
2/28/2020

1

PA199
Advanced Game Design

Lecture 3

Mathematics for Game Design

Dr. Fotis Liarokapis

28th February 2020

Basis and Coordinate Systems

• In any scene, we need a way to be able to
position and orientate points, vectors, objects,
etc:

– We do this be defining a basis

• The basis is defined by an origin and a number of
basis vectors

– Can think of the basis as a ‘starting point’

• We employ a Cartesian basis

Basis and Coordinate Systems .

• The basis vectors are mutually orthogonal and
unit length

– Unit length:

• Have a length of 1

– Mutually Orthogonal:

• Each vector is at a right angle to the others

• Basis vectors for 3 dimensions

– Use ‘x’ and ‘y’ for 2 dimensions

– Position in Cartesian coordinates specified by (x, y, z)

Left-handed vs. Right-Handed

Y

X

Z

X

Y

Z

 left handed right handed
Z axis goes "into" the page Z axis goes "out" of the page

OpenGL is right handed in
object space and world space

But in window space (screen
space) left handed

Local Coordinate System

• Preferred system for
construction of object parts

• 3D Cartesian system

• Object vertices centered
about the local origin

Y

X

Z

3D World Coordinate System

• 3D Cartesian coordinate
system

• Arbitrary centre,
handedness and
orientation

• Used in the construction
stage

Y

X

Z

Y

X

Z

Y

X

Z

2/28/2020

2

Camera Coordinate System

• Used to define the view onto the 3D world
that the user will see on the screen

• Centre (0,0,0) is located at the Imaginary
User’s eye

• Axes oriented such that:

– One indicates the direction in which the user looks

– The second indicates roughly the ‘up’ direction

– The third indicates the handedness

Example of Camera Coordinate System

Y

X

Z

U

V

N

DIRECTION
VECTOR

{ 0, 0, 0}

UP
VECTOR OpenGL: see gluLookAt

https://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml

3D Camera Viewing

• Note that the following scenes should produce the
same image

• In ‘Scene 2’, relative position of objects and camera
remain constant but the actually scene has been
changed
– It has been transformed

SCENE 2 SCENE 1

Notation: Scalars, Vectors, Matrices

• Scalar

– Lower case, italic

• Vector

– Lower case, bold

• Matrix

– Upper case, bold

a

 naaa ...21a



















333231

232221

131211

aaa

aaa

aaa

A

Vectors

• A quantity characterized by a magnitude and
direction
– Can be represented by an arrow, where magnitude

is the length of the arrow and the direction is given
by slope of the line











1

2
v

2

1

Y

X

A vector in 2D
2

2

2

Y

X

Z



















2

2

2

v

A vector in 3D

Vectors in 3D Co-ordinates







































5.0

7.0

5.0

5.0

7.0

5.0

v

RHS LHS

https://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml

2/28/2020

3

Vector Subtraction

u

-v

u

-v

-v

Can be seen as an addition of

u + (-1v)

vuvu 




























2

4

2

5

4

1

Vector Magnitude

• The magnitude or “norm” of a vector of
dimension n is given by the standard
Euclidean distance metric:

222

21 n
vvv  v

Vectors for Direction

• Vectors represent

– Direction

– Magnitude

• In games can be used for representing:

– Position

– Velocity

– Forces / impulses

Example Vectors for Direction

• Describing velocity (direction and speed) of
roller coaster and ball at different points in
time

Other Vectors

DRAG

THRUST

LIFT

GRAVITY

Vertices and Points

• Vectors can however
communicate a position

• Referred to as a point
or vertex

• A vertex is actually
represented by its
displacement from the
origin { 0, 0, 0 }




















y

x

y

x

v

v

v

v
Pv

both vectors equal

With the origin O, we can use this to
represent a unique position in space

2/28/2020

4

Unit Vectors

• Vectors of length 1 are often termed unit
vectors

– Normalised vectors

• When we only wish to describe direction we use
normalised vectors

– Often to avoid redundancy

• For this (and other reasons), we often need to
normalise a vector:

v
v

v
v

222

21

1
ˆ

n
vvv 




Dot Product Definition

• Dot product (inner product) is defined as:


i

iivuvu

332211

3

2

1

3

2

1

vuvuvu

v

v

v

u

u

u



































 vu

2211

2

1

2

1
vuvu

v

v

u

u

















 vu

Dot Product Magnitude

• Therefore we can redefine magnitude in terms
of the dot-product operator:

• Note that the dot product operator is
commutative and associative

– Changing the order of the operands does not change
the result

– (x * y) * z = x * (y * z)

22
3

2
2

2
1 uuu  uuu uuu 

Dot Product Using Angle

• The Dot Product can also be
obtained from the following
equation:

• where q is the angle
between the two vectors

u

q qcosvuvu 

Angle Between Two Vectors

• So, if we know the vectors u and v, then the dot
product is useful for finding the angle between
two vectors:

• Note that if we had already normalised the
vectors u and v then it would simply be:











 
 

vu

vu
vuvu 1coscos qq

 vu ˆˆcos 1  q

Dot Product Special Case

• If both vectors are normal, the dot product
defines the cosine of the angle between the
vectors:











 






vu

vu

vuvu

1cos

cos

q

q

qcos vu

But in general:

if q > 90 then the dot product is negative

2/28/2020

5

Projection Using Dot Product

• Can find length of projection of u onto v

• As lines become perpendicular:

qcosvuvu  u

v
q

qcosuv

vu
u


qcos

Cross Product

• Used for defining orientation and constructing
co-ordinate axes

• Cross product defined as:

• The result is a vector, perpendicular to the
plane defined by u and v:





























































1221

3113

2332

3

2

1

3

2

1

vuvu

vuvu

vuvu

v

v

v

u

u

u

vu

qsinvuwvu 

Cross Product Examples

Right Handed Coordinate System

Cross Product Properties

• Cross product is anti-commutative:

• It is not associative:

• Direction of resulting vector defined by operand
order:

 uvvu 

    wvuwvu 

Vector Class

class TVector {
 public:
 double _x, _y, _z;

 // Constructors
 TVector(double x, double y, double z, TStatus s) : _x(x), _y(y),

 _z(z), _Status(s) {}
 TVector(double x, double y, double z) : _x(x), _y(y), _z(z),

 _Status(DEFAULT) {}

 // Functions here

};
#endif

Vector Subtraction Example

TVector &TVector::subtract(const TVector &v1, const TVector
&v2, TVector &result)

{
 if (v1.isValid() && v2.isValid())
 {
 result._x = v1._x - v2._x;
 result._y = v1._y - v2._y;
 result._z = v1._z - v2._z;
 result._Status = DEFAULT;
 } else
 result = TVector();
 return result;
}

2/28/2020

6

What is a Matrix?

• A matrix is a set of elements, organized into
rows (m) and columns (n)



















mnmmm

n

n

aaaa

aaaa

aaaa







321

2232221

1131211

Columns,

j = 1, …, n

Rows,

i = 1, …, m

Why Use Matrices?

• Variety of engineering problems lead to the
need to solve systems of linear equations

 b Ax 





















mnmmm

n

n

aaaa

aaaa

aaaa







321

2232221

1131211

A





















mb

b

b



2

1

b





















nx

x

x



2

1

x

matrix column vectors

Row and Column Matrices (vectors)

• Row matrix (or row vector) is a matrix with
one row

• Column vector is a matrix with only one
column

 nrrrr 321r





















mc

c

c



2

1

c

Square Matrix

• When the row and column dimensions of a
matrix are equal (m = n) then the matrix is
called square





















nnnn

n

n

aaa

aaa

aaa







21

22221

11211

A

Matrix Transpose

• The transpose of the (m x n) matrix A is the (n x
m) matrix formed by interchanging the rows
and columns such that row i becomes column i
of the transposed matrix





















mnnn

m

m

T

aaa

aaa

aaa







21

22212

12111

A





















mnmm

n

n

aaa

aaa

aaa







21

22221

11211

A

Matrix Equality

• Two (m x n) matrices A and B are equal if and
only if each of their elements are equal

