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Burkhard-Keller Tree (BKT) [BK73]Burkhard-Keller Tree (BKT) [BK73]

� Applicable to discrete distance functions only

� Recursively divides a given dataset X� Recursively divides a given dataset X

� Choose an arbitrary point pj∈X, form subsets:j

Xi = {o ∈ X, d(o,pj) = i } for each distance i ≥ 0.

� For each Xi create a sub-tree of pj� For each Xi create a sub-tree of pj
� empty subsets are ignored

ppj
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Similarity Search: Part I, Chapter 2 5



BKT: Range QueryBKT: Range Query

Given a query R(q,r) :

� traverse the tree starting from root� traverse the tree starting from root

� in each internal node pj , do:

� report pj on output if d(q,pj) ≤ r

� enter a child i if max{d(q,pj) – r, 0} ≤ i ≤ d(q,pj) + r

p1

2 3 4
p

r 2 3 4

3 5

p2 p3
p1

p2q
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Fixed Queries Tree (FQT)Fixed Queries Tree (FQT)

� modification of BKT

� each level has a single pivot� each level has a single pivot

� all objects stored in leaves

during search distance computations are saved� during search distance computations are saved

� usually more branches are accessed → one distance 

comp.
p1
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Fixed-Height FQT (FHFQT)Fixed-Height FQT (FHFQT)

� extension of FQT

� all leaf nodes at the same level� all leaf nodes at the same level

� increased filtering using more routing 

objects
p1

p2q
r

objects

� extended tree depth does not typically 

introduce further computations

p1

introduce further computations
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Fixed Queries Array (FQA)Fixed Queries Array (FQA)

� based on FHFQT� based on FHFQT

� an h-level tree is transformed to an array of paths

� every leaf node is represented with a path from the root 

node

each path is encoded as h values of distance� each path is encoded as h values of distance

� a search algorithm turns to a binary search in array a search algorithm turns to a binary search in array 

intervals

p1

p2

p1

2 3 40

0 2 2 3 3 4

2 0 3 4 5 6

p1
p23 4 5
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Vantage Point Tree (VPT)Vantage Point Tree (VPT)

� uses ball partitioning 

� recursively divides given data set X� recursively divides given data set X

� choose vantage point p∈X, compute median m

S = {x∈X – {p} | d(x,p) ≤ m}� S1 = {x∈X – {p} | d(x,p) ≤ m}

� S2 = {x∈X – {p} | d(x,p) ≥ m}

� the equality sign ensures balancing

p1

m1
p1

p2

p1
p2

S S

m2

S1,1 S1,2

S1,2 S1,1
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VPT (cont.)VPT (cont.)

One or more objects can be accommodated in � One or more objects can be accommodated in 
leaves.

� VP tree is a balanced binary tree.

� Static structure p1 m1
� Static structure

p2 p3m2 m3

o o o o o o o o o o o o

Pivots p ,p and p belong to the database!

o4 o1 o3 o8 o9 o11 o7 o2 o6 o5 o10 o12

� Pivots p1,p2 and p3 belong to the database!

� In the following, we assume just one object in a leaf.
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VPT: Range SearchVPT: Range Search

Given a query R(q,r) :

� traverse the tree starting from its root� traverse the tree starting from its root

� in each internal node (pi,mi), do:

� if d(q,pi) ≤ r report pi on output

� if d(q,pi) - r ≤ mi search the left sub-tree (a,b)i i 

� if d(q,pi) + r ≥ mi search the right sub-tree (b)

pi

mi

pi

mi

r
r

(a) (b)

pipi
q

r

q

r
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VPT: k-NN SearchVPT: k-NN Search

Given a query NN(q):

� initialization:    d =d NN=nil� initialization:    dNN =dmax NN=nil

� traverse the tree starting from its root

� in each internal node (pi,mi), do:

� if d(q,pi) ≤ dNN set dNN =d(q,pi), NN=pi� if d(q,pi) ≤ dNN set dNN =d(q,pi), NN=pi

� if d(q,pi) - dNN ≤ mi search the left sub-tree

� if d(q,pi) + dNN ≥ mi search the right sub-tree� if d(q,pi) + dNN ≥ mi search the right sub-tree

� k-NN search only requires the arrays dNN[k] and NN[k]� k-NN search only requires the arrays dNN[k] and NN[k]

� The arrays are kept ordered with respect to the distance to q.
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Multi-Way Vantage Point TreeMulti-Way Vantage Point Tree

� inherits all principles from VPT

� but partitioning is modified� but partitioning is modified

� m-ary balanced tree

applies multi-way ball partitioning� applies multi-way ball partitioning
m3

p1

m2

S
m1

p1

p1
S1,1

m1

S1,2

S1,2 S1,3 S1,4S1,1

S1,3

S1,2

S1,4
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Vantage Point Forest (VPF)Vantage Point Forest (VPF)

� a forest of binary trees

� uses excluded middle partitioning� uses excluded middle partitioning

2ρ2ρ

mi
mi

pi

mi
pi

mi

� middle area is excluded from the process of tree � middle area is excluded from the process of tree 
building
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VPF (cont.)VPF (cont.)

� given data set X is recursively divided and a binary 

tree is builttree is built

� excluded middle areas are used for building another 

binary treebinary tree

M
1
+ M

2
+ M

3
X

p’1p1

M’1p’2 p’3M1p2 p3

M’2 M’3S’1,1 S’2,1S’1,2 S’2,2M2 M3S1,1 S2,1S1,2 S2,2
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VPF: Range SearchVPF: Range Search

Given a query R(q,r):

� start with the first tree� start with the first tree

� traverse the tree starting from its root

in each internal node (p ,m ), do:� in each internal node (pi,mi), do:

� if d(q,pi) ≤ r report pi

if d(q,p ) – r ≤ m – ρ search the left sub-tree� if d(q,pi) – r ≤ mi – ρ search the left sub-tree

� if d(q,pi) + r ≥ mi – ρ search the next tree !!!

