
2/22/2020

1

PA199
Advanced Game Design

Lecture 2

Introduction to C++

Dr. Fotis Liarokapis

28th February 2020

Introduction

• C++ improves on many of C’s features

• C++ provides object-oriented programming (OOP)

• C++ is a superset to C

• No ANSI standard exists yet (in 1994)

Some C++ Code

#ifndef __SEGMENT_HEADER__

#define __SEGMENT_HEADER__

class Point;

class Segment

{

public:

 Segment();

 virtual ~Segment();

private:

 Point *m_p0, *m_p1;

};

#endif // __SEGMENT_HEADER__

Segment.H
#include “Segment.H”

#include “Point.H”

Segment::Segment()

{

 m_p0 = new Point(0, 0);

 m_p1 = new Point(1, 1);

}

Segment::~Segment()

{

 delete m_p0;

 delete m_p1;

}

Segment.C

#include

#include “Segment.H”

#include <iostream>

Insert header file at this point.

Use library header.

Header Guards

#ifndef __SEGMENT_HEADER__

#define __SEGMENT_HEADER__

// contents of Segment.H

//...

#endif

• To ensure it is safe to include a file more than once.

Header Guards

#ifndef __SEGMENT_HEADER__

#define __SEGMENT_HEADER__

// contents of segment.H

//...

#endif

• To ensure it is safe to include a file more than once.

If this variable is

not defined…

Define it.

End of guarded area.

2/22/2020

2

C++ Single-Line Comments

• In C,
/* This is a single-line comment. */

• In C++,
// This is a single-line comment

• But note that compilers will accept both!

C++ Stream Input/Output

• In C,
printf(“Enter new tag: “);

scanf(“%d”, &tag);

printf(“The new tag is: %d\n”, tag);

• In C++,
cout << “Enter new tag: “;

cin >> tag;

cout << “The new tag is : “ << tag << ‘\n’;

An Example

// Simple stream input/output

#include <iostream.h>

main()

{

 cout << "Enter your age: ";

 int myAge;

 cin >> myAge;

 cout << "Enter your friend's age: ";

 int friendsAge;

 cin >> friendsAge;

An Example .

 if (myAge > friendsAge)

 cout << "You are older.\n";

 else

 if (myAge < friendsAge)

 cout << "You are younger.\n";

 else

 cout << "You and your friend are the same age.\n";

 return 0;

}

Declarations in C++

• In C++, declarations can be placed anywhere
• Except in the condition of a while, do/while, for or if structure

• An example
cout << “Enter two integers: “;
int x, y;
cin >> x >> y;
cout << “The sum of “ << x << “ and “ << y << “ is “ << x + y <<

‘\n’;

• Another example
for (int i = 0; i <= 5; i++)
 cout << i << ‘\n’;

Data Types in C++

struct Name {

 char first[10];

 char last[10];

};

• In C,
• struct Name stdname;

• In C++,
• Name stdname;

• The same is true for enums and unions

2/22/2020

3

Pointers

int x = 10;

int *p;

p = &x;

*p = 20;

Declares a pointer

to an integer

& is address operator

 gets address of x

* dereference operator

 gets value at p

Pointers .

int x = 10;

int *p;

p = &x;

p gets the address of x in memory.

p

x 10

Pointers ..

int x = 10;

int *p;

p = &x;

*p = 20;

*p is the value at the address p.

p

x 20

Pointers Example
int *intPtr;

intPtr = new int;

*intPtr = 6837;

delete intPtr;

int otherVal = 5;

intPtr = &otherVal;

Create a pointer

Allocate memory

Set value at given address

Change intPtr to point to

a new location

6837 *intPtr

0x0050 intPtr

5 *intPtr

0x0054 intPtr

 otherVal

&otherVal

Deallocate memory

Allocating memory using new

• Point *p = new Point(5, 5);
• new can be thought of a function with slightly strange syntax

• new allocates space to hold the object

• new calls the object’s constructor

• new returns a pointer to that object

Deallocating memory using delete

// allocate memory

Point *p = new Point(5, 5);

...

// free the memory

delete p;

For every call to new, there must be

exactly one call to delete

2/22/2020

4

Arrays

int intArray[10];

Int Array[0] = 6837;

int *intArray;

intArray = new int[10];

intArray[0] = 6837;

...

delete[] intArray;

Stack allocation

Heap allocation

More Arrays Examples

int x = 10;

int* nums1 = new int[10]; // ok

int* nums2 = new int[x]; // ok

• Initializes an array of 10 integers on the heap

• C equivalent of

 int* nums = (int*)malloc(x * sizeof(int));

Multidimensional Arrays

int x = 3, y = 4;

int* nums3 = new int [x] [4] [5]; // ok

int* nums4 = new int [x] [y] [5]; // BAD!

