“Coding” Interpretation of Entropy

Cross Entropy

PA154 Jazykové modelovani (2.1
Y 1) m The least (average) number of bits needed to encode a message

(string, sequence, series, ...) (each element having being a result of
Pavel Rychly a random process with some distribution p): = H(p)
m Remember various compressing algorithms?
pary@fi.muni.cz > they do well on data with repeating (= easily predictable =
= low entropy) patterns
February 24, 2020 > their results though have high entropy = compressing compressed data

does nothing

Source: Introduction to Natural Language Processing (600.465)
Jan Hajig, CS Dept., Johns Hopkins Univ.
www.cs.jhu.edu/”hajic
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Coding: Example Entropy of Language

m How many bits do we need for ISO Latin 17
» = the trivial answer: 8 m Imagine that we produce the next letter using

m Experience: some chars are more common, some (very) rare:
» . ..so what if we use more bits for the rare, and less bits for the
frequent? (be careful: want to decode (easily)!) where Iy, ... I, is the sequence of all the letters which had been

> suppose: p('2) =03, p('?') =03, p('c’) = 0.3, the rest: p(x)=.0004 uttered so far (i.e. n is really big!); let's call /1,.../, the history

» code: 'a’ ~ 00, 'b’ ~ 01, 'c’ ~ 10, rest: 11b;ybyb3bybsbeb;bg h(h +1) and all histories H:

» code 'acbbécbaac’: i .
00 10 01 01 1100001111 10 01 00 00 10 m Then compute its entropy:

a ¢ b b é c b a a ¢ > — Y hen oiea Pl h) logy p(11h)
> number of bits used: 28 (vs. 80 using “naive” coding) . -
m Not very practical, isn't it?

P(ln+1“17 cee /n)7

m code length ~ —log(probability)

Cross Entropy 312 Cross Entropy a2
Cross-Entropy Cross Entropy: The Formula

m Typical case: we've got series of observations

T ={t1,ts,t3,t4,..., ta} (numbers, words, ...; t; € Q); estimate m Hy(p) = H(p') + D(p'||P)

(sample): Yy € Q: p(y) = % [Hp/(f)) =—> eq P (x)logy f)(x)}

def. c(y)={te T;t=y} m p’ is certainly not the true p, but we can consider it the “real world”
m ... but the true p is unknown; every sample is too small! distribution against which we test p
m Natural question: how well do we do using p (instead of p)? m note on notation (confusing ...): 5 < b, also Hr:(p)
m Idea: simulate actual p by using a different T (or rather: by using

Perplexity: / = , — oHy(P)
different observation we simulate the insufficiency of T vs. some = (Cross)Perplexity: Gp(p) = Gr(p) ’

other data (“random” difference))
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Conditional Cross Entropy

m So far: “unconditional” distribution(s) p(x), p'(x). ..
m In practice: virtually always conditioning on context

m Interested in: sample space ¥, r.v. Y, y € VU;
context: sample space Q, r.v.X, x € Q:
“our" distribution p(y|x), test against p’(y, x), which is taken from
some independent data:

Hy(p)=— > P(y.x)log; p(y|x)
YEWV xeQ
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Computation Example

Q= {a, b, .., Z}, prob. distribution (assumed/estimated from data): p(a) = .25,
p(b) = .5, p(a) = % for a € {c..r}, p(a)= 0 for the rest: s,t,u,v,w,x,y,z
Data (test): barb p'(a) = p'(r) = .25, p'(b) = .5

m Sum over Q:
o a becdefg...pgqrr st ...z

P(Dlogp(e) .5+ .5+0+0+0+0+0+0+0+0+0+1 . 5+0+0+0+0+0 = 2.

m Sum over data:

ifs, i/b  2/a 3/r 4/b v/-‘lflT’l
-log,p(s) 1+ 2 + 6 + 1 =10 (1/4) x 10 =2.
Cross Entropy o2

Cross Entropy: Usage

m Comparing data??
> NO! (we believe that we test on real data!)

m Rather: comparing distributions (vs. real data)

m Have (got) 2 distributions: p and g (on some Q, X)

> which is better?
> better: has lower cross-entropy (perplexity) on real data S

m “Real” data: S

Hs(p) = —1/IS| X211, log2p(yilxi) @ Hs(q) = —1/1S| 30,1, ) log2q(yilxi)
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Sample Space vs. Data

m In practice, it is often inconvenient to sum over the space(s) V,Q
(especially for cross entropy!)

m Use the following formula: Hy(p) =
- ZyE‘U,XEQ P'(y:x)logy p(y|x) = =1/|T| Zi:L.\T/\ log p(yilxi)
m This is in fact the normalized log probability of the “test” data:

Hy(p) = —1/|T'llogz [] plyilx)
i=1..|T|
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Cross Entropy: Some Observations

H(p) 77<,=,>17
m Previous example:
p(a) = .25, p(b) = .5, p(a)= é for a € {c..r}, = 0 for the rest: s,t,u,v,w,x,y,z

Hy(p) : ALL!

H(p) = 2.5bits = H(p')(barb)
m Other data: probable: (3)(6+6+6+1+2+1+6+6)=4.25
H(p) < 4.25bits = H(p')(probable)
m And finally: abba: (3)(2+141+2)=15
H(p) > 1.5bits = H(p')(abba)

m But what about: baby —p'('y') log, p('y') = —.25log, 0 = o (?7?)
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Comparing Distributions

m p(.) from previous example: Hs(p) = 4.25
p(a) = .25, p(b) = .5, p(a) = % for a € {c..r}, = 0 for the rest: s,t,u,v,w,xy,z

m g(.|.) (conditional; defined by a table):

q(j)—= |a b ] 1 [} P % other
1
a 0 5 |o 0 0 1325 0 o
b 1 0 0 0 1 125 0 E// ex. qojr) =1
e 0 0 0 1 0 125 0
L 0 5 o 0 0 125 0 0 q(lp) =125
o 0 0 0 0 0 125 T |6
) 0 0 0 0 0 125 0 1
' 0 0 i 0 0 125 e —tT |
other |0 0 1 0 0 125 0 0

(1/8) (log(ploth.)*log(rlp)*log(olr)+log(blo)tloglalb) Hog(bla)Hog(lb)Hlog(e[l))

) 0 + 3 + 0 + 0 + 1 + 0 + 1 + 0)
[ew= a2 | —
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