� if d(q,p ) + r ≥ m + ρ search the right sub-tree� if d(q,pi) + r ≥ mi + ρ search the right sub-tree

� if d(q,pi) – r ≤ mi + ρ search the next tree !!!

� if d(q,pi) – r ≥ mi – ρ and � if d(q,pi) – r ≥ mi – ρ and 

d(q,pi) + r ≤ mi + ρ search only the next tree !!!
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VPF: Range Search (cont.)VPF: Range Search (cont.)

� Query intersects all 

partitions

� Query collides only with 

exclusionpartitions

� Search both sub-trees

� Search the next tree

exclusion

� Search just the next tree

� Search the next tree

2ρ 2ρ2ρ

mi

2ρ

mi
pi

mi
pi

mi

r q
q

r q
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Bisector Tree (BT)Bisector Tree (BT)

� Applies generalized hyper-plane partitioning

� Recursively divides a given dataset X� Recursively divides a given dataset X

� Choose two arbitrary points p1,p2∈X
r c

1 2

� Form subsets from remaining objects:

S1 = {o ∈ X, d(o,p1) ≤ d(o,p2)}

r2
c

S1 = {o ∈ X, d(o,p1) ≤ d(o,p2)}

S2 = {o ∈ X, d(o,p1) > d(o,p2)}

Covering radii r c and r c are 

p2

� Covering radii r1
c and r2

c are 

established:
r1
c

established:

� The balls can intersect! p1
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BT: Range QueryBT: Range Query

Given a query R(q,r) :

� traverse the tree starting from its root� traverse the tree starting from its root

� in each internal node <pi,pj>, do:
r c

� report px on output if d(q,px) ≤ r

� enter a child of px if d(q,px) – r ≤ rx
c

rj
c

pi pj

pj

pi pj
ri
c

q

r

pi
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Monotonous Bisector Tree (MBT)Monotonous Bisector Tree (MBT)

� A variant of Bisector Tree� A variant of Bisector Tree

� Child nodes inherit one pivot from the parent.

For convenience, no covering radii are shown.� For convenience, no covering radii are shown.

Bisector Tree Monotonous Bisector Tree

p5 p2 p2

p4

p3
p6p3

p4

p1 p1
p4

p1 p1
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MBT (cont.)MBT (cont.)

� Fewer pivots used → fewer distance evaluations 

during query processing & more objects in leaves.during query processing & more objects in leaves.

p1 p2 p1 p2

Bisector Tree Monotonous Bisector Tree
p1 p2

p p p p

p1 p2

p p p pp3 p4 p5 p6 p1 p3 p2 p4
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Voronoi TreeVoronoi Tree

� Extension of Bisector Tree

� Uses more pivots in each internal node� Uses more pivots in each internal node

� Usually three pivots

pp2 r2
c

p3

p1
r3
c

r1
cr1
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Generalized Hyper-plane Tree (GHT)Generalized Hyper-plane Tree (GHT)

� Similar to Bisector Trees

� Covering radii are not used� Covering radii are not used

p p

p1 p2
p

p5 p2

p3 p4 p5 p6

p6p3

3 4 5 6

p4
p1

p4
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GHT: Range QueryGHT: Range Query

� Pruning based on hyper-plane partitioning
r

p

r

q2

Given a query R(q,r) :

� traverse the tree starting from its root

pj

� traverse the tree starting from its root

� in each internal node <pi,pj>, do:

report p on output if d(q,p ) ≤ r

r

q1
pi� report px on output if d(q,px) ≤ r

� enter the left child if d(q,pi) – r ≤ d(q,pj) + r

enter the right child if d(q,p ) + r ≥ d(q,p ) - r

pi

� enter the right child if d(q,pi) + r ≥ d(q,pj) - r
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Exploiting Pre-computed DistancesExploiting Pre-computed Distances

� During insertion of an object into a structure some 

distances are evaluateddistances are evaluated

If they are remembered, we can employ them in � If they are remembered, we can employ them in 

filtering when processing a query
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AESAAESA

� Approximating and Eliminating Search Algorithm

� Matrix n×n of distances is stored� Matrix n×n of distances is stored

� Due to the symmetry, only a half (n(n-1)/2) is stored.

o1

o

o1 o2 o3 o4 o5 o6
o1 0 1.6 2.0 3.5 1.6 3.6

o 1.6 0 1.0 2.6 2.6 4.2o2
o3

o5

o6

o2 1.6 0 1.0 2.6 2.6 4.2

o3 2.0 1.0 0 1.6 2.1 3.5

o4 3.5 2.6 1.6 0 3.0 3.4

o 1.6 2.6 2.1 3.0 0 2.0o4

o6
o5 1.6 2.6 2.1 3.0 0 2.0

o6 3.6 4.2 3.5 3.4 2.0 0

� Every object can play a role of pivot.
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AESA: Range QueryAESA: Range Query

Given a query R(q,r) :

� Randomly pick an object and use it as pivot p� Randomly pick an object and use it as pivot p

� Compute d(q,p)

o o o o o o

� Filter out an object o if |d(q,p) – d(p,o)| > r

oo1 o
2

o3 o4 o5 o6
o1 1.6 2.0 3.5 1.6 3.6

o
2

1.0 2.6 2.6 4.2

o1

o =po
ro

2
1.0 2.6 2.6 4.2

o3 1.6 2.1 3.5

o4 3.0 3.4

o2=p

o3

o

o5

o6

r

q

o5 2.0

o6

o4
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AESA: Range Query (cont.)AESA: Range Query (cont.)

� From remaining objects, select another object as 

pivot p.pivot p.

� To maximize pruning, select the closest object to q.

