cont.)

� Scaling factor

� Some metric functions cannot be bounded.� Some metric functions cannot be bounded.

� We can bound them if they are reduced by a factor s

:21,:10 D∈∀<<∃ oos

),(),( oodoods ≤⋅

s�d is a lower-bounding function of d

),(),( 212211 oodoods ≤⋅

� s�d1 is a lower-bounding function of d2

� Maximum of all possible values of s is called the optimal 

scaling factor.scaling factor.
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Example of Lower Bounding FunctionsExample of Lower Bounding Functions

� Lp metrics

� Any Lp’ metric is lower-bounding an Lp metric if p ≤ p’� Any Lp’ metric is lower-bounding an Lp metric if p ≤ p’

� Let are two vectors in a 2-D space×∈yx
rr
,

2

22

2

11 )()(),(
2

yxyxyxdL −+−=
rr

rr

2211),(
1

yxyxyxdL −+−=rr

� L1 is always bigger than L2
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Example of Lower Bounding FunctionsExample of Lower Bounding Functions

� Quadratic Form Distance Function

� Bounded by a scaled L2 norm� Bounded by a scaled L2 norm

� Optimal scaling factor is

}{min iioptims λ=

where λi denote the eigenvalues of the quadratic form 

function matrix.function matrix.
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User-defined Metric FunctionsUser-defined Metric Functions

� Different users have different preferences

� Some people prefer car’s speed� Some people prefer car’s speed

� Others prefer lower prices

� etc…� etc…

Preferences might be complex� Preferences might be complex

� Color histograms, data-mining systems

� Can be learnt automatically

� from the previous behavior of a user
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User-defined Metric FunctionsUser-defined Metric Functions

� Preferences expressed as another
distance function dudistance function du
� can be different for different users

� Example: matrices for quadratic form distance functions� Example: matrices for quadratic form distance functions

� Database indexed with a fixed metric db� Database indexed with a fixed metric db

� Lower-bounding metric function d� Lower-bounding metric function dp
� lower-bounds db and du
� it is applied during the search� it is applied during the search

� can exploit properties the index structure
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User-defined Metric FunctionsUser-defined Metric Functions

� Searching using dp
� search the index, but use dp instead of db� search the index, but use dp instead of db

� Possible, because

),(),(:, oodoodoo ≤∈∀ D
� every object that would match similarity query using d will 

),(),(:, 212121 oodoodoo bp ≤∈∀ D
� every object that would match similarity query using db will 

certainly match with dp

� False-positives in the result� False-positives in the result

� filtered afterwards - using du

possible, because� possible, because

),(),(:, 212121 oodoodoo up ≤∈∀ D
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Embedding the Metric SpaceEmbedding the Metric Space

� Transform the metric space

� Cheaper metric function d2� Cheaper metric function d2

� Approximate the original d1 distances

))(),((),( 212211 ofofdood ≥

� Drawbacks

� Must transform objects using the function f� Must transform objects using the function f

� False-positives

� pruned using the original metric function� pruned using the original metric function
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Embedding ExamplesEmbedding Examples

� Lipschitz Embedding

� Mapping to an n-dimensional vector space� Mapping to an n-dimensional vector space

� Coordinates correspond to chosen subsets Si of objects

� Object is then a vector of distances to the closest object from � Object is then a vector of distances to the closest object from 

a particular coordinate set Si

)),(,),,(),,(()( SodSodSodof K=
� Transformation is very expensive

)),(,),,(),,(()( 21 nSodSodSodof K=
� Transformation is very expensive

� SparseMap extension reduces this cost

Similarity Search: Part I, Chapter 1 95



Embedding ExamplesEmbedding Examples

� Karhunen-Loeve tranformation

� Linear transformation of vector spaces� Linear transformation of vector spaces

� Dimensionality reduction technique

� Similar to Principal Component Analysis� Similar to Principal Component Analysis

� Projects object o onto the first k < n basis vectors

},,,{ vvvV
rrr=

Transformation is contractive

},,,{ 21 nvvvV
r

K
rr=

� Transformation is contractive

� Used in the FastMap technique
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Foundations of metric space searchingFoundations of metric space searching

1. distance searching problem in metric spaces 

2. metric distance measures2. metric distance measures

3. similarity queries

4. basic partitioning principles

5. principles of similarity query execution5. principles of similarity query execution

6. policies to avoid distance computations

metric space transformations7. metric space transformations

8. principles of approximate similarity search8. principles of approximate similarity search

9. advanced issues
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Principles of Approx. Similarity SearchPrinciples of Approx. Similarity Search

� Approximate similarity search over-comes problems 

of exact similarity search when using traditional of exact similarity search when using traditional 

access methods.

� Moderate improvement of performance with respect to the � Moderate improvement of performance with respect to the 

sequential scan.

� Dimensionality curse� Dimensionality curse

� Similarity search returns mathematically precise 

result sets.result sets.

� Similarity is often subjective, so in some cases also 

approximate result sets satisfy the user’s needs.approximate result sets satisfy the user’s needs.
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Principles of Approx. Similarity Search Principles of Approx. Similarity Search 

(cont.)

� Approximate similarity search processes a query 

faster at the price of imprecision in the returned faster at the price of imprecision in the returned 

result sets.