• That is when:

– A = B

• If and only if:

– aij = bij

– For i = 1,...,m & j = 1,...,n

2/28/2020

7

Matrix Addition General Format









































































m nm nmmmm

nn

nn

m nmm

n

n

m nmm

n

n

 b a b a b a

 b a b a b a

 b a b a b a

bbb

bbb

bbb

aaa

aaa

aaa



















2211

2222222121

1112121111

21

22221

11211

21

22221

11211

BA

Scalar Matrix Multiplication

• Multiplication of a matrix A by a scalar is
defined as:





















mnmm

n

n

aaa

aaa

aaa















21

22221

11211

A

Matrix Multiplication with Matrix
General Format







































































pnmpnmpmpmpmpm

pnpnpppp

pnpnpppp

pnpp

n

n

mpmm

p

p

babababababa

babababababa

babababababa

bbb

bbb

bbb

aaa

aaa

aaa

 =





















1121211111

2121221221121121

1111211211111111

21

12221

11211

21

12221

11211

ABC

kj

p

k
ikij ba c 

1

Diagonal Matrices

• Simple diagonal Matrix





















nna

a

a

000

000

000

000

22

11


A

Identity Matrix

• The identity matrix has the property that if A
is a square matrix, then:

AAIIA 





















1000

0100

0010

0001

 I

Matrix Inverse

• If A is an (n x n) square matrix and there is a
matrix X with the property that:

• X is defined to be the inverse of A and is
denoted A-1

IAX 

IAA 1  IAA 1 

2/28/2020

8

Matrix Class

class TMatrix33
{
 public:
 double _Mx[3][3];

 // Constructors
 TMatrix33();
 TMatrix33(double Phi, double Theta, double Psi);
 TMatrix33(TVector& Axis,double Psi);

 // Functions here
};
#endif

Matrix Addition

TMatrix33 &TMatrix33::add(const TMatrix33 &m1, const
TMatrix33 &m2, TMatrix33 &result) {
 result._Mx[0][0] = m1._Mx[0][0] + m2._Mx[0][0];
 result._Mx[0][1] = m1._Mx[0][1] + m2._Mx[0][1];
 result._Mx[0][2] = m1._Mx[0][2] + m2._Mx[0][2];
 result._Mx[1][0] = m1._Mx[1][0] + m2._Mx[1][0];
 result._Mx[1][1] = m1._Mx[1][1] + m2._Mx[1][1];
 result._Mx[1][2] = m1._Mx[1][2] + m2._Mx[1][2];
 result._Mx[2][0] = m1._Mx[2][0] + m2._Mx[2][0];
 result._Mx[2][1] = m1._Mx[2][1] + m2._Mx[2][1];
 result._Mx[2][2] = m1._Mx[2][2] + m2._Mx[2][2];
 return result;

}

Transformations

• Allow us to move, orientate and change the
primitives in our scene
– Move, Rotate, Stretch, Squash, Shear

• Represented as matrices, such as:
– We can store a translation and a rotation in a matrix

– When we apply this matrix to an object, it will be
translated and rotated as specified by the matrix

• Two ways of understanding a transformation:
– Object Transformation

– Coordinate Transformation

Object vs Coordinate Transformations

• Object Transformation

– Alters the coordinates of each point according to
some rule

– The underlying coordinate system remains
unchanged

• Coordinate Transformation

– Produces a different coordinate system

– Then represents all original points in this new
system

Examples

{1,1}

{.4, 2}

{1,1}

{1,1}

Object
Transformation

Coordinate
Transformation

Affine Transformations Definition

• An affine transformation is any transformation
that preserves:

– Collinearity

• i.e. All points lying on a line initially still lie on a line after
transformation

– Ratios of distances

• i.e. The midpoint of a line segment remains the midpoint
after transformation

2/28/2020

9

Elementary Transformations

Translation

Scaling

Rotation

Shearing

Homogeneous Coordinates

• Introduced in mathematics:

– For projections and drawings

– Used in artillery, architecture

– Used to be classified material (in the 1850s)

• Add a third coordinate, w

• A 2D point is a 3 coordinates vector:

x

y

w

















Homogeneous Coordinates .

