
PA160: Net-Centric Computing II.

Distributed Systems

Luděk Matyska

Slides by: Tomáš Rebok

Spring 2020

Luděk Matyska · 1. Distributed Systems · Spring 2020 1 / 102

Lecture overview

Lecture overview
Distributed Systems

Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)
Web Services
Issues Examples

Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

Conclusion

Luděk Matyska · 1. Distributed Systems · Spring 2020 2 / 102

Distributed Systems

Lecture overview
Distributed Systems

Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)
Web Services
Issues Examples

Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

Conclusion

Luděk Matyska · 1. Distributed Systems · Spring 2020 3 / 102

Distributed Systems

Distributed Systems – Definition

Distributed System by Coulouris, Dollimore, and Kindberg
A system in which hardware and software components located at networked
computers communicate and coordinate their actions only by message
passing.

Distributed System by Tanenbaum and Steen
A collection of independent computers that appears to its users as a single
coherent system.

the independent/autonomous machines are interconnected by
communication networks and equipped with software systems
designed to produce an integrated and consistent computing
environment

Core objective of a distributed system: resource sharing
Luděk Matyska · 1. Distributed Systems · Spring 2020 4 / 102

Distributed Systems Key characteristics

Distributed Systems – Key characteristics
Autonomicity – there are several autonomous computational entities, each
of which has its own local memory
Heterogeneity – the entities may differ in many ways

computer HW (different data types’ representation), network
interconnection, operating systems (different APIs), programming
languages (different data structures), implementations by different
developers, etc.

Concurrency – concurrent (distributed) program execution and resource
access
No global clock – programs (distributed components) coordinate their
actions by exchanging messages

message communication can be affected by delays, can suffer from
variety of failures, and is vulnerable to security attacks

Independent failures – each component of the system can fail
independently, leaving the others still running (and possibly not informed
about the failure)

How to know/differ the states when a network has failed or became
unusually slow?
How to know immediately if a remote server crashed?

Luděk Matyska · 1. Distributed Systems · Spring 2020 5 / 102

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

What do we want from a Distributed System (DS)?
Resource Sharing
Openness
Concurrency
Scalability
Fault Tolerance
Security
Transparency

Luděk Matyska · 1. Distributed Systems · Spring 2020 6 / 102

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Resource Sharing
main motivating factor for constructing DSs
is should be easy for the users (and applications) to access
remote resources, and to share them in a controlled and efficient
way

each resource must be managed by a software that provides
interfaces which enable the resource to be manipulated by clients
resource = anything you can imagine (e.g., storage facilities, data,
files, Web pages, etc.)

Luděk Matyska · 1. Distributed Systems · Spring 2020 7 / 102

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Openness
whether the system can be extended and re-implemented in
various ways and new resource-sharing services can be added
and made available for use by a variety of client programs

specification and documentation of key software interfaces must
be published

using an Interface Definition Language (IDL)

involves HW extensibility as well
i.e., the ability to add hardware from different vendors

Luděk Matyska · 1. Distributed Systems · Spring 2020 8 / 102

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Concurrency
every resource in a DS must be designed to be safe in a
concurrent environment

applies not only to servers, but to objects in applications as well

ensured by standard techniques, like semaphores

Luděk Matyska · 1. Distributed Systems · Spring 2020 9 / 102

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Scalability
a DS is scalable if the cost of adding a user (or resource) is a
constant amount in terms of resources that must be added

and is able to utilize the extra hardware/software efficiently
and remains manageable

Luděk Matyska · 1. Distributed Systems · Spring 2020 10 / 102

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues

Fault Tolerance
a characteristic where a distributed system provides an
appropriately handling of errors that occurred in the system

the failures can be detected (sometimes hard or even impossible),
masked (made hidden or less severe), or tolerated

achieved by deploying two approaches: hardware redundancy and
software recovery

Security
involves confidentiality, integrity, authentication, and availability

Luděk Matyska · 1. Distributed Systems · Spring 2020 11 / 102

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues
Transparency

certain aspects of the DS should be made invisible to the user /
application programmer

i.e., the system is perceived as a whole rather than a collection of
independent components

several forms of transparency:
Access transparency – enables local and remote resources to be
accessed using identical operations
Location transparency – enables resources to be accessed without
knowledge of their location
Concurrency transparency – enables several processes to operate
concurrently using shared resources without interference between
them
Replication transparency – enables multiple instances of resources to
be used to increase reliability and performance

without knowledge of the replicas by users / application
programmers

Luděk Matyska · 1. Distributed Systems · Spring 2020 12 / 102

Distributed Systems Challenges and Issues

Distributed Systems – Challenges and Issues
Transparency II.

forms of transparency cont’d.:
Failure transparency – enables the concealment of faults,
allowing users and application programs to complete their tasks
despite of a failure of HW/SW components
Mobility/migration transparency – allows the movement of
resources and clients within a system without affecting the
operation of users or programs
Performance transparency – allows the system to be reconfigured
to improve performance as loads vary
Scaling transparency – allows the system and applications to
expand in scale without changes to the system structure or
application algorithms

Luděk Matyska · 1. Distributed Systems · Spring 2020 13 / 102

Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
defines the way in which the components of systems interact
with one another, and
defines the way in which the components are mapped onto an
underlying network of computers

the overall goal is to ensure that the structure will meet present
and possibly future demands

the major concerns are to make system reliable, manageable,
adaptable, and cost-effective

principal architecture models:
client-server model – most important and most widely used

a service may be further provided by multiple servers
the servers may in turn be clients for another servers
proxy servers (caches) may be employed to increase availability
and performance

peer processes – all the processes play similar roles
based either on structured (Chord, CAN, etc.), unstructured, or
hybrid architectures