� Useful, for instance, in interactive systems:� Useful, for instance, in interactive systems:

� Similarity search is typically an iterative process

� Users submit several search queries before being satisfied� Users submit several search queries before being satisfied

� Fast approximate similarity search in intermediate queries can be 

useful.

� Improvements up to two orders of magnitude
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Approx. Similarity Search: Basic StrategiesApprox. Similarity Search: Basic Strategies

� Space transformation

� Distance preserving transformations� Distance preserving transformations

� Distances in the transformed space are smaller than in the 

original space.original space.

� Possible false hits

� Example: � Example: 

� Dimensionality reduction techniques such as

� KLT, DFT, DCT, DWT� KLT, DFT, DCT, DWT

� VA-files

� We will not discuss this approximation strategy in details.� We will not discuss this approximation strategy in details.
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Basic Strategies (cont.)Basic Strategies (cont.)

� Reducing subsets of data to be examined

� Not promising data is not accessed.� Not promising data is not accessed.

� False dismissals can occur.

� This strategy will be discussed more deeply in the � This strategy will be discussed more deeply in the 

following slides.
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Reducing Volume of Examined DataReducing Volume of Examined Data

� Possible strategies:

� Early termination strategies

A search algorithm might stop before all the needed data has � A search algorithm might stop before all the needed data has 

been accessed.

� Relaxed branching strategies

� Data regions overlapping the query region can be discarded � Data regions overlapping the query region can be discarded 

depending on a specific relaxed pruning strategy.
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Early Termination StrategiesEarly Termination Strategies

� Exact similarity search algorithms are

� Iterative processes, where� Iterative processes, where

� Current result set is improved at each step.

� Exact similarity search algorithms stop

� When no further improvement is possible.
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Early Termination Strategies (cont.)Early Termination Strategies (cont.)

� Approximate similarity search algorithms

� Use a “relaxed” stop condition that� Use a “relaxed” stop condition that

� stops the algorithm when little chances of improving the 

current results are detected.current results are detected.

The hypothesis is that � The hypothesis is that 

� A good approximation is obtained after a few iterations.

� Further steps would consume most of the total search 

costs and would only marginally improve the result-set.
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Early Termination Strategies (cont.)Early Termination Strategies (cont.)
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Relaxed Branching StrategiesRelaxed Branching Strategies

� Exact similarity search algorithms

� Access all data regions overlapping the query region and � Access all data regions overlapping the query region and 

discard all the others.

� Approximate similarity search algorithms� Approximate similarity search algorithms

� Use a “relaxed” pruning condition that 

Rejects regions overlapping the query region when it � Rejects regions overlapping the query region when it 

detects a low likelihood that data objects are contained in 

the intersection.the intersection.

� In particular, useful and effective with access 

methods based on hierarchical decomposition of the methods based on hierarchical decomposition of the 

space.
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Approximate Search: ExampleApproximate Search: Example

B1

� A hypothetical index structure

� Three ball regions

o2
o1

B1

� Three ball regions
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Approximate Search: Range QueryApproximate Search: Range Query
� Given a range query:

B
B1

� Access B1

� Report o1

o2

o1

B1

1

� If early termination stopped now, 
we would loose objects.

Access B
o4

o6 q
B2

� Access B2

� Report o4 ,o5
If early termination stopped now, 

o4

o5

o7
o3

B2

� If early termination stopped now, 
we would not loose anything.

� Access B o9� Access B3

� Nothing to report

� A relaxed branching strategy 

o9

o11

o

B3

� A relaxed branching strategy 
may discard this region – we 
don’t loose anything.

o10
o8
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Approximate Search: 2-NN QueryApproximate Search: 2-NN Query

B1

� Given a 2-NN query:

B
r=∞

o2
o1

B1
� Access B1

� Neighbors: o1 ,o3

r=∞

o4
q

B2

1 3

� If early termination stopped now, 
we would loose objects.

Access B
o4

o5

o7
o3

B2
� Access B2

� Neighbors: o4 ,o5
If early termination stopped now, 

o6

� If early termination stopped now, 
we would not loose anything.

� Access B o9

o11

o

B3

� Access B3

� Neighbors: o4 ,o5 – no change

� A relaxed branching strategy 

o9

o10
o8

� A relaxed branching strategy 
may discard this region – we 
don’t loose anything.
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Measures of PerformanceMeasures of Performance

� Performance assessments of approximate similarity 

search should considersearch should consider

� Improvement in efficiency

� Accuracy of approximate results� Accuracy of approximate results

� Typically there is a trade-off between the two

High improvement in efficiency is obtained at the cost of � High improvement in efficiency is obtained at the cost of 

accuracy in the results.

Good approximate search algorithms should� Good approximate search algorithms should

� offer high improvement in efficiency with high accuracy in 

the results.
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Measures of Performance: Improvement Measures of Performance: Improvement 

in Efficiency

� Improvement in Efficiency (IE) is expressed as

� the ratio between the cost of the exact and approximate � the ratio between the cost of the exact and approximate 

execution of a query Q:

)(QCost=
)(

)(

QCost

QCost
IE

A
=

� Cost and CostA denote the number of disk accesses or 

alternatively the number of distance computations for the 

)(QCost

alternatively the number of distance computations for the 

precise and approximate execution of Q, respectively.