• Two points are equal if and only if:

– x’/w’ = x/w and y’/w’= y/w

• w=0: points at infinity

– Useful for projections and curve drawing

• Homogenize = divide by w

• Homogenized points:

x

y

1

















Translations with Homogeneous

 x

 y

 w



















1 0 tx

0 1 ty

0 0 1

















x

y

w

















 x

 y

 w















x  wtx

y wty

w

 x
 w

 y

 w





x
w tx

y
w ty





Scaling with Homogeneous

 x

 y

 w



















sx 0 0

0 sy 0

0 0 1

















x

y

w

















 x

 y

 w















sxx

syy

w

 x
 w

 y

 w





sx
x
w

sy

y
w





Rotation with Homogeneous

 x

 y

 w



















cosq sinq 0

sinq cosq 0

0 0 1

















x

y

w

















 x

 y

 w















cosqx  sinqy

sinqx  cosqy

w

 x
 w

 y

 w





cosq x
w  sinq y

w

sinq x
w  cosq y

w





2/28/2020

10

Composition of Transformations

• To compose transformations, multiply the
matrices:

–Composition of a rotation and a translation:
 M = RT

• All transformations can be expressed as
matrices

– Even transformations that are not
translations, rotations and scaling

Rotation Around a Point Q

• Rotation about a point Q:

– translate Q to origin (TQ),

– rotate about origin (RQ)

– translate back to Q (- TQ).

P’=(-TQ)RQTQ P

Beware!

• Matrix multiplication is not commutative

• The order of the transformations is vital

– Rotation followed by translation is very different
from translation followed by rotation

– Careful with the order of the matrices!

• Small commutativity:

– Rotation commute with rotation, translation with
translation…

Matrices in OpenGL

• To initialise a matrix in OpenGL:

– glLoadIdentity()

– This clears the currently selected
OpenGL matrix to the identity
matrix

• To select a matrix as the current
matrix:

– glMatrixMode(mode)

• GL_MODELVIEW, GL_PROJECTION,
GL_TEXTURE

How do we do this ?

• OpenGL does most of it for us !

– OpenGL keeps a current matrix that allows us to
orientate our primitives

• This is known as the model-view matrix

– All primitives placed are altered by the
transformation stored in the model-view matrix

– Model-view matrix acts as a state parameter; once
set it remains until altered

• Use calls such as glTranslate() to modify the current
model-view matrix

Translation

• Think of translations as ‘moving’ without rotating

• Translation only applies to points
– Doesn’t apply to vectors, since vectors are just directions

• The translation displacement is written in the 12th, 13th, and 14th
positions of our OpenGL matrix

• These correspond to the displacements in the x, y and z
directions
– So 12th position is the translation in the x direction

Translate along y axis

2/28/2020

11

The Translation Matrix

• Example: Translate the point
(x,y,z) by a displacement (a,b,c):
– Gives us our translated point (x+a,

y+b, z+c)

• glTranslate(dx, dy, dz)
– Translates by a displacement (dx,

dy, dz)
– Calling glTranslate() concatenates

the specified translation to the
current model-view matrix

– Any primitives drawn after this will
be modified by the specified
translation

Rotation

• Change the orientation of a primitive, without
affecting its position

• Rotation applies to both points and vectors

– Rotating a vector will change its direction

• Rotations are conducted anti-clockwise about
the origin

rotation of 45o about the Z axis

Rotation

• Remember:
Sin a = Opp / Hyp

Cos a = Adj / Hyp

Tan a = Opp / Adj

Rotation

• Derivation:
• Expanding (a + b) from log tables:

– Rotated x = r cos a cos b – r sin a sin b
– Rotated y = r cos a sin b + r sin a cos b

• But:
– Original x = r cos a
– Original y = r sin a

• So:
– Rotated x = original x cos b – original y sin b
– Rotated y = original x sin b + original y cos b

• Elements 0, 1, 2, 4, 5, 6, 8, 9, 10 define any
rotations in our transformation matrix

The Rotation Matrix

• Rotations around the: x-axis (Rx), y-axis (Ry) and z-axis
(Rz)

• glRotatef(angle, vx, vy, vz)
– Rotates around the axis (vx, vy, vz) by angle degrees
– Calling glRotate() concatenates the specified rotate to the

current model-view matrix
– Any primitives drawn after this will be modified by the

specified rotation

Scaling

• Allows us to make primitives larger and smaller, without
changing the vertex positions of the original

• Elements 1, 6, 11 define scales in our transformation matrix:
• glScalef(sx, sy, sz)

– Scale a scene by sx in the y axis, sy in the y axis and sz in the z axis
– The default value for sx,sy,sz is (1.0,1.0,1.0), which doesn’t scale a

scene at all
– Any primitives drawn after this will be modified by the specified

scaling

Original scale all axes scale Y axis

2/28/2020

12

OpenGL Perspective Projection

• The call glFrustum(l, r, b, t, n, f) generates R,
where:

• R is defined as long as l x r, t x b, and n x f

OpenGL Orthographic Projection

• The call glOrtho(l, r, b, t, n, f) generates R,
where:

• R is defined as long as l x r, t x b, and n x f

2D and 3D Lines

• In 2D, two different lines can either be
– Parallel, meaning they never meet

– May intersect at one and only one point

• In 3D (or more dimensions), lines may also be
skew (meaning they don't meet) but also don't
define a plane

• Two distinct planes intersect in at most one line

• Three or more points that lie on the same line
are called collinear

2D Line Equation

• Lines in a Cartesian plane can
be described algebraically by
– Linear equations and functions

• In 2D the characteristic
equation is often given by the
slope-intercept form:

 y = mx + b
• where:

– m is the slope of the line
– b is the y-intercept of the line
– x is the independent variable of

the function y

Slope Definition

• Slope is often used to describe
the measurement of the
steepness, incline, gradient, or
grade of a straight line
– A higher slope value indicates a

steeper incline

• The slope is defined as the ratio
of the altitude change to the
horizontal distance between any
two points on the line
– Using calculus, one can calculate

the slope of the tangent to a curve
at a point

Slope Calculation

• Slope is defined as the change in the y
coordinate divided by the corresponding
change in the x coordinate, between two
distinct points on the line

• Given two points (x1, y1) and (x2, y2), the change
in x from one to the other is x2 - x1, while the
change in y is y2 - y1

2/28/2020

13

Slope Special Cases

• The larger the absolute value of a slope, the
steeper the line
– A horizontal line has slope 0

• Note that a vertical line's slope is undefined

– A 45° rising line has a slope of +1

– A 45° falling line has a slope of -1

• The angle θ a line makes with the positive x axis
is closely related to the slope m via the tangent
function:

Slope Special Cases .

• Two lines are parallel if and only if

– Their slopes are equal and they are not coincident or
if

– They both are vertical and therefore have undefined
slopes

• Two lines are perpendicular if and only if

– The product of their slopes is -1 or

– One has a slope of 0 (a horizontal line) and the other
has an undefined slope (a vertical line)

Derivative

• By moving the two points closer
together Δy and Δx decreases
– The line more closely

approximates a tangent line to
the curve

– The slope of the secant
approaches that of the tangent

• If y is dependent on x, then it is
sufficient to take the limit
where only Δx approaches zero

• Therefore, the slope of the
tangent is the limit of Δy/Δx as
Δx approaches zero

Differentiation and the Derivative

• Differentiation is a method to compute the rate
at which a quantity, y, changes with respect to
the change in another quantity, x, upon which it
is dependent

• This rate of change is called the derivative of y
with respect to x

• In more precise language, the dependency of y
on x means that y is a function of x

• If x and y are real numbers, and if the graph of y
is plotted against x, the derivative measures the
slope of this graph at each point

Differentiation and the Derivative .