Luděk Matyska · 1. Distributed Systems · Spring 2020 14 / 102

Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
Client-Server model

Luděk Matyska · 1. Distributed Systems · Spring 2020 15 / 102

Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
Client-Server model – A Service provided by Multiple Servers

Luděk Matyska · 1. Distributed Systems · Spring 2020 16 / 102

Distributed Systems Distributed System Architectures

Distributed Systems – Architecture Models
Peer processes

Luděk Matyska · 1. Distributed Systems · Spring 2020 17 / 102

Distributed Systems Inter-process Communication

Distributed Systems – Inter-process Communication
(IPC)

the processes (components) need to communicate
the communication may be:

synchronous – both send and receive are blocking operations
asynchronous – send is non-blocking and receive can have
blocking (more common) and non-blocking variants

the simplest forms of communication: UDP and TCP sockets

Luděk Matyska · 1. Distributed Systems · Spring 2020 18 / 102

Distributed Systems Inter-process Communication

Distributed Systems – Inter-process Communication
UDP and TCP sockets
UDP/TCP sockets

provide unreliable/reliable communication services
+ the complete control over the communication lies in the hands

of applications
– too primitive to be used in developing a distributed system

software
higher-level facilities (marshalling/unmarshalling data, error
detection, error recovery, etc.) must be built from scratch by
developers on top of the existing socket primitive facilities
force read/write mechanism instead of a procedure call

– another problem arises when the software needs to be used in a
platform different from where it was developed

the target platform may provide different socket implementation
⇒ these issues are eliminated by the use of a Middleware
Luděk Matyska · 1. Distributed Systems · Spring 2020 19 / 102

Middleware

Lecture overview
Distributed Systems

Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)
Web Services
Issues Examples

Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

Conclusion

Luděk Matyska · 1. Distributed Systems · Spring 2020 20 / 102

Middleware

Middleware
a software layer that provides a programming abstraction as
well as masks the heterogeneity of the underlying networks,
hardware, operating systems, and programming languages

⇒ provides transparency services
represented by processes/objects that interact with each other to
implement communication and resource sharing support
provides building blocks for the construction of SW components that
can work with one another

middleware examples:
Sun RPC (ONC RPC)
DCE RPC
MS COM/DCOM
Java RMI
CORBA
etc.

Luděk Matyska · 1. Distributed Systems · Spring 2020 21 / 102

Middleware

Middleware – Basic Services
Directory services – services required to locate application
services and resources, and route messages

≈ service discovery
Data encoding services – uniform data representation services for
dealing with incompatibility problems on remote systems

e.g., Sun XDR, ISO’s ASN.1, CORBA’s CDR, XML, etc.
data marshalling/unmarshalling

Security services – provide inter-application client-server security
mechanisms
Time services – provide a universal format for representing time
on different platforms (possibly located in various time zones) in
order to keep synchronisation among application processes
Transaction services – provide transaction semantics to support
commit, rollback, and recovery mechanisms

Luděk Matyska · 1. Distributed Systems · Spring 2020 22 / 102

Middleware

Middleware
Basic Services – A Need for Data Encoding Services
Data encoding services are required, because remote machines may have:

different byte ordering
different sizes of integers and other types
different floating point representations
different character sets
alignment requirements

Luděk Matyska · 1. Distributed Systems · Spring 2020 23 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
very simple idea similar to a well-known procedure call mechanism

a client sends a request and blocks until a remote server sends a
response

the goal is to allow distributed programs to be written in the same style as
conventional programs for centralised computer systems

while being transparent – the programmer need not be aware that the
called procedure is executing on a local or a remote computer

the idea:
the remote procedure is represented as a stub on the client side

behaves like a local procedure, but rather than placing the
parameters into registers, it packs them into a message, issues a
send primitive, and blocks itself waiting for a reply

the server passes the arrived message to a server stub (known as
skeleton as well)

the skeleton unpacks the parameters and calls the procedure in a
conventional manner
the results are returned to the skeleton, which packs them into a
message directed to the client stub

Luděk Matyska · 1. Distributed Systems · Spring 2020 24 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)

Luděk Matyska · 1. Distributed Systems · Spring 2020 25 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
The remote procedure call in detail

Luděk Matyska · 1. Distributed Systems · Spring 2020 26 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Components

client program, client stub
communication modules
server stub, service procedure
dispatcher – selects one of the server stub procedures according to the procedure identifier in the
request message

Sun RPC: the procedures are identified by:
program number – can be obtained from a central authority to allow every program to have its own
unique number
procedure number – the identifier of the particular procedure within the program
version number – changes when a procedure signature changes

Luděk Matyska · 1. Distributed Systems · Spring 2020 27 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Location Services – Portmapper
Clients need to know the port number of a service provided by the
server⇒ Portmapper

a server registers its program#, version#, and port# to the local
portmapper
a client finds out the port# by sending a request

the portmapper listens on a well-known port (111)
the particular procedure required is identified in the subsequent
procedure call

Luděk Matyska · 1. Distributed Systems · Spring 2020 28 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Parameters passing
How to pass parameters to remote procedures?

pass by value – easy: just copy data to the network message
pass by reference – makes no sense without shared memory

Pass by reference: the steps
1. copy referenced items (marshalled) to a message buffer
2. ship them over, unmarshal data at server
3. pass local pointer to server stub function
4. send new values back

to support complex structures:
copy the structure into pointerless representation
transmit
reconstruct the structure with local pointers on the server

Luděk Matyska · 1. Distributed Systems · Spring 2020 29 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Parameters passing – eXternal Data Representation (XDR)