� It maximizes the lower bound on distances |d(q,p) – d(p,o)|.� It maximizes the lower bound on distances |d(q,p) – d(p,o)|.

� Filter out objects using p.

o1 o2 o3 o4 o
5

o6
o1 1.6 2.0 3.5 1.6 3.6

o 1.0 2.6 2.6 4.2o2 1.0 2.6 2.6 4.2

o3 1.6 2.1 3.5

o4 3.0 3.4

o5=p

o

r

q
o4 3.0 3.4

o
5

2.0

o6

o4

o6
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AESA: Range Query (cont.)AESA: Range Query (cont.)

This process is repeated until the number of � This process is repeated until the number of 

remaining objects is small enough

� Or all objects have been used as pivots.

� Check remaining objects 
o1 o2 o3 o4 o5 o6

o 1.6 2.0 3.5 1.6 3.6
� Check remaining objects 

directly with q.

� Report o if d(q,o) ≤ r. o5
r

o1 1.6 2.0 3.5 1.6 3.6

o2 1.0 2.6 2.6 4.2

o3 1.6 2.1 3.5
� Report o if d(q,o) ≤ r. o5

o6

q

o3 1.6 2.1 3.5

o4 3.0 3.4

o5 2.0

o

� Objects o that fulfill d(q,p)+d(p,o) ≤ r can directly be 

reported on the output without further checking.

o6

reported on the output without further checking.

� E.g. o5, because it was the pivot in the previous step.
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Linear AESA (LAESA)Linear AESA (LAESA)

� AESA is quadratic in space

� LAESA stores distances to m pivots only.� LAESA stores distances to m pivots only.

� Pivots should be selected conveniently

� Pivots as far away from each other as possible are chosen.

o1 o2 o3 o4 o5 o6

o1

o
o2 1.6 0 1.0 2.6 2.6 4.2

o6 3.6 4.2 3.5 3.4 2.0 0

o2
o3

o

o5

o6

pivots

o4
6
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LAESA: Range Query LAESA: Range Query 

� Due to limited number of pivots, the algorithm differs.

� We need not be able to select a pivot among non-� We need not be able to select a pivot among non-

discarded objects.

� First, all pivots are used for filtering.� First, all pivots are used for filtering.

� Next, remaining objects are directly compared to q.

o

o1 o2 o3 o4 o5 o6
o

r o2

o1

oo2 1.6 0 1.0 2.6 2.6 4.2

o6 3.6 4.2 3.5 3.4 2.0 0

o
o6

r

q

o2
o3

o5

o4
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LAESA: SummaryLAESA: Summary

� AESA and LAESA tend to be linear in distance 

computationscomputations

� For larger query radii or higher values of k
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Shapiro’s LAESAShapiro’s LAESA

� Very similar to LAESA

� Database objects are sorted with respect to the first � Database objects are sorted with respect to the first 

pivot.

o2 o3 o1 o4 o5 o6

o1

oo o2 0 1.0 1.6 2.6 2.6 4.2

o6 4.2 3.5 3.6 3.4 2.0 0

o2
o3

o

o5

o6

pivots

o4
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Shapiro’s LAESA: Range Query Shapiro’s LAESA: Range Query 

Given a query R(q,r) :

� Compute d(q,p )� Compute d(q,p1)

� Start with object oi “closest” to q

� i.e. |d(q,p1) - d(p1,oi)| is minimal

p = o
o1

d(q,o2) = 3.2

p1 = o2

o2

o1

o
o5

r

o2 o3 o1 o4 o5 o6

o2 0 1.0 1.6 2.6 2.6 4.2 o4

o6

o3
o5

q

o6 4.2 3.5 3.6 3.4 2.0 0

o4 is picked

4
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Shapiro’s LAESA: Range Query (cont.)Shapiro’s LAESA: Range Query (cont.)

� Next, oi is checked against all pivots

� Discard it if |d(q,pj) – d(pj,oi)| > r for any pj� Discard it if |d(q,pj) – d(pj,oi)| > r for any pj

� If not eliminated, check d(q,oi) ≤ r

o

R(q,1.4)

d(q,o2) = 3.2

o2

o1

o5o o o o o o
r

d(q,o2) = 3.2

d(q,o6) = 1.2

o
4

o6

o2
o3

o5o2 o3 o1 o
4

o5 o6

o2 0 1.0 1.6 2.6 2.6 4.2

o6 4.2 3.5 3.6 3.4 2.0 0

r

q

o
4

o6 4.2 3.5 3.6 3.4 2.0 0
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Shapiro’s LAESA: Range Query (cont.)Shapiro’s LAESA: Range Query (cont.)

� Search continues with objects oi+1, oi-1, oi+2, oi-2, …

� Until conditions |d(q,p1) – d(p1,oi+?)| > r� Until conditions |d(q,p1) – d(p1,oi+?)| > r

and |d(q,p1) – d(p1,oi-?)| > r hold

o

p1 = o2 d(q,o2) = 3.2

r o2

o1

o5

o2 o3 o1 o4 o5 o6

o2 0 1.0 1.6 2.6 2.6 4.2

o6

q

o2
o3

o5o2 0 1.0 1.6 2.6 2.6 4.2

o6 4.2 3.5 3.6 3.4 2.0 0

|d(q,o ) – d(o ,o )| = 1.6 > 1.4|d(q,o2) – d(o2,o1)| = 1.6 > 1.4

|d(q,o2) – d(o2,o6)| = 1 ≤ 1.4
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SpaghettisSpaghettis

� Improvement of LAESA

� Matrix m×n is stored in m arrays of length n.� Matrix m×n is stored in m arrays of length n.

� Each array is sorted according to the distances in it.