• This functional relationship is often denoted y =
f(x), where f denotes the function

• The simplest case is when y is a linear function of x,
meaning that the graph of y against x is a straight
line

• In this case, y = f(x) = m x + c, for real numbers m
and c, and the slope m is given by

• where the symbol Δ is an abbreviation for ‘change
in’

Differentiation and the Derivative ..

• It follows that Δy = m Δx

– This gives an exact value for the slope of a straight line

• If the function f is not linear, then the change in y
divided by the change in x varies

– Differentiation is a method to find an exact value for this rate
of change at any given value of x

• In Leibniz's notation, such an infinitesimal
change in x is denoted by dx, and the derivative
of y with respect to x is written:

2/28/2020

14

3D Line Parametric Equations

• In 3D a line is often described by parametric equations:

 x = x0 + at

 y = y0 + bt

 z = z0 + ct

• where:
– x, y, and z are all functions of the independent variable t

– x0, y0, and z0 are the initial values of each respective variable

– a, b, and c are related to the slope of the line, such that the
vector (a, b, c) is a parallel to the line

Ray

• In Euclidean geometry, a ray, or half-line, given
two distinct points A (the origin) and B on the
ray, is the set of points C on the line containing
points A and B such that A is not strictly
between C and B

• In geometry, a ray starts at one point, then
goes on forever in one direction

Example Class Tray.h

class TRay
{
 private:
 TVector _P; // Any point on the line
 TVector _V; // Direction of the line

 public:
 // Constructor
 TRay() {}

 // Line betwen two points OR point and a direction
 TRay(const TVector &point1, const TVector &point2);

 // Adjacent points on both lines
 bool adjacentPoints(const TRay &ray, TVector &point1, TVector &point2) const;

 // Distances
 double dist(const TRay &ray) const;
 double dist(const TVector &point) const;

 // More functions here
};
#endif

Plane Definition

• A plane can be uniquely
determined by any of the
following (sets of) objects:
– Three non-collinear points

• i.e. not lying on the same line

– A line and a point not on the
line

– Two lines with one point of
intersection

– Two parallel lines

Plane Properties

• Two planes are either parallel or they intersect in
a line

• A line is either parallel to a plane or intersects it
at a single point or is contained in the plane

• Two lines normal (perpendicular) to the same
plane must be parallel to each other

• Two planes normal to the same line must be
parallel to each other

Standard Plane Equation

• The standard equation of a
plane in 3 space is:

 Ax + By + Cz + D = 0

• The normal to the plane is
the vector (A,B,C)

2/28/2020

15

Plane Definition with a Point and a
Normal Vector

• In a 3D space, another important way of
defining a plane is by specifying a point and a
normal vector to the plane

• Let p be the point we wish to lie in the plane,
and let n be a nonzero normal vector to the
plane

• The desired plane is the set of all points r such
that:

Plane Definition with a Point and a
Normal Vector .

• If we write

• and d as the dot product

• then the plane Π is determined by the condition

• where a, b, c and d are real numbers and a, b,
and c are not all zero

Define a Plane using three Points

• The plane passing through three points p1=(x1,
y1, z1), p2=(x2, y2, z2) and p3=(x3, y3, z3) can be
defined as the set of all points (x, y, z) that
satisfy the following determinant equations:

Determinant

• A determinant is a function depending on n
that associates a scalar, det(A), to every n×n
square matrix A

• The determinant of a matrix A is also
sometimes denoted by |A|

Dihedral Angle

• Given two intersecting planes described by

and

• the dihedral angle between them is defined to
be the angle α between their normal directions

Minimum Distance between
a Point and a Line

• Find the shortest
distance from a point to
a line or line segment

• The equation of a line
defined through two
points P1 (x1, y1) and P2
(x2, y2) is:

 P = P1 + u (P2 - P1)

P

2/28/2020

16

Minimum Distance between
a Point and a Line .