Sun RPC: to avoid compatibility problems, the eXternal Data
Representation (XDR) is used

XDR primitive functions examples:
xdr int(), xdr char(), xdr u short(), xdr bool(),
xdr long(), xdr u int(), xdr wrapstring(),
xdr short(), xdr enum(), xdr void()

XDR aggregation functions:
xdr array(), xdr string(), xdr union(), xdr vector(),
xdr opaque()

only a single input parameter is allowed in a procedure call
⇒ procedures requiring multiple parameters must include them
as components of a single structure

Luděk Matyska · 1. Distributed Systems · Spring 2020 30 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong I.

local procedure calls do not fail
if they core dump, entire process dies

there are more opportunities for errors with RPC
server could generate an error
problems in network (lost/delayed requests/replies)
server crash
client might crash while server is still executing code for it

transparency breaks here
applications should be prepared to deal with RPC failures

Semantics of local procedure calls: exactly once
difficult to achieve with RPC

Luděk Matyska · 1. Distributed Systems · Spring 2020 31 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong II.
Four remote calls semantics available in RPC:

at-least-once semantic
client keeps trying sending the message until a reply has been
received

failure is assumed after n re-sends

guarantees that the call has been made “at least once”, but possibly
multiple times
ideal for idempotent operations

at-most-once semantic
client gives up immediately and reports back a failure
guarantees that the call has been made “at most once”, but possibly
none at all

exactly-once semantic
the most desirable, but the most difficult to implement

maybe semantic
no message delivery guarantees are provided at all
(easy to implement)

Luděk Matyska · 1. Distributed Systems · Spring 2020 32 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong III.

Figure: Message-passing semantics. (a) at-least-once; (b) exactly-once.
Luděk Matyska · 1. Distributed Systems · Spring 2020 33 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
When Things Go Wrong IV. – Complications

1. it is necessary to understand the application
idempotent functions – in the case of a failure, the message may be
retransmitted and re-run without a harm
non-idempotent functions – has side-effects⇒ the retransmission has
to be controlled by the server

the duplicity request (retransmission) has to be detected
once detected, the server procedure is NOT re-run; just the results are resent (if
available in a server cache)

2. in the case of a server crash, the order of execution vs. crash matters

3. in the case of a client crash, the procedure keeps running on the server
consumes resources (e.g., CPU time), possesess resources (e.g., locked files), etc.

may be overcome by employing soft-state principles
keep-alive messages

Luděk Matyska · 1. Distributed Systems · Spring 2020 34 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Code Generation I.

RPC drawbacks:
complex API, not easy to debug
the use of XDR is difficult

but, it’s often used in a similar way
⇒ the server/client code can be automatically generated

assumes well-defined interfaces (IDL)
the application programmer has to supply the following:

interface definition file – defines the interfaces (data structures,
procedure names, and parameters) of the remote procedures that
are offered by the server
client program – defines the user interfaces, the calls to the
remote procedures of the server, and the client side processing
functions
server program – implements the calls offered by the server

compilers:
rpcgen for C/C++, jrpcgen for Java

Luděk Matyska · 1. Distributed Systems · Spring 2020 35 / 102

Middleware Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC)
Code Generation II.

Luděk Matyska · 1. Distributed Systems · Spring 2020 36 / 102

Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
as the popularity of object technology increased, techniques
were developed to allow calls to remote objects instead of
remote procedures only

⇒ Remote Method Invocation (RMI)
essentially the same as the RPC, except that it operates on
objects instead of applications/procedures

the RMI model represents a distributed object application
it allows an object inside a JVM (a client) to invoke a method on
an object running on a remote JVM (a server) and have the results
returned to the client

the server application creates an object and makes it accesible
remotely (i.e., registers it)
the client application receives a reference to the object on the server
and invokes methods on it

the reference is obtained through looking up in the registry
important: a method invocation on a remote object has the same
syntax as a method invocation on a local object

Luděk Matyska · 1. Distributed Systems · Spring 2020 37 / 102

Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
Architecture I.
The interface, through which the client and server interact, is (similarly to
RPC) provided by stubs and skeletons:

Luděk Matyska · 1. Distributed Systems · Spring 2020 38 / 102

Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
Architecture II.
Two fundamental concepts as the heart of distributed object model:

remote object reference – an identifier that can be used throughout a
distributed system to refer to a particular unique remote object

its construction must ensure its uniqueness

remote interface – specifies, which methods of the particular object can
be invoked remotely

Luděk Matyska · 1. Distributed Systems · Spring 2020 39 / 102

Middleware Remote Method Invocation (RMI)

Remote Method Invocation (RMI)
Architecture III.

the remote objects can be accessed concurrently
the encapsulation allows objects to provide methods for protecting
themselves against incorrect accesses

e.g., synchronization primitives (condition variables, semaphores,
etc.)