� Q is a range or k-nearest neighbors query.� Q is a range or k-nearest neighbors query.
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Improvement in Efficiency (cont.)Improvement in Efficiency (cont.)

� IE=10 means that approximate execution is 10 times 

fasterfaster

� Example:

exact execution 6 minutes� exact execution 6 minutes

� approximate execution 36 seconds
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Measures of Performance: Precision and Measures of Performance: Precision and 

Recall

� Widely used in Information Retrieval as a 

performance assessment.performance assessment.

Precision: ratio between the retrieved qualifying � Precision: ratio between the retrieved qualifying 

objects and the total objects retrieved.

� Recall: ratio between the retrieved qualifying � Recall: ratio between the retrieved qualifying 

objects and the total qualifying objects.

Similarity Search: Part I, Chapter 1 113



Precision and Recall (cont.)Precision and Recall (cont.)

� Accuracy can be quantified with Precision (P) and 

Recall (R):Recall (R):

SS
R

SS
P

AA ∩
=

∩
= ,

S
R

S
P

A
== ,

� S – qualifying objects, i.e., objects retrieved by the precise 

algorithmalgorithm

� SA – actually retrieved objects, i.e., objects retrieved by the 

approximate algorithmapproximate algorithm
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Precision and Recall (cont.)Precision and Recall (cont.)

� They are very intuitive but in our context

� Their interpretation is not obvious & misleading!!!� Their interpretation is not obvious & misleading!!!

� For approximate range search we typically 

have SA ⊆ Shave SA ⊆ S

� Therefore, precision is always 1 in this case

� Results of k-NN(q) have always size k

� Therefore, precision is always equal to recall in this case.� Therefore, precision is always equal to recall in this case.

� Every element has the same importance

Loosing the first object rather than the 1000th one is the � Loosing the first object rather than the 1000th one is the 

same.
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Precision and Recall (cont.)Precision and Recall (cont.)

� Suppose a 10-NN(q):

� S={1,2,3,4,5,6,7,8,9,10}� S={1,2,3,4,5,6,7,8,9,10}

� SA1={2,3,4,5,6,7,8,9,10,11} the object 1 is missing

� SA2={1,2,3,4,5,6,7,8,9,11} the object 10 is missing� SA2={1,2,3,4,5,6,7,8,9,11} the object 10 is missing

� In both cases: P = R = 0.9

� However SA2 can be considered better than SA1.� However S can be considered better than S .
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Precision and Recall (cont.)Precision and Recall (cont.)

� Suppose 1-NN(q):

� S={1}� S={1}

� SA1={2} just one object was skipped

� SA2={10000} the first 9,999 objects were skipped� SA2={10000} the first 9,999 objects were skipped

� In both cases: P = R = 0

� However SA1 can be considered much better than SA2.� However S can be considered much better than S .
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Measures of Performance: Relative Error Measures of Performance: Relative Error 

on Distances
Another possibility to assess the accuracy is the � Another possibility to assess the accuracy is the 

use of the relative error on distances (ED)

� It compares the distances from a query object to objects in 

the approximate and exact results

1
),(

),(

),(

),(),( −=−=
qod

qod

qod

qodqod
ED

N

A

N

NA

where oA and oN are the approximate and the actual 

nearest neighbors, respectively.

),(),( qodqod NN

nearest neighbors, respectively.

� Generalisation to the case of the j-th NN:
),( qod A

1
),(

),(
−=

qod

qod
ED

N

j

A

j

j
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Relative Error on Distances (cont.)Relative Error on Distances (cont.)

� It has a drawback:

� It does not take the distribution of distances into account.� It does not take the distribution of distances into account.

Example1: The difference in distance from the query � Example1: The difference in distance from the query 

object to oN and oA is large (compared to the range 

of distances)

� If the algorithm misses oN and takes oA, ED is large even if If the algorithm misses o and takes o , ED is large even if 

just one object has been missed.

q oN oA
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Relative Error on Distances (cont.)Relative Error on Distances (cont.)

� Example 2: Almost all objects have the same (large) 

distance from the query object.distance from the query object.

� Choosing the farthest rather than the nearest neighbor 

would produce a small ED, even if almost all objects have 
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Measures of Performance: Error on Measures of Performance: Error on 

Position

� Accuracy can also be measured as the Error on 

Position (EP)Position (EP)

� i.e., the discrepancy between the ranks in approximate 

and exact results.and exact results.

� Obtained using the Sperman Footrule Distance

(SFD): X(SFD):

∑ −=
X

ii oSoSSFD 21 )()(

|X| – the dataset’s cardinality

∑
=

−=
i

ii oSoSSFD
1

21 )()(

|X| – the dataset’s cardinality

Si(o) – the position of object o in the ordered list Si
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Error on Position (cont.)Error on Position (cont.)

� SFD computes correlation of two ordered lists.
� Requires both the lists to have identical elements.� Requires both the lists to have identical elements.

� For partial lists: Induced Footrule Distance (IFD):

A

∑ −=
AS

i

A

i oSoOXIFD )()(

OX – the list containing the entire dataset ordered 

∑
=

−=
i

ii oSoOXIFD
1

)()(

OX – the list containing the entire dataset ordered 
with respect to q.