• Initializes a multidimensional array

• Only the first dimension can be a variable
• The rest must be constants

• Use single dimension arrays to fake multidimensional
ones

Strings

char myString[20];

strcpy(myString, "Hello World");

myString[0] = 'H';

myString[1] = 'i';

myString[2] = '\0';

printf("%s", myString);

A string in C++ is an array of characters

Strings are terminated with the NULL or '\0' character

output: Hi

Parameter Passing

int add(int a, int b) {

 return a+b;

}

int a, b, sum;

sum = add(a, b);

Pass by value

int add(int *a, int *b) {

 return *a + *b;

}

int a, b, sum;

sum = add(&a, &b);

Pass by reference

Make a local copy

of a and b

Pass pointers that reference

a and b. Changes made to

a or b will be reflected

outside the add routine

Parameter Passing .

int add(int &a, int &b) {

 return a+b;

}

int a, b, sum;

sum = add(a, b);

Pass by reference – alternate notation

2/22/2020

5

Class Basics
#ifndef _IMAGE_H_

#define _IMAGE_H_

#include <assert.h>

#include "vectors.h“

class Image {

public:

 ...

private:

 ...

};

#endif

Include a library file

Include a local file

Prevents multiple references

Variables and functions

accessible from anywhere

Variables and functions accessible

only from within this class’s functions

Creating an instance

Image myImage;

myImage.SetAllPixels(ClearColor);

Image *imagePtr;

imagePtr = new Image();

imagePtr->SetAllPixels(ClearColor);

...

delete imagePtr;

Stack allocation

Heap allocation

Organizational Strategy

image.h Header file: Class definition & function prototypes

.C file: Full function definitions

Main code: Function references

image.C

main.C

void SetAllPixels(const Vec3f &color);

void Image::SetAllPixels(const Vec3f &color) {

 for (int i = 0; i < width*height; i++)

 data[i] = color;

}

myImage.SetAllPixels(clearColor);

Constructors & Destructors
class Image {

public:

 Image(void) {

 width = height = 0;

 data = NULL;

 }

 ~Image(void) {

 if (data != NULL)

 delete[] data;

 }

 int width;

 int height;

 Vec3f *data;

};

Constructor:

Called whenever a new

instance is created

Destructor:

Called whenever an

instance is deleted

Constructors Specifics

Image(int w, int h) {

 width = w;

 height = h;

 data = new Vec3f[w*h];

}

Constructors can also take parameters

Image myImage = Image(10, 10);

Image *imagePtr;

imagePtr = new Image(10, 10);

Using this constructor with stack or heap allocation:

stack allocation

heap allocation

The Copy Constructor
Image(Image *img) {

 width = img->width;

 height = img->height;

 data = new Vec3f[width*height];

 for (int i=0; i<width*height; i++)

 data[i] = img->data[i];

}

Image(Image *img) {

 width = img->width;

 height = img->height;

 data = img->data;

}

A default copy constructor is created automatically,

but it is often not what you want:

2/22/2020

6

Destructors Specifics

• Delete calls the object’s destructor

• Delete frees space occupied by the object

• A destructor cleans up after the object

• Releases resources such as memory

Destructors – An Example

class Segment

{

public:

 Segment();

 virtual ~Segment();

private:

 Point *m_p0, *m_p1;

};

Destructors – An Example .

Segment::Segment()

{

 m_p0 = new Point(0, 0);

 m_p1 = new Point(1, 1);

}

Segment::~Segment()

{

 delete m_p0;

 delete m_p1;

}

Syntactic Sugar “->”

Point *p = new Point(5, 5);

// Access a member function:

(*p).move(10, 10);

// Or more simply:

p->move(10, 10);

Passing Classes as Parameters

bool IsImageGreen(Image img);

If a class instance is passed by value, the copy constructor will

be used to make a copy

Computationally expensive

bool IsImageGreen(Image *img);

It’s much faster to pass by reference:

bool IsImageGreen(Image &img);

or

Class Hierarchy

class Object3D {

 Vec3f color;

};

class Sphere : public Object3D {

 float radius;

};

class Cone : public Object3D {

 float base;

 float height;

};

Child classes inherit parent attributes

Object3D

Sphere Cone

2/22/2020

7

Class Hierarchy .

Sphere::Sphere() : Object3D() {

 radius = 1.0;

}

Child classes can call parent functions

Child classes can override parent functions

class Object3D {

 virtual void setDefaults(void) {

 color = RED; }

};

class Sphere : public Object3D {

 void setDefaults(void) {

 color = BLUE;

 radius = 1.0 }

};

Call the parent constructor

S
u

p
er

cl
as

s
S

u
b

cl
as

s

Introducing const

void Math::printSquare(const int& i)

{

 i = i*i;

 cout << i << endl;

}

int main()

{

 int i = 5;

 Math::printSquare(i);

 Math::printCube(i);

}

Summary with Header File

begin header guard
#ifndef __SEGMENT_HEADER__

#define __SEGMENT_HEADER__

class Point;

class Segment

{

public:

 Segment();

 virtual ~Segment();

private:

 Point *m_p0, *m_p1;

};

#endif // __SEGMENT_HEADER__

Segment.H header file

forward declaration

class declaration

constructor

destructor

end header guard

member variables

need semi-colon

Can also pass pointers to const

void Math::printSquare(const int* pi)

{

 *pi = (*pi) * (*pi);

 cout << i << endl;

}

int main()

{

 int i = 5;

 Math::printSquare(&i);

 Math::printCube(&i);

}

Declaring things const

const River nile;

const River* nilePc;

River* const nileCp;

const River* const nileCpc

Read pointer declarations
right to left

// A const River

const River nile;

// A pointer to a const River

const River* nilePc;

// A const pointer to a River

River* const nileCp;

// A const pointer to a const River

const River* const nileCpc

2/22/2020

8

Inheritance

#include “Segment.H”

class DottedSegment : public Segment

{

 // DottedSegment declaration

};

must include parent

header file

DottedSegment

publicly inherits from

Segment

Virtual

• In Java every method invocation is dynamically
bound, meaning for every method invocation the
program checks if a sub-class has overridden the
method

• You can override this (somewhat) by using the keyword
“final” in Java

• In C++ you have to declare the method virtual if you
want this functionality

• So, “virtual” is the same thing as “not final”

• Just like you rarely say things are final in Java, you
should rarely not say things are virtual in C++

Virtual Functions in C++

class Object3D {

 virtual void intersect(Ray *r, Hit *h);

};

class Sphere : public Object3D {

 virtual void intersect(Ray *r, Hit *h);

};

myObject->intersect(ray, hit);

If a superclass has virtual functions, the correct subclass

version will automatically be selected

Sphere *mySphere = new Sphere();

Object3D *myObject = mySphere;

A superclass pointer can reference a subclass object

Actually calls
Sphere::intersect

S
u
p
er

cl
as

s
S

u
b
cl

as
s

Pure Virtual Functions

class Object3D {

 virtual void intersect(Ray *r, Hit *h) = 0;

};

A pure virtual function has a prototype, but no definition.

Used when a default implementation does not make sense

A class with a pure virtual function is called a pure

virtual class and cannot be instantiated

However, its subclasses can

The main function

int main(int argc, char** argv);

This is where your code begins execution

Number of

arguments

Array of

strings

argv[0] is the program name

argv[1] through argv[argc-1] are command-line input

Coding tips

#define PI 3.14159265

#define MAX_ARRAY_SIZE 20

Use the #define compiler directive for constants

printf("value: %d, %f\n", myInt, myFloat);

cout << "value:" << myInt << ", " << myFloat << endl;

Use the printf or cout functions for output and debugging

assert(denominator != 0);

quotient = numerator/denominator;

Use the assert function to test “always true” conditions

2/22/2020

9

Coding tips .

delete myObject;

myObject = NULL;

After you delete an object, also set its value to NULL

(This is not done for you automatically)

This will make it easier to debug memory allocation errors

assert(myObject != NULL);

myObject->setColor(RED);

Segmentation Faults

int intArray[10];

intArray[10] = 6837;

Image *img;

img->SetAllPixels(ClearColor);

Typical causes:

Access outside of

array bounds

Attempt to access

a NULL or previously

deleted pointer

These errors are often very difficult to catch and

can cause erratic, unpredictable behavior

Common Pitfalls

void setToRed(Vec3f v) {

 v = RED;

}

Since v is passed by value, it will not get updated outside of

The set function

The fix:

void setToRed(Vec3f &v) {

 v = RED;

}

void setToRed(Vec3f *v) {

 *v = RED;

}

or

Common Pitfalls ..
Sphere* getRedSphere() {

 Sphere s = Sphere(1.0);

 s.setColor(RED);

 return &s;

}

C++ automatically deallocates stack memory when the

function exits, so the returned pointer is invalid

The fix:

Sphere* getRedSphere() {

 Sphere *s = new Sphere(1.0);

 s->setColor(RED);

 return s;

}

It will then be your

responsibility to

delete the Sphere

object later

Advanced topics

• Lots of advanced topics, but a few will be required for
this course

• friend or protected class members

• inline functions

• static functions and variables

• operator overloading

• compiler directives

Some Useful Links

• C++ Programming
• http://www.syvum.com/squizzes/cpp/

• Online C/C++ Documentation
• http://www.thefreecountry.com/documentation/onlinecpp.s

html

• C++ Language Tutorials
• http://www.cs.wustl.edu/~schmidt/C++/

• The C++ Programming Language
• http://www.research.att.com/~bs/C++.html

http://www.syvum.com/squizzes/cpp/
http://www.thefreecountry.com/documentation/onlinecpp.shtml
http://www.thefreecountry.com/documentation/onlinecpp.shtml
http://www.cs.wustl.edu/~schmidt/C++/
http://www.research.att.com/~bs/C++.html

2/22/2020

10

Questions