RMI transaction semantics similar to the RPC ones
at-least-once, at-most-once, exactly-once, and maybe semantics

data encoding services:
stubs use Object Serialization to marshal the arguments

object arguments’ values are rendered into a stream of bytes that
can be transmitted over a network
⇒ the arguments must be primitive types or objects that
implement Serializable interface

parameters passing:
local objects passed by value
remote objects passed by reference

Luděk Matyska · 1. Distributed Systems · Spring 2020 40 / 102

Middleware Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture
(CORBA)

an industry standard developed by the OMG (Object Management Group
– a consortium of more than 700 companies) to aid in distributed
objects programming

OMG was established in 1988
initial CORBA specification came out in 1992

but significant revisions have taken place from that time

provides a platform-independent and language-independent
architecture (framework) for writing distributed, object-oriented
applications

i.e., application programs can communicate without restrictions to:
programming languages, hardware platforms, software platforms, networks they
communicate over

but CORBA is just a specification for creating and using distributed
objects; it is not a piece of software or a programming language

several implementations of the CORBA standard exist (e.g., IBM’s SOM and DSOM
architectures)

Luděk Matyska · 1. Distributed Systems · Spring 2020 41 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
CORBA is composed of five major components:

Object Request Broker (ORB)
Interface Definition Language (IDL)
Dynamic Invocation Interface (DII)
Interface Repositories (IR)
Object Adapters (OA)

Luděk Matyska · 1. Distributed Systems · Spring 2020 42 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Object Request Broker (ORB)

the heart of CORBA
introduced as a part of OMG’s Object Management Architecture (OMA), which the CORBA is
based on

a distributed service that implements all the requests to the remote
object(s)

it locates the remote object on the network, communicates the request to the object, waits for
the results and (when available) communicates those results back to the client

implements location transparency
exactly the same request mechanism is used regardless of where the object is located

might be in the same process with the client or across the planet

implements programming language independence
the client issuing a request can be written in a different programming language from the
implementation of the CORBA object

both the client and the object implementation are isolated from the ORB by
an IDL interface
Internet Inter-ORB Protocol (IIOP) – the standard communication protocol
between ORBs

Luděk Matyska · 1. Distributed Systems · Spring 2020 43 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Object Request Broker (ORB) II.

Luděk Matyska · 1. Distributed Systems · Spring 2020 44 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL)

as with RMI, CORBA objects have to be specified with interfaces
interface ≈ a contract between the client (code using a object) and the
server (code implementing the object)

indicates a set of operations the object supports and how they should be invoked (but
NOT how they are implemented)

defines modules, interfaces, types, attributes, exceptions, and
method signatures

uses same lexical rules as C++
with additional keywords to support distribution (e.g. interface, any, attribute,
in, out, inout, readonly, raises)

defines language bindings for many different programming
languages (e.g., C/C++, Java, etc.)

via language mappings, the IDL translates to different constructs in
the different implementation languages
it allows an object implementor to choose the appropriate
programming language for the object, and
it allows the developer of the client to choose the appropriate and
possibly different programming language for the client

Luděk Matyska · 1. Distributed Systems · Spring 2020 45 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) example:
module StockObjects {

struct Quote {
string symbol;
long at_time;
double price;
long volume;

};
exception Unknown{};
interface Stock {

// Returns the current stock quote.
Quote get_quote() raises(Unknown);
// Sets the current stock quote.
void set_quote(in Quote stock_quote);
// // Provides the stock description, e.g. company name.
readonly attribute string description;

};
interface StockFactory {

Stock create_stock(in string symbol, in string description);
};

};Luděk Matyska · 1. Distributed Systems · Spring 2020 46 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) III. – Stubs and Skeletons
IDL compiler automatically compiles the IDL into client stubs and
object skeletons:

Luděk Matyska · 1. Distributed Systems · Spring 2020 47 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Definition Language (IDL) IV. – Development Process
Using IDL

Luděk Matyska · 1. Distributed Systems · Spring 2020 48 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
DII & DSI
Dynamic Invocation Interface (DII)

CORBA supports both the dynamic and the static invocation
interfaces

static invocation interfaces are determined at compile time
dynamic interfaces allow client applications to use server objects
without knowing the type of those objects at compile time

DII – an API which allows dynamic construction of CORBA object
invocations

Dynamic Skeleton Interface (DSI)
DSI is the server side’s analogue to the client side’s DII

allows an ORB to deliver requests to an object implementation
that does not have compile-time knowledge of the type of the
object it is implementing

Luděk Matyska · 1. Distributed Systems · Spring 2020 49 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Interface Repository (IR)

a runtime component used to dynamically obtain information on
IDL types (e.g. object interfaces)

using the IR, a client should be able to locate an object that is
unknown at compile time, find information about its interface, and
build a request to be forwarded through the ORB
this kind of information is necessary when a client wants to use
the DII to construct requests dynamically

Luděk Matyska · 1. Distributed Systems · Spring 2020 50 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Components
Object Adapters (OAs)

the interface between the ORB and the server process
OAs listen for client connections/requests and map the inbound
requests to the desired target object instance

provide an API that object implementations use for:
generation and interpretation of object references
method invocation
security of interactions
object and implementation activation and deactivation
mapping object references to the corresponding object
implementations
registration of implementations

two basic kinds of OAs:
basic object adapter (BOA) – leaves many features unsupported,
requiring proprietary extensions
portable object adapter (POA) – intended to support multiple ORB
implementations (of different vendors), allow persistent objects, etc.

Luděk Matyska · 1. Distributed Systems · Spring 2020 51 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Object & Object Reference
CORBA Objects are fully encapsulated

accessed through well-defined interfaces only
interfaces & implementations are totally separate

for one interface, multiple implementations possible
one implementation may be supporting multiple interfaces

CORBA Object Reference is the distributed computing equivalent of a
pointer

CORBA defines the Interoperable Object Reference (IOR)
an IOR contains a fixed object key, containing:

the object’s fully qualified interface name (repository ID)
user-defined data for the instance identifier

can also contain transient information:
the host and port of its server, metadata about the server’s ORB (for potential
optimizations), etc.