SA – the approximate result ordered with respect to SA – the approximate result ordered with respect to 
q.
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Error on Position (cont.)Error on Position (cont.)

� Position in the approximate result is always smaller 

than or equal to the one in the exact result.than or equal to the one in the exact result.

� SA is a sub-lists of OX

� SA(o) ≤ OX(o)� SA(o) ≤ OX(o)

� A normalisation factor |SA|⋅|X| can also be used

� The error on position (EP) is defined as

( )S A
A

−∑ ( )
XS

oSoOX
EP

A

S

i i

A

i

A

⋅

−
= ∑ =1

)()(

XS
EP

A ⋅
=
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Error on Position (cont.)Error on Position (cont.)

� Suppose |X|=10,000

� Let us consider a 10-NN(q):

� S={1,2,3,4,5,6,7,8,9,10}

� SA1={2,3,4,5,6,7,8,9,10,11} the object 1 is missing

� SA2={1,2,3,4,5,6,7,8,9,11} the object 10 is missing

� As also intuition suggests:� As also intuition suggests:

� In case of SA1, EP = 10 / (10 ⋅ 10,000) = 0.0001

� In case of SA2, EP = 1 / (10 ⋅ 10,000) = 0.00001� In case of SA2, EP = 1 / (10 ⋅ 10,000) = 0.00001
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Error on Position (cont.)Error on Position (cont.)

� Suppose |X|=10,000

� Let us consider a 1-NN(q):

� S={1}

� SA1={2} just one object was skipped

� SA2={10,000} the first 9,999 objects were skipped

� As also intuition suggests :� As also intuition suggests :

� In case of SA1, EP = (2-1)/(1⋅10,000) = 1/(10,000) = 0.0001

� In case of SA2, EP = (10,000-1)/(1⋅10,000) = 0.9999� In case of SA2, EP = (10,000-1)/(1⋅10,000) = 0.9999
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Foundations of metric space searchingFoundations of metric space searching

1. distance searching problem in metric spaces 

2. metric distance measures2. metric distance measures

3. similarity queries

4. basic partitioning principles

5. principles of similarity query execution5. principles of similarity query execution

6. policies to avoid distance computations

metric space transformations7. metric space transformations

8. principles of approximate similarity search8. principles of approximate similarity search

9. advanced issues
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Statistics on Metric DatasetsStatistics on Metric Datasets

� Statistical characteristics of datasets form the basis 

of performance optimisation in databases.of performance optimisation in databases.

� Statistical information is used for

Cost models� Cost models

� Access structure tuning

� Typical statistical information

� Histograms of frequency values for records in databasesHistograms of frequency values for records in databases

� Distribution of data, in case of data represented in a vector 

space
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Statistics on Metric Datasets (cont.)Statistics on Metric Datasets (cont.)

� Histograms and data distribution cannot be used in 

generic metric spacesgeneric metric spaces

� We can only rely on distances

No coordinate system can be used� No coordinate system can be used

� Statistics useful for techniques for similarity 

searching in metric spaces are

� Distance density and distance distribution� Distance density and distance distribution

� Homogeneity of viewpoints

� Proximity of ball regions� Proximity of ball regions
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Data Density vs. Distance DensityData Density vs. Distance Density

� Data density (applicable just in vector spaces)

� characterizes how data are placed in the space� characterizes how data are placed in the space

� coordinates of objects are needed to get their position

� Distance density (applicable in generic metric 

spaces)

� characterizes distances among objectscharacterizes distances among objects

� no need of coordinates

� just a distance functions is required� just a distance functions is required
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Data Density vs. Distance Density (cont.)Data Density vs. Distance Density (cont.)

� Data density � Distance density from the 

object pobject p

x  x2 

x 

p 

 

x1 
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Distance Distribution and Distance Distance Distribution and Distance 

Density

� The distance distribution with respect to the object p

(viewpoint) is(viewpoint) is

{ } { }xopdxDxF pDp
≤=≤= ),(PrPr)(

where Dp is a random variable corresponding to the 

distance d(p,o) and o is a random object of the metric

{ } { }pDp

distance d(p,o) and o is a random object of the metric

space.

� The distance density from the object p can be � The distance density from the object p can be 

obtained as the derivative of the distribution.
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Distance Distribution and Distance Distance Distribution and Distance 

Density (cont.)

� The overall distance distribution (informally) is the 

probability of distances among objectsprobability of distances among objects

{ }xoodxF ≤= ),(Pr)( 21

where o1 and o2 are random objects of the metric space.

{ }xoodxF ≤= ),(Pr)( 21
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Homogeneity of ViewpointsHomogeneity of Viewpoints

� A viewpoint (distance distribution from p) is � A viewpoint (distance distribution from p) is 

different from another viewpoint.

� Distances from different objects are distributed differently.� Distances from different objects are distributed differently.

� A viewpoint is different from the overall distance 

distribution.distribution.

� The overall distance distribution characterize the entire set 

of possible distances.of possible distances.

� However, the overall distance distribution can be 

used in place of any viewpoint if the dataset is used in place of any viewpoint if the dataset is 

probabilistically homogeneous.probabilistically homogeneous.
� i.e., when the discrepancy between various viewpoints is 

small.
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Homogeneity of Viewpoints (cont.)Homogeneity of Viewpoints (cont.)