• The point P3 (x3, y3) is closest to the line at the
tangent to the line which passes through P3,
that is, the dot product of the tangent and line
is equal to zero, thus:

 (P3 - P)●(P2 - P1) = 0

• Substituting the equation of the line gives:

 [P3 - P1 - u(P2 - P1)]●(P2 - P1) = 0

Minimum Distance between
a Point and a Line ..

• Solving this gives the value of u

• Substituting this into the equation of the line gives
the point of intersection (x, y) of the tangent as

 x = x1 + u (x2 - x1)
 y = y1 + u (y2 - y1)

• The distance therefore between the point P3 and

the line is the distance between (x, y) above and P3

Minimum Distance between
a Point and a Line …

• Notes

– The only special testing for a software
implementation is to ensure that P1 and P2 are not
coincident (denominator in the equation for u is 0)

– If the distance of the point to a line segment is
required then it is only necessary to test that u lies
between 0 and 1

– The solution is similar in higher dimensions

Minimum Distance between
a Point and a Plane

• Let Pa = (xa, ya, za) be the
point in question

• A plane can be defined by
its normal n = (A, B, C) and
any point on the plane Pb =
(xb, yb, zb)

• Any point P = (x, y, z) lies on
the plane if it satisfies the
following

 A x + B y + C z + D = 0

Minimum Distance between
a Point and a Plane .

• Consider the projection of the line (Pa - Pb) onto the
normal of the plane n, that is just ||Pa - Pb|| cosθ
– Where θ is the angle between (Pa - Pb) and the normal n

• This projection is the minimum distance (D) of Pa to the
plane and can be written in terms of the dot product:

 D = (Pa - Pb) ● n / ||n||

• That is: D = (A (xa - xb) + B (ya - yb) + C (za - zb))
 / sqrt(A2 + B2 + C2)

Minimum Distance between
a Point and a Plane ..

• Since point (xb, yb, zb) is a point on the plane

 Axb + Byb + Czb + D = 0

• Substituting gives:

 (Axa + Bya + Cza + D) / sqrt(A2 + B2 + C2)

2/28/2020

17

Point inside a Triangle

• Consider a triangle T defined by 3
points p1(x1, y1), p2(x2, y2), p3(x3, y3)
and a single point p(x, y)

• Four solutions:

– Barycentric solution

– Parametric solution

– Dot product solution

– Cross product solution

p2 (x2, y2)

p1 (x1, y1)

p3 (x3, y3)

. p (x, y)

Barycentric Solution

• Barycentric coordinate allows to express new p
coordinates as a linear combination of p1, p2, p3

• More precisely, it defines 3 scalars a, b, c such
that :

– x = a * x1 + b * x2 + c * x3

– y = a * y1 + b * y2 + c * y3

– a + b + c = 1

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

p2 (x2, y2)

p1 (x1, y1)

p3 (x3, y3)

. p (x, y)

Barycentric Solution .