⇒ the IOR uniquely identifies one object instance

Luděk Matyska · 1. Distributed Systems · Spring 2020 52 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Services

CORBA Services (COS)
the OMG has defined a set of Common Object Services to support
the integration and interoperation of distributed objects

= frequently used components needed for building robust
applications
typically supplied by vendors
OMG defines interfaces to services to ensure interoperability

Luděk Matyska · 1. Distributed Systems · Spring 2020 53 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Services
Popular Services Example

Luděk Matyska · 1. Distributed Systems · Spring 2020 54 / 102

Middleware Common Object Request Broker Architecture (CORBA)

CORBA Architecture Summary

Luděk Matyska · 1. Distributed Systems · Spring 2020 55 / 102

Service Oriented Architecture (SAO)

Lecture overview
Distributed Systems

Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)
Web Services
Issues Examples

Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

Conclusion

Luděk Matyska · 1. Distributed Systems · Spring 2020 56 / 102

Web Services

Lecture overview
Distributed Systems

Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)
Web Services
Issues Examples

Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

Conclusion

Luděk Matyska · 1. Distributed Systems · Spring 2020 57 / 102

Issues Examples

Lecture overview
Distributed Systems

Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)
Web Services
Issues Examples

Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

Conclusion

Luděk Matyska · 1. Distributed Systems · Spring 2020 58 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
For concurrent execution of interacting processes:

communication and synchronization between processes are the
two essential system components

Before the processes can execute, they need to be:
scheduled and
allocated with resources

Why scheduling in distributed systems is of special interest?
because of the issues that are different from those in traditional
multiprocessor systems:

the communication overhead is significant
the effect of underlying architecture cannot be ignored
the dynamic behaviour of the system must be addressed

local scheduling (on each node) + global scheduling

Luděk Matyska · 1. Distributed Systems · Spring 2020 59 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
let’s have a pool of jobs

there are some inter-dependencies among them
and a set of nodes (processors) able to reciprocally communicate

Load-balancing

The term load-balancing means assigning the jobs to the processors in
the way, which minimizes the time/communication overhead necessary
to compute them.

load-balancing – divides the jobs among the processors
scheduling – defines execution order of the jobs (on each
processor)

load-balancing and planning are tightly-coupled (synonyms in DSs)
objectives:

enhance overall system performance metric
process completion time and processor utilization

location and performance transparency
Luděk Matyska · 1. Distributed Systems · Spring 2020 60 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
the scheduling/load-balancing task can be represented using graph
theory:

the pool of N jobs with dependencies can be described as a graph
G(V ,U), where

the nodes represent the jobs (processes)
the edges represent the dependencies among the jobs/processes (e.g., an edge from i
to j requires that the process i has to complete before j can start executing)

the graph G has to be splitted into p parts, so that:
N = N1 ∪ N2 ∪ · · · ∪ Np

which satisfy the condition, that |Ni| ≈
|N|
p , where

|Ni| is the number of jobs assigned to the processor i, and
p is the number of processors, and
the number/cost of the edges connecting the parts is minimal

the objectives:
uniform jobs’ load-balancing
minimizing the communication (the minimal number of edges among the parts)

the splitting problem is NP-complete
the heuristic approaches have to be used

Luděk Matyska · 1. Distributed Systems · Spring 2020 61 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
An illustration

Figure: An illustration of splitting 4 jobs onto 2 processors.

Luděk Matyska · 1. Distributed Systems · Spring 2020 62 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems

the “proper” approach to the scheduling/load-balancing problem
depends on the following criteria:

jobs’ cost
dependencies among the jobs
jobs’ locality

Luděk Matyska · 1. Distributed Systems · Spring 2020 63 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
Jobs’ Cost

the job’s cost may be known:
before the whole problem set’s execution
during problem’s execution, but before the particular job’s
execution
just after the particular job finishes

cost’s variability – all the jobs may have (more or less) the same
cost or the costs may differ

the problem classes based on jobs’ cost:
all the jobs have the same cost: easy
the costs are variable, but, known: more complex
the costs are unknown in advance: the most complex

Luděk Matyska · 1. Distributed Systems · Spring 2020 64 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
Dependencies Among the Jobs

is the order of jobs’ execution important?
the dependencies among the jobs may be known:

before the whole problem set’s execution
during problem’s execution, but before the particular job’s
execution
are fully dynamic

the problem classes based on jobs’ dependencies:
the jobs are fully independent on each other: easy
the dependencies are known or predictable: more complex

flooding
in-trees, out-trees (balanced or unbalanced)
generic oriented trees (DAG)

the dependencies dynamically change: the most complex
e.g., searching/lookup problems

Luděk Matyska · 1. Distributed Systems · Spring 2020 65 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in Distributed Systems
Locality

communicate all the jobs in the same/similar way?
is it suitable/necessary to execute some jobs “close” to each
other?
when the job’s communication dependencies are known?

the problem classes based on jobs’ locality:
the jobs do not communicate (at most during initialization): easy
the communications are known/predictable: more complex

regular (e.g., a grid) or irregular
the communications are unknown in advance: the most complex

e.g., a discrete events’ simulation

Luděk Matyska · 1. Distributed Systems · Spring 2020 66 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving
Methods

in general, the “proper” solving method depends on the time,
when the particular information is known
basic solving algorithms’ classes:

static – offline algorithms
semi-static – hybrid approaches
dynamic – online algorithms

some (but not all) variants:
static load-balancing
semi-static load-balancing
self-scheduling
distributed queues
DAG planning

Luděk Matyska · 1. Distributed Systems · Spring 2020 67 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving
Methods
Semi-static load-balancing

suitable for problem sets with slow changes in parameters, and
with locality importance
iterative approach

uses static algorithm
the result (from the static algorithm) is used for several steps
(slight unbalance is accepted)
after the steps, the problem set is recalculated with the static
algorithm again

often used for:
particle simulation
calculations of slowly-changing grids (but in a different sense
than in the previous lectures)