� Position of object o can vary 

from array to array

o2

o2 0

o6

0from array to array

� Pointers (or array permutations) 

with respect to the preceding array

o2 0

o3 1.0

o1 1.6

0

2.0

3.4
with respect to the preceding array

must be stored.

o1

o4 2.6

o5 2.6

3.5

3.6

o6 4.2 4.2
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Spaghettis: Range Query Spaghettis: Range Query 

Given a query R(q,r) :

� Compute distances to pivots, i.e. d(q,pi)� Compute distances to pivots, i.e. d(q,pi)

� One interval is defined on each of m arrays

[ d(q,p ) – r, d(q,p ) + r ] for all 1≤i≤m� [ d(q,pi) – r, d(q,pi) + r ] for all 1≤i≤m

o2 o6
o

o2 0

o3 1.0

0

2.0 r o2

o1

o5o1 1.6

o
4

2.6

o 2.6

3.4

3.5

3.6
o4

o6

q

o2
o3

o5

o
5

2.6

o
6

4.2

3.6

4.2

o4
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Spaghettis: Range Query (cont.)Spaghettis: Range Query (cont.)

� Qualifying objects lie in the intervals’ intersection.

� Pointers are followed from array to array.� Pointers are followed from array to array.

� Non-discarded objects are checked against q.

o2

o2 0

o6

0
o1o2

o3 1.0

o1 1.6

0

2.0

3.4

r

q

o2
o3

o5

o
4

2.6

o
5

2.6

3.5

3.6
o4

o6

q o3

o
6

4.2 4.2 Response: o5, o6
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Survey of existing approaches Survey of existing approaches 

1. ball partitioning methods

2. generalized hyper-plane partitioning approaches2. generalized hyper-plane partitioning approaches

3. exploiting pre-computed distances

4. hybrid indexing approaches

1. Multi Vantage Point Tree1. Multi Vantage Point Tree

2. Geometric Near-neighbor Access Tree

3. Spatial Approximation Tree3. Spatial Approximation Tree

4. M-tree

5. Similarity Hashing5. Similarity Hashing

5. approximated techniques
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IntroductionIntroduction

� Structures that store pre-computed distances have 

high space requirementshigh space requirements

� But good performance boost during query processing.

� Hybrid approaches combine partitioning and pre-

computed distances into a single systemcomputed distances into a single system

� Less space requirements

� Good query performance
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Multi Vantage Point Tree (MVPT)Multi Vantage Point Tree (MVPT)

� Based on Vantage Point Tree (VPT)
� Targeted to static collections as well.� Targeted to static collections as well.

� Tries to decrease the number of pivots
� With the aim of improving performance in terms of distance � With the aim of improving performance in terms of distance 

computations.

� Stores distances to pivots in leaves� Stores distances to pivots in leaves
� These distances are evaluated during insertion of objects.

� No object duplication� No object duplication
� Objects playing the role of a pivot are stored only in internal 

nodes.nodes.

� Leaf nodes can contain more than one object.
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MVPT: StructureMVPT: Structure

� Two pivots are used in each internal node

� VPT uses just one pivot.� VPT uses just one pivot.

� Idea: two levels of VPT collapsed into a single node

o1
internal

o1
VPT MVPT

o2 o2

internal

nodeo2

o o o o

o3

o4 o5 o6 o7

o8 o9 o10 o11 o12 o13 o14 o15

o4 o8
o9

o5 o10
o11

o6 o12
o13

o3 o7
o14 o15

o8 o9 o10 o11 o12 o13 o14 o15
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MPVT: Internal NodeMPVT: Internal Node

� Ball partitioning is applied
� Pivot p2 is shared

S3

� Pivot p2 is shared

p1

S1

p2

dm 1

d dmp1

p2 p2 p1

dm 2

dm 3

S1 S2 S3 S4

S2 S4

� In general, MVPT can use k pivots in a node
� Number of children is 2k !!!Number of children is 2 !!!

� Multi-way partitioning can be used as well → mk children
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MVPT: Leaf NodeMVPT: Leaf Node

� Leaf node stores two “pivots” as well.

� The first pivot is selected randomly,� The first pivot is selected randomly,

� The second pivot is picked as the furthest from the first one.

� The same selection is used in internal nodes.� The same selection is used in internal nodes.

� Capacity is c objects + 2 pivots.

o1 o2 o3 o4 o5 o6

p1
1.6 4.1 1.0 2.6 2.6 3.3

p

o1
o2

p1

p2
3.6 3.4 3.5 3.4 2.0 2.5

p2

p1

o3

o5

Distances from objects

o6

p2
o4 …

Distances from objects

to the first h pivots on 

the path from the root
… … … … …
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MVPT: Range SearchMVPT: Range Search

Given a query R(q,r) :

� Initialize the array PATH of h distances from q to the � Initialize the array PATH of h distances from q to the 

first h pivots.

Values are initialized to undefined.� Values are initialized to undefined.

q.PATH: p1
p

-.-

-.-p2

ph

-.-

-.-
…

� Start in the root node and traverse the tree (depth-

first).

ph -.-

first).
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MVPT: Range Search (cont.)MVPT: Range Search (cont.)

� In an internal node with pivots pi , pi+1:

� Compute distances d(q,pi), d(q,pi+1)� Compute distances d(q,pi), d(q,pi+1)
� Store in q.PATH

� if they are within the first h pivots from the root.� if they are within the first h pivots from the root.

� If d(q,pi) ≤ r output pi
� If d(q,pi+1) ≤ r output pi+1� If d(q,pi+1) ≤ r output pi+1
� If d(q,pi) ≤ dm1

� If d(q,pi+1) ≤ dm2 visit the first branchIf d(q,pi+1) ≤ dm2 visit the first branch

� If d(q,pi+1) ≥ dm2 visit the second branch

� If d(q,pi) ≥ dm1i m1

� If d(q,pi+1) ≤ dm3 visit the third branch

� If d(q,pi+1) ≥ dm3 visit the fourth branch
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MVPT: Range Search (cont.)MVPT: Range Search (cont.)