� The index of Homogeneity of Viewpoints (HV) for a 

metric space M=(D,d) is:metric space M=(D,d) is:

)( avg1)(
21 pp ,FFHV δ−=M

where p1 and p2 are random objects and the discrepancy 

)( avg1)(
21

21

pp
,pp

,FFHV δ
D∈

−=M

where p1 and p2 are random objects and the discrepancy 

between two viewpoints is

)()(avg)(
],0[

xFxF,FF
jiji pp

dx
pp −=

+∈
δ

where Fpi is the viewpoint of pi

],0[ dx∈
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Homogeneity of Viewpoints (cont.)Homogeneity of Viewpoints (cont.)

� If HV(M) ≈ 1, the overall distance distribution can 

be reliably used to replace any viewpoint.be reliably used to replace any viewpoint.
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Proximity of Ball RegionsProximity of Ball Regions

� Proximity of two regions is a measure that estimates 

the number of objects contained in their overlapthe number of objects contained in their overlap

� Used in:

Region splitting for partitioning� Region splitting for partitioning

� After splitting one region, the new regions should share as little 

objects as possible.objects as possible.

� Disk allocation

� Enhancing performance by distributing data over several disks.� Enhancing performance by distributing data over several disks.

� Approximate search

� Applied in relaxed branching strategy – a region is accessed if � Applied in relaxed branching strategy – a region is accessed if 

there is high probability to have objects in the intersection.
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Proximity of Ball Regions (cont.)Proximity of Ball Regions (cont.)

� In Euclidean spaces, it is easy to obtain

� compute data distributions� compute data distributions

� compute integrals of data distribution on regions’ 

intersectionintersection

� In metric spaces

coordinates cannot be used� coordinates cannot be used

� data distribution cannot be exploited

distance density/distribution is the only available statistical � distance density/distribution is the only available statistical 

information
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Proximity of Ball Regions: PartitioningProximity of Ball Regions: Partitioning

� Queries usually follow data distribution

� Partition data to avoid overlaps, i.e. accessing both � Partition data to avoid overlaps, i.e. accessing both 

regions.

Low overlap (left) vs. high overlap (right)� Low overlap (left) vs. high overlap (right)

p2
p1 p2

q

p2p1
q
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Proximity of Ball Regions: Data AllocationProximity of Ball Regions: Data Allocation

� Regions sharing many objects should be placed on 

different disk units – declusteringdifferent disk units – declustering

� Because there is high probability of being accessed 

together by the same query.together by the same query.

q

pp p2p1
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Proximity of Ball Regions: Approximate Proximity of Ball Regions: Approximate 

Search

� Skip visiting regions where there is low chance to 

find objects relevant to a query.find objects relevant to a query.

p2p1

q
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Proximity of Metric Ball RegionsProximity of Metric Ball Regions

� Given two ball regions R1=(p1,r1) and R2=(p2,r2), we 

define proximity as follows:define proximity as follows:

{ }221121 ),(),(Pr),( ropdropdprox ≤∧≤=RR

� In real-life datasets, distance distribution does not 

{ }221121 ),(),(Pr),( ropdropdprox ≤∧≤=RR

� In real-life datasets, distance distribution does not 

depend on specific objects

� Real datasets have a high index of homogeneity.� Real datasets have a high index of homogeneity.

� We define the overall proximity

{ }=≤∧≤= { }zppdropdropdrrproxz =≤∧≤= ),(|),(),(Pr),( 21221121
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Proximity of Metric Ball Regions (cont.)Proximity of Metric Ball Regions (cont.)

� Overall proximity:

Triangle inequality:

Dz ≤ D1 + D2

o

pp

D2 ≤ r2

o

D1 ≤ r1

p2p1

r
r2

Dz = z

Proximity: Probability that an object o

r1

Proximity: Probability that an object o

appears in the intersection.
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Proximity: Computational DifficultiesProximity: Computational Difficulties

� Let D1= d(p1, o), D2= d(p2, o), Dz= d(p1, p2 ) be 

random variables, the overall proximity can be random variables, the overall proximity can be 

mathematically evaluated as

r r

∫ ∫=
1 2

|,21 )|,(),(

r r

zDDDz dydxdyxfrrprox ∫ ∫=
21

0 0

|,21 )|,(),( zDDDz dydxdyxfrrprox
z

� An analytic formula for the joint conditional density

is not known for generic metric spaces.f is not known for generic metric spaces.
zDDDf |, 21
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Proximity: Computational Difficulties Proximity: Computational Difficulties 

(cont.)

� Idea: Replace the joint conditional density

fD1,D2|Dz(x,y|z) with the joint density fD1,D2(x,y).fD1,D2|Dz(x,y|z) with the joint density fD1,D2(x,y).

� However, these densities are different.

The joint density is easier to obtain:� The joint density is easier to obtain:

)()(),( yfxfyxf DDDD ⋅=
� If the overall density is used:

)()(),(
2121
yfxfyxf DDDD ⋅=

⋅= )()(),(
21

yfxfyxf DD ⋅=
� The original expression can only be approximated.
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Proximity: Considerations (cont.)Proximity: Considerations (cont.)

� The joint conditional 

density is zero 0.0000002

0.000000225

0.00000025

density is zero

� When x,y and z do not 

satisfy the triangle 
0.00000015

0.000000175

0.0000002

satisfy the triangle 

inequality.