Luděk Matyska · 1. Distributed Systems · Spring 2020 68 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving
Methods
Self-scheduling I.

a centralized pool of jobs
idle processors pick the jobs from the pool
new (sub)jobs are added to the pool

+ ease of implementation
suitable for:

a set of independent jobs
jobs with unknown costs
jobs where locality does not matter

unsuitable for too small jobs – due to the communication overhead
⇒ coupling jobs into bulks

fixed size
controlled coupling
tapering
weighted distribution

Luděk Matyska · 1. Distributed Systems · Spring 2020 69 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving
Methods
Self-scheduling II. – Fixed size & Controlled coupling
Fixed size

typical offline algorithm
requires much information (number and cost of each job, . . .)
it is possible to find the optimal solution
theoretically important, not suitable for practical solutions

Controlled coupling
uses bigger bulks in the beginning of the execution, smaller bulks
in the end of the execution

lower overhead in the beginning, finer coupling in the end
the bulk’s size is computed as: Ki = d Ri

p e
where:

Ri . . . the number of remaining jobs
p . . . the number of processors

Luděk Matyska · 1. Distributed Systems · Spring 2020 70 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving
Methods
Self-scheduling II. – Tapering & Weighted distribution
Tapering

analogical to the Controlled coupling, but the bulks’ size is
further a function of jobs’ variation
uses historical information

low variance⇒ bigger bulks
high variance⇒ smaller bulks

Weighted distribution
considers the nodes’ computational power
suitable for heterogenous systems
uses historical information as well

Luděk Matyska · 1. Distributed Systems · Spring 2020 71 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving
Methods
Distributed Queues

≈ self-scheduling for distributed memory
instead of a centralized pool, a queue on each node is used
(per-processor queues)
suitable for:

distributed systems, where the locality does not matter
for both static and dynamic dependencies
for unknown costs

an example: diffuse approach
in every step, the cost of jobs remaining on each processor is
computed
processors exchange this information and perform the balancing
locality must not be important

Luděk Matyska · 1. Distributed Systems · Spring 2020 72 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving
Methods
Centralised Pool vs. Distributed Queues

Figure: Centralised Pool (left) vs. Distributed Queues (right).

Luděk Matyska · 1. Distributed Systems · Spring 2020 73 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Solving
Methods
DAG Planning

DAG Planning
another graph model

the nodes represent the jobs (possibly weighted)
the edges represent the dependencies and/or the communication
(may be also weighted)

e.g., suitable for digital signal processing
basic strategy – divide the DAG so that the communication and
the processors’ occupation (time) is minimized

NP-complete problem
takes the dependencies among the jobs into account

Luděk Matyska · 1. Distributed Systems · Spring 2020 74 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues I.
When the scheduling/load-balancing is necessary?

for middle-loaded systems
lowly-loaded systems – rarely job waiting (there’s always an idle
processor)
highly-loaded systems – little benefit (the load-balancing cannot
help)

What is the performance metric?
mean response time

What is the measure of load?
must be easy to measure
must reflect performance improvement
example: queue lengths at CPU, CPU utilization

Luděk Matyska · 1. Distributed Systems · Spring 2020 75 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues I.
Types of policies:

static (decisions hardwired into system), dynamic (uses load
information), adaptive (policy varies according to load)

Policies:
Transfer policy: when to transfer a process?

threshold-based policies are common and easy
Selection policy: which process to transfer?

prefer new processes
transfer cost should be small compared to execution cost

⇒ select processes with long execution times
Location policy: where to transfer the process?

polling, random, nearest neighbor, etc.
Information policy: when and from where?

demand driven (only a sender/receiver may ask for), time-driven
(periodic), state-change-driven (send update if load changes)

Luděk Matyska · 1. Distributed Systems · Spring 2020 76 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Sender-initiated Policy

Transfer policy

Selection policy: newly arrived process
Location policy: three variations

Random – may generate lots of transfers
⇒ necessary to limit max transfers

Threshold – probe n nodes sequentially
transfer to the first node below the threshold, if none, keep job

Shortest – poll Np nodes in parallel
choose least loaded node below T
if none, keep the job

Luděk Matyska · 1. Distributed Systems · Spring 2020 77 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Receiver-initiated Policy

Transfer policy: if departing process causes load < T , find a
process from elsewhere
Selection policy: newly arrived or partially executed process
Location policy:

Threshold – probe up to Np other nodes sequentially
transfer from first one above the threshold; if none, do
nothing

Shortest – poll n nodes in parallel
choose the node with heaviest load above T

Luděk Matyska · 1. Distributed Systems · Spring 2020 78 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Design Issues II.
Symmetric Policy

combines previous two policies without change
nodes act as both senders and receivers

uses average load as the threshold

Luděk Matyska · 1. Distributed Systems · Spring 2020 79 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Case study
V-System (Stanford)

state-change driven information policy
significant change in CPU/memory utilization is broadcast to all
other nodes

M least loaded nodes are receivers, others are senders
sender-initiated with new job selection policy
Location policy:

probe random receiver
if still receiver (below the threshold), transfer the job
otherwise try another

Luděk Matyska · 1. Distributed Systems · Spring 2020 80 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Case study
Sprite (Berkeley) I.

Centralized information policy: coordinator keeps info
state-change driven information policy
Receiver: workstation with no keyboard/mouse activity for the
defined time period (30 seconds) and below the limit (active
processes < number of processors)

Selection policy: manually done by user⇒ workstation becomes
sender
Location policy: sender queries coordinator
the workstation with the foreign process becomes sender if user
becomes active

Luděk Matyska · 1. Distributed Systems · Spring 2020 81 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs – Case study
Sprite (Berkeley) II.