� In a leaf node with pivots p1, p2 and objects oi:

� Compute distances d(q,p ), d(q,p )� Compute distances d(q,p1), d(q,p2)

� If d(q,pi) ≤ r output pi

If d(q,p ) ≤ r output p� If d(q,pi+1) ≤ r output pi+1

� For all objects o1,7,oc:1 c

� If d(q,p1) - r ≤ d(oi,p1) ≤ d(q,p1) + r and

d(q,p2) - r ≤ d(oi,p2) ≤ d(q,p2) + r andd(q,p2) - r ≤ d(oi,p2) ≤ d(q,p2) + r and

∀pj: q.PATH[j] - r ≤ oi.PATH[j] ≤ q.PATH[j] + r

� Compute d(q,oi)� Compute d(q,oi)

� If d(q,oi) ≤ r output oi
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Geometric Near-neighbor Access Tree Geometric Near-neighbor Access Tree 

(GNAT)(GNAT)
� m-ary tree based on

Voronoi-like partitioning p3p

o6 o9

Voronoi-like partitioning

� m can vary with the level in the 

tree.

p3p4

o1
o3 o2

tree.

� A set of pivots P={p1,7,pm} is 

selected from X

p1

o

o7
p2

o4

selected from X

� Split X into m subsets Si

o5
p2

o8

i

� ∀o∈X-P:  o∈Si if  d(pi,o)≤d(pj,o) 

for all j=1..m

p1 p2 p3 p4

� This process is repeated 

recursively.
o5 o7 o4 o8 o2 o3 o9 o1 o6
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GNAT (cont.)GNAT (cont.)

� Pre-computed distances are also stored.

� An m×m table of distance ranges is in each internal � An m×m table of distance ranges is in each internal 

node.

Minimum and maximum � Minimum and maximum 

of distances between each

pivot p and the objects of

rh
ij

pi
pivot pi and the objects of

each subset Sj are stored.
r ij

rh
jj

pj

pi

rl
ij

pj
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GNAT (cont.)GNAT (cont.)

� The m×m table of distance ranges

p1
S1
S2

p2 pm-1 pm
[0.0, 2.1]

[2.3, 3.7]

[3.0, 3.8]

[0.0, 1.5]

[4.2, 7.0]

[2.8, 4.2]

[2.1, 4.0]

[6.8, 8.3]

…

…
S2

Sm-1
S

[2.3, 3.7]

…

[5.2, 6.0]

[1.0, 5.1]

[0.0, 1.5]

[6.9, 7.8]

[2.5, 6.4]

[2.8, 4.2]

[0.0, 0.9]

[5.9, 8.9]

[6.8, 8.3]

[8.0, 8.7]

[0.0, 4.2]

… …

…
… …

Each range [r ij,r ij ] is defined as:

Sm
[1.0, 5.1] [2.5, 6.4] [5.9, 8.9] [0.0, 4.2]

),(min opdr ij =� Each range [rl
ij,rh

ij ] is defined as:

� Notice that rl
ii=0.

{ }

),(max

),(min

opdr

opdr

ij

i
pSo

ij

l
jj∪∈

=

=

{ } ),(max opdr i
pSo

ij

h
jj∪∈

=
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GNAT: Choosing PivotsGNAT: Choosing Pivots

� For good clustering, pivots cannot be chosen 

randomly.randomly.

� From a sample 3m objects, select m pivots:

Three is an empirically derived constant.� Three is an empirically derived constant.

� The first pivot at random.

The second pivot as the furthest object.� The second pivot as the furthest object.

� The third pivot as the furthest object from previous two.

� The minimum of the two distances is maximized.

� …

� Until we have m pivots.
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GNAT: Range SearchGNAT: Range Search

Given a query R(q,r) :

� Start in the root node and traverse the tree (depth-� Start in the root node and traverse the tree (depth-

first).

In internal nodes, employ the distance ranges to � In internal nodes, employ the distance ranges to 

prune some branches.

� In leaf nodes, all objects are directly compared to q.

� If d(q,o)≤ r ,  report o to the output.� If d(q,o)≤ r ,  report o to the output.
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GNAT: Range Search (cont.)

� In an internal node with pivots p , p ,7, p :

GNAT: Range Search (cont.)

� In an internal node with pivots p1, p2,7, pm:

� Pick one pivot pi at random.

� Gradually pick next non-examined pivot pj:

� If d(q,pi)-r > rh
ij or d(q,pi)+r < rl

ij, If d(q,pi)-r > rh or d(q,pi)+r < rl , 

discard pj and its sub-tree.

� Remaining pivots pj are 

rh
ij

p

r2

q2

r1

q1
� Remaining pivots pj are 

compared with q

If d(q,p )-r > r jj , discard p and

rh
jj

p

pi

� If d(q,pi)-r > rh
jj , discard pj and

its sub-tree.

If d(q,p )≤ r, output p

rl
ij

pj

� If d(q,pj)≤ r, output pj

� The corresponding sub-tree is visited.
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Spatial Approximation Tree (SAT)Spatial Approximation Tree (SAT)

� A tree based on Voronoi-like partitioning

� But stores relations between partitions, i.e., an edge is � But stores relations between partitions, i.e., an edge is 

between neighboring partitions.

� For correctness in metric spaces, this would require to � For correctness in metric spaces, this would require to 

have edges between all pairs of objects in X.

� SAT approximates such a graph.� SAT approximates such a graph.

� The root p is a randomly selected object from X.

A set N(p) of p’s neighbors is defined� A set N(p) of p’s neighbors is defined

� Every object o ∈ X-N(p)-{p} is organized under the closest 

neighbor in N(p).neighbor in N(p).