� Simply such distance 0.000000075

0.0000001

0.000000125

� Simply such distance 

cannot exist in metric 

space.
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Proximity: Considerations (cont.)Proximity: Considerations (cont.)
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� The joint density is not 

restricted
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� Idea: the joint 
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Proximity: ApproximationProximity: Approximation

� Proximity can be 

computed in O(n) with 

 

y computed in O(n) with 

high precision

� n is the number of 

y 
 

Bounded area 

� n is the number of 

samples for the integral 

computation of f(x).computation of f(x).

� Distance density and 

distribution are the only 
z 
 

distribution are the only 

information that need to 

be pre-computed and 
External area 

stored.
External area 

z x 
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Performance PredictionPerformance Prediction

� Distance distribution can be used for performance 

prediction of similarity search access methodsprediction of similarity search access methods

� Estimate the number of accessed subsets

� Estimate the number of distance computations� Estimate the number of distance computations

� Estimate the number of objects retrieved

� Suppose a dataset was partitioned in m subsetsSuppose a dataset was partitioned in m subsets

� Suppose every dataset is bounded by a ball region 

Ri=(pi,ri), 1≤ i ≤m, with the pivot pi and radius riRi=(pi,ri), 1≤ i ≤m, with the pivot pi and radius ri
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Performance Prediction: Range SearchPerformance Prediction: Range Search

� A range query R(q,rq) will access a subset bounded 

by the region R if it intersects the queryby the region Ri  if it intersects the query

� i.e., if d(q,pi) ≤ ri+rq

� The probability for a random region Rr=(p,r) to be 

accessed isaccessed is

{ } )()(),(Pr qqqq rrFrrFrrpqd +≈+=+≤
where p is the random centre of the region, Fq is the q’s 

viewpoint, and the dataset is highly homogeneous.
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viewpoint, and the dataset is highly homogeneous.
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Performance Prediction: Range Search Performance Prediction: Range Search 

(cont.)

� The expected number of accessed subsets is 

obtained by summing the probability of accessing obtained by summing the probability of accessing 

each subset:

m
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provided that we have a data structure to maintain the

=i 1

provided that we have a data structure to maintain the

ri’s.
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Performance Prediction: Range Search Performance Prediction: Range Search 

(cont.)

� The expected number of distance computations is 

obtained by summing the size of subsets and using obtained by summing the size of subsets and using 

the probability of accessing as a weight
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� The expected size of the result is given simply as

=i 1
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where n is the cardinality of the entire dataset.
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Performance Prediction: Range Search Performance Prediction: Range Search 

(cont.)

� Data structure to maintain the radii and the 

cardinalities of all bounding regions in neededcardinalities of all bounding regions in needed

� The size of this information can become unacceptable –

grows linearly with the size of the dataset.grows linearly with the size of the dataset.
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Performance Prediction: Range Search Performance Prediction: Range Search 

(cont.)

� Previous formulas can be reliably approximated by 
using the average information on each level of a using the average information on each level of a 
tree (more compact)
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where Ml is the number of subsets at level l, arl is the 
average covering radius at level l, and L is the total 

=l 1

average covering radius at level l, and L is the total 
number of levels.
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Performance Prediction: k-NN SearchPerformance Prediction: k-NN Search

� The optimal algorithm for k-NN(q) would access all 

regions that intersect R(q,d(q,o )), where o is the regions that intersect R(q,d(q,ok)), where ok is the 

k-th nearest neighbor of q.

The cost would be equal to that of the range query � The cost would be equal to that of the range query 

R(q,d(q,ok))

However d(q,o ) is not known in advance.� However d(q,ok) is not known in advance.

� The distance density of ok (fOk) can be used instead
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� The density fOk is the derivative of FOk
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Performance Prediction: k-NN Search Performance Prediction: k-NN Search 

(cont.)

� The expected number of accessed subsets is 

obtained by integrating the cost of a range search obtained by integrating the cost of a range search 

multiplied by the density of the k-th NN distance
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� Similarly, the expected number of distance 

computations iscomputations is

∫
+

≈
d

o drrfrqRdistancesqkNNdistances
k0
)()),(())(( ∫≈ o drrfrqRdistancesqkNNdistances

k0
)()),(())((

Similarity Search: Part I, Chapter 1 155



Tree Quality MeasuresTree Quality Measures

Consider our hypothetical index structure again� Consider our hypothetical index structure again

� We can build two different trees over the same 

dataset
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Tree Quality Measures (cont.)Tree Quality Measures (cont.)

� The first tree is more compact.

� Occupation of leaf nodes is higher.� Occupation of leaf nodes is higher.

� No intersection between covering 

regions.regions.
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Tree Quality Measures (cont.)Tree Quality Measures (cont.)

� The second tree is less compact.

� It may result from deletion of several objects.� It may result from deletion of several objects.

� Occupation of leaf nodes is poor.

� Covering regions intersect.� Covering regions intersect.

� Some objects are in the 

intersection.
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Tree Quality Measures (cont.)Tree Quality Measures (cont.)

� The first tree is ‘better’!

� We would like to measure quality of trees.� We would like to measure quality of trees.
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Tree Quality Measures: Fat FactorTree Quality Measures: Fat Factor

� This quality measure is based on overlap of metric 

regions.regions.
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� Different from the previous concept of overlap 

estimation.estimation.