Sprite process migration:
facilitated by the Sprite file system
state transfer:

swap everything out
send page tables and file descriptors to the receiver
create/establish the process on the receiver and load the
necessary pages
pass the control

the only problem: communication-dependencies
solution: redirect the communication from the
workstation to the receiver

Luděk Matyska · 1. Distributed Systems · Spring 2020 82 / 102

Issues Examples Scheduling/Load-balancing in Distributed Systems

Scheduling/Load-balancing in DSs
Code and Process Migration

key reasons: performance and flexibility
flexibility:

dynamic configuration of distributed system
clients don’t need preinstalled software (download on demand)

process migration (strong mobility)
process = code + data + stack
examples: Condor, DQS

code migration (weak mobility)
transferred program always starts from its initial state

migration in heterogeneous systems:
only weak mobility is supported in common systems (recompile
code, no run time information)
the virtual machines may be used: interprets (scripts) or
intermediate code (Java)

Luděk Matyska · 1. Distributed Systems · Spring 2020 83 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems I.

single machine systems
failures are all or nothing

OS crash, disk failures, etc.

distributed systems: multiple independent nodes
partial failures are also possible (some nodes fail)
probability of failure grows with number of independent
components (nodes) in the system

fault tolerance: system should provide services despite faults
transient faults
intermittent faults
permanent faults

Luděk Matyska · 1. Distributed Systems · Spring 2020 84 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems I.
Failure Types

Luděk Matyska · 1. Distributed Systems · Spring 2020 85 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems II.

handling faulty processes: through redundancy
organize several processes into a group

all processes perform the same computation
all messages are sent to all the members of the particular group
majority needs to agree on results of a computation
ideally, multiple independent implementations of the application
are desirable (to prevent identical bugs)

use process groups to organize such processes

Luděk Matyska · 1. Distributed Systems · Spring 2020 86 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in Distributed Systems III.

Figure: Flat Groups vs. Hierarchical Groups.

Luděk Matyska · 1. Distributed Systems · Spring 2020 87 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems

How should processes agree on results of a computation?
K-fault tolerant: system can survive k faults and yet function

assume processes fail silently
⇒ need (k + 1) redundancy to tolerant k faults

Byzantine failures: processes run even if sick
produce erroneous, random or malicious replies
byzantine failures are most difficult to deal with

Luděk Matyska · 1. Distributed Systems · Spring 2020 88 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Byzantine Generals Problem:

four generals lead their divisions of an army
the divisions camp on the mountains on the four sides of an enemy-occupied valley

the divisions can only communicate via messengers

messengers are totally reliable, but may need an arbitrary amount of time to cross the valley
they may even be captured and never arrive

if the actions taken by each division is not consistent with that of the others,
the army will be defeated

we need a scheme for the generals to agree on a common plan of action
(attack or retreat)

even if some of the generals are traitors who will do anything to prevent loyal generals from
reaching the agreement

the problem is nontrivial even if messengers are totally reliable
with unreliable messengers, the problem is very complex
Fischer, Lynch, Paterson: in asynchronous systems, it is impossible to reach a consensus in a
finite amount of time

Luděk Matyska · 1. Distributed Systems · Spring 2020 89 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Formal definition of the agreement problem in DSs:

let’s have a set of distributed processes with initial states ∈ 0, 1
the goal: all the processes have to agree on the same value

additional requirement: it must be possible to agree on both 0 or
1 states

basic assumptions:
system is asynchronous

no bounds on processes’ execution delays exist
no bounds on messages’ delivery delay exist
there are no synchronized clocks

no communication failures – every process can communicate with
its neighbors
processes fail by crashing – we do not consider byzantine failures

Luděk Matyska · 1. Distributed Systems · Spring 2020 90 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems

Formal definition of the agreement problem in DSs: cont’d.
implications:
⇒ there is no deterministic algorithm which resolves the consensus

problem in an asynchronous system with processes, which may
fail
because it is impossible to distinguish the cases:

a process does not react, because it has failed
a process does not react, because it is slow

practically overcomed by establishing timeouts and by
ignoring/killing too slow processes

timeouts used in so-called Failure Detectors (see later)

Luděk Matyska · 1. Distributed Systems · Spring 2020 91 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast

if there was a proper type of fault-tolerant broadcast, the agreement
problem would be solvable
various types of broadcasts:

reliable broadcast
FIFO broadcast
casual broadcast
atomic broadcast – the broadcast, which would solve the
agreement problem in asynchronous systems

Luděk Matyska · 1. Distributed Systems · Spring 2020 92 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – Reliable Broadcast

basic features:
Validity – if a correct process broadcasts m, then it eventually delivers m
Agreement – if a correct process delivers m, then all correct processes
eventually deliver m
(Uniform) Integrity – m is delivered by a process at most once, and only
if it was previously broadcasted

possible to implement using send/receive primitives:
the process p sending the broadcast message marks the message by its
identifier and sequence number

and sends it to all its neighbors

once a message is received:
if the message has not been previously received (based in sender’s ID and sequence
number), the message is delivered
if the particular process is not message’s sender, it delivers it to all its neighbors

Luděk Matyska · 1. Distributed Systems · Spring 2020 93 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – FIFO Broadcast

the reliable broadcast cannot assure the messages’ ordering
it is possible to receive a subsequent message (from the sender’s
view) before the previous one is received