� Covering radius is defined for every internal node (object).
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SAT: ExampleSAT: Example

� Intuition of N(p)

� Each object of N(p) is closer to p than to any other object in � Each object of N(p) is closer to p than to any other object in 

N(p).

� All objects in X-N(p)-{p} are closer to an object in N(p) than � All objects in X-N(p)-{p} are closer to an object in N(p) than 

to p.

� The root is o1
o6

o13
� The root is o1

� N(o1)={o2,o3,o4,o5}

o cannot be included since it is o

o3
o5

o6
o7 o12

rc

� o7 cannot be included since it is

closer to o3 than to o1.

Covering radius of o conceals

o1

o2

o4

o
o11

o14

� Covering radius of o1 conceals

all objects.

2

o8
o9o10

o11
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SAT: Building N(p)SAT: Building N(p)

� Construction of minimal N(p) is NP-complete.

� Heuristics for creating N(p):

� The pivot p, S=X-{p}, N(p)={}.

� Sort objects in S with respect to their distances from p.

� Start adding objects to N(p).

� The new object oN is added if it is not closer to any object � The new object oN is added if it is not closer to any object 

already in N(p).
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SAT: Range SearchSAT: Range Search

Given a query R(q,r) :

� Start in the root node and traverse the tree.� Start in the root node and traverse the tree.

� In internal nodes, employ the distance ranges to 

prune some branches.prune some branches.

� In leaf nodes, all objects are directly compared to q.� In leaf nodes, all objects are directly compared to q.

� If d(q,o)≤ r   report o to the output.
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SAT: Range Search (cont.)SAT: Range Search (cont.)

� In an internal node with 
u

� In an internal node with 

the pivot p and N(p):

� To prune some branches, v

u

� To prune some branches, 

locate the closest object 

o ∈N(p)∪{p} to q.

v

t
s1

pruned

oc∈N(p)∪{p} to q.

� Discard sub-trees od∈N(p) 

such that d(q,o )>2r+d(q,o ). = o
p3p

s1
s

s2

r

qsuch that d(q,od)>2r+d(q,oc).

� The pruning effect is 

maximized if d(q,o ) is 

= o
c

p3ps2 q

maximized if d(q,oc) is 

minimal.
p2

p1

d(q,oc)+2r
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SAT: Range Search (cont.)

� If we pick s2 as the 

SAT: Range Search (cont.)

� If we pick s2 as the 

closest object, pruning will 

be improved.
v

u

be improved.

� The sub-tree p2 will be 

discarded.

v

t
s

previously 

pruned
discarded.

� Select the closest object 

among more “neighbors”: o
c 
= p3p

s1
s

s2
r

among more “neighbors”:

� Use p’s ancestor and its 

neighbors.

o
c 
= p3p
s2

q

neighbors.

� ooNo
pAoc }{)(
)(

∪∈
∈U

p2
p1

{ }vusptpA

pAo

,,,,)(

)(

=
∈U

d(q,oc)+2r pruned
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SAT: Range Search (cont.)SAT: Range Search (cont.)

� Finally, apply covering radii of remaining objects

� Discard od such that d(q,od)>rd
c+r.� Discard od such that d(q,od)>rd
c+r.
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M-treeM-tree

� inherently dynamic structure

� disk-oriented (fixed-size nodes)� disk-oriented (fixed-size nodes)

� built in a bottom-up fashion

� each node constrained by a sphere-like (ball) regioneach node constrained by a sphere-like (ball) region

� leaf node: data objects + their distances from a pivot

kept in the parent nodekept in the parent node

� internal node: pivot + radius covering the subtree, 

distance from the pivot the parent pivotdistance from the pivot the parent pivot

� filtering: covering radii + pre-computed distances
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M-tree: ExtensionsM-tree: Extensions

� bulk-loading algorithm 

� considers the trade-off: dynamic properties vs. performance� considers the trade-off: dynamic properties vs. performance

� M-tree building algorithm for a dataset given in advance

� results in more efficient M-tree� results in more efficient M-tree

� Slim-tree� Slim-tree

� variant of M-tree (dynamic)

reduces the fat-factor of the tree� reduces the fat-factor of the tree

� tree with smaller overlaps between particular tree regions

� many variants and extensions – see Chapter 3
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Similarity HashingSimilarity Hashing

� Multilevel structure

� One hash function (ρ-split function) per level� One hash function (ρ-split function) per level

� Producing several buckets.

� The first level splits the whole data set.

� Next level partitions the exclusion zone of the � Next level partitions the exclusion zone of the 

previous level.

� The exclusion zone of the last level forms the � The exclusion zone of the last level forms the 

exclusion bucket of the whole structure.
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Similarity Hashing: StructureSimilarity Hashing: Structure

4 separable buckets at 4 separable buckets at 

the first level

2 separable buckets at 

the second level

exclusion bucket of 

the whole structure
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Similarity Hashing: ρ-Split FunctionSimilarity Hashing: ρ-Split Function

� Produces several separable buckets.

� Queries with radius up to ρ accesses one bucket at most.� Queries with radius up to ρ accesses one bucket at most.

� If the exclusion zone is touched, next level must be sought.

2ρ

ρ r

r

2ρ 2ρ

2ρ

2ρ r

r
2ρ
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Similarity Hashing: FeaturesSimilarity Hashing: Features

� Bounded search costs for queries with radius ≤ ρ.
� One bucket per level at maximum� One bucket per level at maximum

� Buckets of static files can be arranged in a way that 

I/O costs never exceed the sequential scan.I/O costs never exceed the sequential scan.

� Direct insertion of objects.

� Specific bucket is addressed directly by computing hash 

functions.

� D-index is based on similarity hashing.� D-index is based on similarity hashing.