� It is more local.

� Number of objects in the overlap divided by the total � Number of objects in the overlap divided by the total 

number of objects in both the regions.
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Fat Factor (cont.)Fat Factor (cont.)

� “Goodness” of a tree is strictly related to overlap.

� Good trees are with overlaps as small as possible.� Good trees are with overlaps as small as possible.

The measure counts the total number of node � The measure counts the total number of node 

accesses required to answer exact match queries 

for all database objects.for all database objects.

� If the overlap of regions R1 and R2 contains o, both � If the overlap of regions R1 and R2 contains o, both 

corresponding nodes are accessed for R(o,0).
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Absolute Fat Factor: definitionAbsolute Fat Factor: definition

� Let T be a metric tree of n objects with height h and 

m ≥ 1 nodes. The absolute fat-factor of T is:m ≥ 1 nodes. The absolute fat-factor of T is:

nhI − 1

hmn

nhI
Tfat C

−
⋅−= 1

)(

� I – total number of nodes accessed during n exact 

hmn −

� IC – total number of nodes accessed during n exact 

match query evaluations: from nh to nm

Similarity Search: Part I, Chapter 1 162



Absolute Fat Factor: ExampleAbsolute Fat Factor: Example

� An ideal tree needs to access just one node per 

level.level.

� fat(Tideal) = 0       → IC=nh

The worst tree always access all nodes.� The worst tree always access all nodes.

� fat(Tworst) = 1      → IC=nm
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Absolute Fat Factor: ExampleAbsolute Fat Factor: Example

� Two trees organizing 5 objects:

� n=5     m=3     h=2

� IC=11 � IC=10

� n=5     m=3     h=2

� fat(T)=0.2 � fat(T)=0
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Absolute Fat Factor: SummaryAbsolute Fat Factor: Summary

� Absolute fat-factor’s consequences:

� Only range queries taken into account� Only range queries taken into account

� k-NN queries are special case of range queries

� Distribution of exact match queries follows distribution of � Distribution of exact match queries follows distribution of 

data objects

� In general, it is expected that queries are issued in dense � In general, it is expected that queries are issued in dense 

regions more likely.

� The number of nodes in a tree is not considered.� The number of nodes in a tree is not considered.

� A big tree with a low fat-factor is better than a small tree 

with the fat-factor a bit higher.with the fat-factor a bit higher.
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Relative Fat Factor: DefinitionRelative Fat Factor: Definition

� Penalizes trees with more than minimum number of 
nodes.nodes.

� Let T be a metric tree with more than one node 
organizing n objects. The relative fat-factor of T is organizing n objects. The relative fat-factor of T is 
defined as:

min 1
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nhI
Trfat C ⋅−=

� I – total number of nodes accessed
minmin
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� IC – total number of nodes accessed

� C – capacity of a node in objects

� Minimum height:  nh log=
 

� Minimum height:

� Minimum number of nodes:
 nh Clogmin =

 ∑ =
= min

1min

h

i iC
nm

Similarity Search: Part I, Chapter 1 166



Relative Fat Factor: ExampleRelative Fat Factor: Example

Two trees organizing 9 objects:� Two trees organizing 9 objects:

� n=9      C=3      hmin=2      mmin=4

� Minimum tree

� IC=18      h=2      m=4

� Non-optimal tree

� IC=27      h=3      m=8� IC=18      h=2      m=4

� rfat(T)=0      fat(T)=0

� IC=27      h=3      m=8

� rfat(T)=0.5      fat(T)=0
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Tree Quality Measures: ConclusionTree Quality Measures: Conclusion

� Absolute fat-factor
� 0 ≤ fat(T) ≤ 1� 0 ≤ fat(T) ≤ 1

� Region overlaps on the same level are measured.

� Under-filled nodes are not considered.� Under-filled nodes are not considered.

� Can this tree be improved?

� Relative fat-factor
� rfat(T) ≥ 0� rfat(T) ≥ 0

� Minimum tree is optimal

� Overlaps and occupations are considered.� Overlaps and occupations are considered.

� Which of these trees is more optimal?
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Choosing Reference PointsChoosing Reference Points

� All but naïve index structures need pivots (reference 

objects).objects).

� Pivots are essential for partitioning and search 

pruning.pruning.

� Pivots influence performance:

� Higher & more narrowly-focused distance density with 

respect to a pivot

� Greater change for a query object to be located at the most 

frequent distance to the pivot.
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Choosing Reference Points (cont.)Choosing Reference Points (cont.)

� Pivots influence performance:

� Consider ball partitioning:� Consider ball partitioning:

� The distance dm is the most frequent.
p

dm
p

� If all other distance are not very different

� Both subsets are very likely to be accessed by any query.
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Choosing Reference Points: ExampleChoosing Reference Points: Example

� Position of a “good” pivot:

� Unit square with uniform distribution� Unit square with uniform distribution

� 3 positions: midpoint, edge, corner

� Minimize the boundary length:� Minimize the boundary length:

� len(pm)=2.51

� len(p )=1.256� len(pe)=1.256

� len(pc)=1.252

� The best choice is at the border of space� The best choice is at the border of space

� The midpoint is the worst alternative.