FIFO broadcast: the messages from a single sender have to be
delivered in the same order as they were sent
FIFO broadcast = Reliable broadcast + FIFO ordering

if a process p broadcasts a message m before it broadcasts a
message m′, then no correct process delivers m′ unless it has
previously delivered m
broadcastp(m)→ broadcastp(m′)⇒ deliverq(m)→ deliverq(m′)

a simple extension of the reliable broadcast

Luděk Matyska · 1. Distributed Systems · Spring 2020 94 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – Casual Broadcast

the FIFO broadcast is still not sufficient: it is possible to receive
a message from a third party, which is a reaction to a particular
message before receiving that particular message

⇒ Casual broadcast
Casual broadcast = Reliable broadcast + casual ordering

if the broadcast of a message m happens before the broadcast of a
message m′, then no correct process delivers m′ unless it has
previously delivered m
broadcastp(m)→ broadcastq(m′)⇒ deliverr(m)→ deliverr(m′)

can be implemented as an extension of the FIFO broadcast

Luděk Matyska · 1. Distributed Systems · Spring 2020 95 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – Atomic Broadcast

even the casual broadcast is still not sufficient: sometimes, it is
necessary to guarantee the proper in-order delivery of all the
replicas

two bank offices: one of them receives the information about adding
an interest before adding a particular amount of money to the account,
the second one receives these messages contrariwise

⇒ inconsistency

⇒ Atomic broadcast

Atomic broadcast = Reliable broadcast + total ordering
if correct processes p and q both deliver messages m, m′, then p delivers
m before m′ if and only if q delivers m before m′

deliverp(m)→ deliverp(m′)⇒ deliverq(m)→ deliverq(m′)

does not exist in asynchronous systems

Luděk Matyska · 1. Distributed Systems · Spring 2020 96 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Fault-tolerant Broadcast – Timed Reliable Broadcast

a way to practical solution
introduces an upper limit (time), before which every message has
to be delivered
Timed Reliable broadcast = Reliable broadcast + timeliness

there is a known constant ∆ such that if a message is
broadcasted at real-time t, then no correct (any) process delivers
m after real-time t + ∆

feasible in asynchronous systems
A kind of “approximation” of atomic broadcast

Luděk Matyska · 1. Distributed Systems · Spring 2020 97 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems – Failure Detectors I.

impossibility of consensus caused by inability to detect slow
process and a failed process

synchronous systems: let’s use timeouts to determine whether a
process has crashed
⇒ Failure Detectors

Failure Detectors (FDs):
a distributed oracle that provides hints about the operational status
of processes (which processes had failed)

FDs communicate via atomic/time reliable broadcast

every process maintains its own FD
and asks just it to determine, whether a process had failed

however:
hints may be incorrect
FD may give different hints to different processes
FD may change its mind (over & over) about the operational status of a
process

Luděk Matyska · 1. Distributed Systems · Spring 2020 98 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems – Failure Detectors II.

Luděk Matyska · 1. Distributed Systems · Spring 2020 99 / 102

Issues Examples Fault Tolerance in Distributed Systems

Fault Tolerance in DSs – Agreement in Faulty
Systems
Perfect Failure Detector:

properties:
Eventual Strong Completeness – eventually every process that has
crashed is permanently suspected by all non-crashed processes
Eventual Strong Accuracy – no correct process is ever suspected

hard to implement
is perfect failure detection necessary for consensus? No.

⇒ weaker Failure Detector
weaker Failure Detector:

properties:
Strong Completeness – there is a time after which every faulty process
is suspected by every correct process
Eventual Strong Accuracy – there is a time after which no correct
process is suspected

can be used to solve the consensus
this is the weakest FD that can be used to solve the consensus

Luděk Matyska · 1. Distributed Systems · Spring 2020 100 / 102

Conclusion

Lecture overview

Distributed Systems
Key characteristics
Challenges and Issues
Distributed System Architectures
Inter-process Communication

Middleware
Remote Procedure Calls (RPC)
Remote Method Invocation (RMI)
Common Object Request Broker Architecture (CORBA)

Service Oriented Architecture (SAO)

Web Services

Issues Examples
Scheduling/Load-balancing in Distributed Systems
Fault Tolerance in Distributed Systems

Conclusion

Luděk Matyska · 1. Distributed Systems · Spring 2020 101 / 102

Conclusion

Distributed Systems – Further Information
FI courses:

PA150: Advanced Operating Sytems Concepts (doc. Staudek)
PA053: Distributed Systems and Middleware (doc. Tůma)
IA039: Supercomputer Architecture and Intensive Computations (prof.
Matyska)
PA177: High Performance Computing (LSU, prof. Sterling)
IV100: Parallel and distributed computations (doc. Královič)
IB109: Design and Implementation of Parallel Systems (dr. Barnat)
etc.

(Used) Literature:
W. Jia and W. Zhou. Distributed Network Systems: From concepts to
implementations. Springer, 2005.
A. S. Tanenbaum and M. V. Steen. Distributed Systems: Principles and
paradigms. Pearson Prencite Hall, 2007.
G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems:
Concepts and design. Addison-Wesley publishers, 2001.
Z. Tari and O. Bukhres. Fundamentals of Distributed Object Systems:
The CORBA perspective. John Wiley & Sons, 2001.
etc.

Luděk Matyska · 1. Distributed Systems · Spring 2020 102 / 102

	Distributed Systems
	Key characteristics
	Challenges and Issues
	Distributed System Architectures
	Inter-process Communication

	Middleware
	Remote Procedure Calls (RPC)
	Remote Method Invocation (RMI)
	Common Object Request Broker Architecture (CORBA)

	Service Oriented Architecture (SAO)
	Web Services
	Issues Examples
	Scheduling/Load-balancing in Distributed Systems
	Fault Tolerance in Distributed Systems

	Conclusion