� Uses excluded middle partitioning as the hash function.
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Survey of Existing Approaches Survey of Existing Approaches 

1. ball partitioning methods

2. generalized hyper-plane partitioning approaches2. generalized hyper-plane partitioning approaches

3. exploiting pre-computed distances

4. hybrid indexing approaches

5. approximated techniques5. approximated techniques
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Approximate Similarity SearchApproximate Similarity Search

� Space transformation techniques

� Introduced very briefly� Introduced very briefly

Reducing the subset of data to be examined� Reducing the subset of data to be examined

� Most techniques originally proposed for vector spaces

� Some can also be used in metric spaces

� Some are specific for metric spaces
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Exploiting Space TransformationsExploiting Space Transformations

� Space transformation techniques transform the 

original data space into another suitable space.original data space into another suitable space.

� As an example consider dimensionality reduction.

� Space transformation techniques are typically 

distance preserving and satisfy the lower-bounding 

property:property:

� Distances measured in the transformed space are smaller 

than those computed in the original space.
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Exploiting Space Transformations (cont.)Exploiting Space Transformations (cont.)

� Exact similarity search algorithms:

� Search in the transformed space � Search in the transformed space 

� Filter out non-qualifying objects by re-measuring distances 

of retrieved objects in the original space.of retrieved objects in the original space.

� Approximate similarity search algorithms

Search in the transformed space � Search in the transformed space 

� Do not perform the filtering step

False hits may occur� False hits may occur
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BBD TreesBBD Trees

� A Balanced Box-Decomposition (BBD) tree 

hierarchically divides the vector space with d-hierarchically divides the vector space with d-

dimensional non-overlapping boxes.

� Leaf nodes of the tree contain a single object.� Leaf nodes of the tree contain a single object.

� BBD trees are intended as a main memory data structure.
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BBD Trees (cont.)BBD Trees (cont.)

� Exact k-NN(q) search is obtained as follows

� Find the leaf containing the query object� Find the leaf containing the query object

� Enumerate leaves in the increasing order of distance from 

q and maintain the k closest objects.q and maintain the k closest objects.

� Stop when the distance of next leaf is greater than d(q,ok).

� Approximate k-NN(q):� Approximate k-NN(q):

� Stop when the distance of next leaf is greater than 

d(q,o )/(1+ε).d(q,ok)/(1+ε).

� Distances from q to retrieved objects are at most 

1+ε times larger than that of the k-th actual nearest 1+ε times larger than that of the k-th actual nearest 

neighbor of q.
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BBD Trees: Exact 1-NN SearchBBD Trees: Exact 1-NN Search

� Given 1-NN(q):

3 4

10

3 45
89

12

q

12

7 6
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BBD Trees: Approximate 1-NN Search

� Given 1-NN(q):

BBD Trees: Approximate 1-NN Search

� Given 1-NN(q):

� Radius 
d(q,oNN)/(1+e) is 3 4

10

d(q,oNN)/(1+e) is 
used instead!

� Regions 9 and 10 

3 45
89

� Regions 9 and 10 
are not accessed:

� They do not 12

q

� They do not 
intersect the 
dashed circle of 

12

dashed circle of 
radius 
d(q,oNN)/(1+e). 7 6

� The exact NN is 
missed!
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Angle Property TechniqueAngle Property Technique

� Observed (non-intuitive) properties in high 
dimensional vector spaces:dimensional vector spaces:
� Objects tend to have the same distance.

� Therefore they tend to be distributed on the surface of ball Therefore they tend to be distributed on the surface of ball 
regions.

� Parent and child regions have very close radii.

All regions intersect one each other.� All regions intersect one each other.

� The angle formed by a query point, the centre of a ball 
region, and any data object is close to 90 degrees.region, and any data object is close to 90 degrees.

� The higher the dimensionality, the closer to 90 degrees.

� These properties can be exploited for approximate � These properties can be exploited for approximate 
similarity search.
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Angle Property Technique: ExampleAngle Property Technique: Example
 θ 

Objects tend to be Objects tend to be 
α 

Objects tend to be 

located here
Objects tend to be 

located here,…

and hereand here

q p 

A region is accessed when α > θ A region is accessed when α > θ 
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Clustering for Indexing (Clindex)Clustering for Indexing (Clindex)

� Performs approximate similarity search in vector 

spaces exploiting clustering techniques.spaces exploiting clustering techniques.

� The dataset is partitioned into clusters of similar 

objects:objects:

� Each cluster is represented by a separate file sequentially 

stored on the disk.stored on the disk.
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Clindex: Approximate SearchClindex: Approximate Search

� Approximate similarity search:

� Seeks for the cluster containing (or the cluster closest to) � Seeks for the cluster containing (or the cluster closest to) 

the query object.

� Sorts the objects in the cluster according to the distance to � Sorts the objects in the cluster according to the distance to 

the query.

� The search is approximate since qualifying objects � The search is approximate since qualifying objects 

can belong to other (non-accessed) clusters.

More clusters can be accessed to improve precision.� More clusters can be accessed to improve precision.
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Clindex: ClusteringClindex: Clustering

� Clustering:

� Each dimension of the d-dimensional vector space is � Each dimension of the d-dimensional vector space is 

divided into 2n segments: the result is (2n)d cells in the data 

space.space.

� Each cell is associated with the number of objects it 

contains.contains.
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Clindex: Clustering (cont.)Clindex: Clustering (cont.)

� Clustering starts accessing cells in the decreasing 

order of number of contained objects:order of number of contained objects:

� If a cell is adjacent to a cluster it is attached to the cluster.

� If a cell is not adjacent to any cluster it is used as the seed � If a cell is not adjacent to any cluster it is used as the seed 

for a new cluster.