� In clustering, the midpoint is the best.
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Choosing Reference Points: ExampleChoosing Reference Points: Example

� The shortest boundary has the pivot po outside the 

space.space.

pc

pm
pe popm po
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Choosing Reference Points: ExampleChoosing Reference Points: Example

� Different view on a “good” pivot:

� 20-D Euclidean space� 20-D Euclidean space

� Density with respect to a corner pivot is flatter.

� Density with respect to a central pivot is sharper & thinner.� Density with respect to a central pivot is sharper & thinner.
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Choosing Good PivotsChoosing Good Pivots

� Good pivots should be outliers of the space

� i.e. an object located far from the others� i.e. an object located far from the others

� or an object near the boundary of the space.

� Selecting good pivots is difficult

� Square or cubic complexities are common.

� Often chosen at random.� Often chosen at random.

� Even being the most trivial and not optimizing, many 

implementations use it!
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Choosing Reference Points: HeuristicsChoosing Reference Points: Heuristics

� There is no definition of a corner in metric spaces

� A corner object is ‘far away’ from others� A corner object is ‘far away’ from others

� Algorithm for an outlier:

1. Choose a random object1. Choose a random object

2. Compute distances from this object to all others

3. Pick the furthest object as pivot3. Pick the furthest object as pivot

� This does not guarantee the best possible pivot.

Helps to choose a better pivot than the random choice.� Helps to choose a better pivot than the random choice.

� Brings 5-10% performance gain
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Choosing More PivotsChoosing More Pivots

� The problem of selecting more pivots is more 
complicated - pivots should be fairly far apart.complicated - pivots should be fairly far apart.

� Algorithm for choosing m pivots:
� Choose 3m objects at random from the given set of n� Choose 3m objects at random from the given set of n

objects.

� Pick an object. The furthest object from this is the first Pick an object. The furthest object from this is the first 
pivot.

� Second pivot is the furthest object from the first pivot.

The third pivot is the furthest object from the previous � The third pivot is the furthest object from the previous 
pivots. Minimum min(d(p1 ,p3), d(p2 ,p3)) is maximized.

� …� …

� Until we have m pivots.
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Choosing More Pivots (cont.)Choosing More Pivots (cont.)

� This algorithm requires O(3m�m) distance 

computations.computations.

� For small values of m, it can be repeated several times for 

different candidate sets anddifferent candidate sets and

� the best setting is used.
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Choosing Pivots: Efficiency CriterionChoosing Pivots: Efficiency Criterion

� An algorithm based on efficiency criterion:

� Measures ‘quality’ of sets of pivots.� Measures ‘quality’ of sets of pivots.

� Uses the mean distance µD between pairs of objects in D.

� Having two sets of pivots

� P1={p1, p2,!pt }

� P2={p’1, p’2,!p’t }� P2={p’1, p’2,!p’t }

� P1 is better than P2 when µDP1 > µDP2
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Choosing Pivots: Efficiency CriterionChoosing Pivots: Efficiency Criterion

� Given a set of pivots P={p1, p2,!pt }

� Estimation of µ for P:� Estimation of µDP for P:

1. At random choose l pairs of objects {(o1,o’1), (o2,o’2), ! 

(o ,o’ )} from database X ⊆D(ol,o’l)} from database X ⊆D

2. Map all pairs into the feature space of the set of pivots P

Ψ(oi)=(d(p1,oi), d(p2,oi),!d(pt,oi))

Ψ(o’i)=(d(p1,o’i), d(p2,o’i),!d(pt,o’i))Ψ(o’i)=(d(p1,o’i), d(p2,o’i),!d(pt,o’i))

1. For each pair (oi,o’i) compute their distance in the feature 

space: di=L∞(Ψ(oi),Ψ(o’i)).
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Efficiency Criterion: ExampleEfficiency Criterion: Example

� Having P={p1,p2}

� Mapping used by µ :� Mapping used by µDP:

Original space with d Feature space with L∞
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Choosing Pivots: Incremental SelectionChoosing Pivots: Incremental Selection

� Selects further pivots “on demand”
� Based on efficiency criterion µDP � Based on efficiency criterion µDP 

� Algorithm:
1. Select a sample set of m objects.1. Select a sample set of m objects.

2. P1={p1} is selected from the sample as µDP1 is maximum.

3. Select another sample set of m objects.3. Select another sample set of m objects.

4. Second pivot p2 is selected as: µDP2 is maximum where 
P2={p1,p2} with p1 fixed.P2={p1,p2} with p1 fixed.

5. …

� Total cost for selecting k pivots: 2lmk distances� Total cost for selecting k pivots: 2lmk distances
� Next step would need 2lm distance, if distances di for 

computing µDP are kept.
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Choosing Reference Points: SummaryChoosing Reference Points: Summary

� Current rules are:

� Good pivots are far away from other objects in the metric � Good pivots are far away from other objects in the metric 

space.

� Good pivots are far away from each other.� Good pivots are far away from each other.

Heuristics sometimes fail:� Heuristics sometimes fail:

� A dataset with Jaccard’s coefficient

� The outlier principle would select pivot p such that d(p,o)=1

for any other database object o.

� Such pivot is useless for partitioning & filtering!

Similarity Search: Part I, Chapter 1 182