� If a cell is adjacent to more than one cluster, a heuristics is � If a cell is adjacent to more than one cluster, a heuristics is 

used to decide:

� if the clusters should be merged or � if the clusters should be merged or 

� which cluster the cell belongs to.
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Clindex: ExampleClindex: Example

55

5 6 7 6 5

1 5 6 5

5

76 6

6

5 5

5 5

5

1 Missed 

objects

5 6 5

5 6 7 6 57

6

6 6

5 5

5 5

Retrieved 

objects

2 4 4 24 42 2

objects

2 1

7 3 2

5 2 1

7

5

3

2

2

2

1

1

21 3 3 3 6

1 3 4 4 6

2 1

6

64 4

3 3 3

3

2

2

1

1

1

2

1 1 3

1 3 3 3 6

1 2 1 4

6

43

3 3 32

21 1

1

1 1
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Vector Quantization index (VQ-Index)Vector Quantization index (VQ-Index)

� This approach is also based on clustering 

techniques to perform approximate similarity search.techniques to perform approximate similarity search.

� Specifically:

The dataset is grouped into (non-necessarily disjoint) � The dataset is grouped into (non-necessarily disjoint) 

subsets.

Lossy compression techniques are used to reduce the size � Lossy compression techniques are used to reduce the size 

of subsets.

A similarity query is processed by choosing a subset where � A similarity query is processed by choosing a subset where 

to search.

� The chosen compressed dataset is searched after � The chosen compressed dataset is searched after 

decompressing it.
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VQ-Index: Subset GenerationVQ-Index: Subset Generation

� Subset generation:

� Query objects submitted by users are maintained in a � Query objects submitted by users are maintained in a 

history file.

� Queries in the history file are grouped into m clusters by � Queries in the history file are grouped into m clusters by 

using k-means algorithm.

� In correspondence of each cluster Ci a subset Si of the � In correspondence of each cluster Ci a subset Si of the 

dataset is generated as follows

U qkNNS = )(

� An object may belong to several subsets.

U
iCq

i qkNNS
∈

= )(

� An object may belong to several subsets.
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VQ-Index: Subset Generation (cont.)VQ-Index: Subset Generation (cont.)

� The overlap of subsets versus performance can be 

tuned by the choice of m and ktuned by the choice of m and k

� Large k implies more objects in a subset, so more objects 

are recalled.are recalled.

� Large values of m implies more subsets, so less objects to 

be accessed.be accessed.
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VQ-Index: CompressionVQ-Index: Compression

� Subset compression with vector quantisation:

� An encoder Enc function is used to associate every vector � An encoder Enc function is used to associate every vector 

with an integer value taken from a finite set {1,…,n}.

� A decoder Dec function is used to associate every number � A decoder Dec function is used to associate every number 

from the set {1,…,n} with a representative vector.

� By using Enc and Dec, every vector is represented by a � By using Enc and Dec, every vector is represented by a 

representative vector

� Several vectors might be represented by the same � Several vectors might be represented by the same 

representative.

� Enc is used to compress the content of Si by applying it to i

every object in it: { }ii

enc

i SxxEncS ∈= |)(
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VQ-Index: Approximate SearchVQ-Index: Approximate Search

� Approximate search:

� Given a query q:� Given a query q:

� The cluster Ci closest to the query is first located.

� An approximation of S is reconstructed, by applying the � An approximation of Si is reconstructed, by applying the 

decoder function Deci .

� The approximation of S is searched for qualifying objects.� The approximation of Si is searched for qualifying objects.

� Approximation occurs at two stages:

� Qualifying objects may be included in other subsets, in � Qualifying objects may be included in other subsets, in 

addition to Si .

� The reconstructed approximation of Si may contain vectors � The reconstructed approximation of Si may contain vectors 

which differ from the original ones.
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Buoy IndexingBuoy Indexing

� Dataset is partitioned in disjoint clusters.

� A cluster is represented by a representative element � A cluster is represented by a representative element 

– the buoy.

Clusters are bounded by a ball region having the � Clusters are bounded by a ball region having the 

buoy as center and the distance of the buoy to the 

farthest element of the cluster as the radius.

� This approach can be used in pure metric spaces.� This approach can be used in pure metric spaces.
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Buoy Indexing: Similarity SearchBuoy Indexing: Similarity Search

� Given an exact k-NN query, clusters are accessed in 

the increasing distance to their buoys, until current the increasing distance to their buoys, until current 

result-set cannot be improved.

� That is, until d(q,o ) + r < d(q,p )� That is, until d(q,ok) + ri < d(q,pi)

� pi is the buoy, ri is the radius

An approximate k-NN query can be processed by � An approximate k-NN query can be processed by 

stopping when

� either previous exact condition is true, or 

� a specified ratio f of clusters has been accessed.� a specified ratio f of clusters has been accessed.
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Hierarchical Decomposition of Metric Hierarchical Decomposition of Metric 

Spaces

� In addition to previous ones, there are other 

methods that were appositively designed to methods that were appositively designed to 

� Work on generic metric spaces

� Organize large collections of data� Organize large collections of data

� They exploit the hierarchical decomposition of metric 

spaces.spaces.

Similarity Search: Part I, Chapter 2 93



Hierarchical Decomposition of Metric Hierarchical Decomposition of Metric 

Spaces (cont.)

� These will be discussed in details later on:

� Relative error approximation� Relative error approximation

� Relative error on distances of the approximate result is 

bounded.bounded.

� Good fraction approximation

� Retrieves k objects from a specified fraction of the objects � Retrieves k objects from a specified fraction of the objects 

closest to the query.
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Hierarchical Decomposition of Metric Hierarchical Decomposition of Metric 

Spaces (cont.)

� These will be discussed in details later on:

� Small chance improvement approximation� Small chance improvement approximation

� Stops when chances of improving current result are low.

� Proximity based approximation� Proximity based approximation

� Discards regions with small probability of containing qualifying 

objects.objects.

� PAC (Probably Approximately Correct) nearest neighbor 

searchsearch

� Relative error on distances is bounded with a probability 

specified.
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