• The way to compute a, b, c is not difficult :

– a = ((y2 - y3)*(x - x3) + (x3 - x2)*(y - y3)) / ((y2 - y3)*(x1 -
x3) + (x3 - x2)*(y1 - y3))

– b = ((y3 - y1)*(x - x3) + (x1 - x3)*(y - y3)) / ((y2 - y3)*(x1 -
x3) + (x3 - x2)*(y1 - y3))

– c = 1 - a - b

• Then p lies in T if and only if:

– 0 <= a <= 1 and 0 <= b <= 1 and 0 <= c <= 1

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

Barycentric Code Sample

function pointInTriangle(x1, y1, x2, y2, x3, y3, x, y: Number):
Boolean

{
var denominator:Number = ((y2 - y3)*(x1 - x3) + (x3 - x2)*(y1 - y3));
var a:Number = ((y2 - y3)*(x - x3) + (x3 - x2)*(y - y3)) / denominator;
var b:Number = ((y3 - y1)*(x - x3) + (x1 - x3)*(y - y3)) / denominator;
var c:Number = 1 - a - b;

 return 0 <= a && a <= 1 && 0 <= b && b <= 1 && 0 <= c && c

<= 1;
}

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

Parametric Solution

• Consider the parametric expressions
of the 2 edges [p1, p2] and [p1, p3] in T :
– x(t1) = t1*(x2 - x1)

– y(t1) = t1*(y2 - y1)

– x(t2) = t2*(x3 - x1)

– y(t2) = t2*(y3 - y1)

• Then express p(x, y) as a linear
combination of them:
– x = x1 + x(t1) + x(t2)

– y = y1 + y(t1) + y(t2)

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

p2 (x2, y2)

p1 (x1, y1)

p3 (x3, y3)

. p (x, y)

Parametric Solution .

• Solving the system:

– t1 = (x*(y3 - y1) + y*(x1 - x3) - x1*y3 + y1*x3) / (x1*(y2 -
y3) + y1*(x3 - x2) + x2*y3 - y2*x3)

– t2 = (x*(y2 - y1) + y*(x1 - x2) - x1*y2 + y1*x2) / -(x1*(y2
- y3) + y1*(x3 - x2) + x2*y3 - y2*x3)

• Then p lies in T if and only if:

– 0 <= t1 <= 1 and 0 <= t2 <= 1 and t1 + t2 <= 1

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

2/28/2020

18

Parametric Code Sample

function pointInTriangle(x1, y1, x2, y2, x3, y3, x, y: Number):
Boolean

{
 var denominator:Number = (x1*(y2 - y3) + y1*(x3 - x2) + x2*y3

- y2*x3);
 var t1:Number = (x*(y3 - y1) + y*(x1 - x3) - x1*y3 + y1*x3) /

denominator;
 var t2:Number = (x*(y2 - y1) + y*(x1 - x2) - x1*y2 + y1*x2) / -

denominator;
 var s:Number = t1 + t2;

 return 0 <= t1 && t1 <= 1 && 0 <= t2 && t2 <= 1 && s <= 1;

}
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

Dot Product Solution

• Assume that p1, p2, p3 are ordered in counterclockwise
and check if p lies at left of the 3 oriented edges
– [p1, p2], [p2, p3], [p3, p1]

• First consider the 3 vectors v1, v2 and v3 that are left-
orthogonal to [p1, p2], [p2, p3] and [p3, p1] :
– v1 = <y2 - y1, -x2 + x1>

– v2 = <y3 - y2, -x3 + x2>

– v3 = <y1 - y3, -x1 + x3>

• Then we get the 3 following vectors :
– v1' = <x - x1, y - y1>

– v2' = <x - x2, y - y2>

– v3' = <x - x3, y - y3> p2 (x2, y2)

p1 (x1, y1)

p3 (x3, y3)

. p (x, y)

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

v1
v3

v2

Dot Product Solution .

• Compute the 3 dot products:

– dot1 = v1 . v1' = (y2 - y1)*(x - x1) + (-x2 + x1)*(y - y1)

– dot2 = v1 . v2' = (y3 - y2)*(x - x2) + (-x3 + x2)*(y - y2)

– dot3 = v3 . v3' = (y1 - y3)*(x - x3) + (-x1 + x3)*(y - y3)

• Check if p lies in T if and only if

– 0 <= dot1 and 0 <= dot2 and 0 <= dot3

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

Dot Product Sample Code

function side(x1, y1, x2, y2, x, y:Number):Number
{
 return (y2 - y1)*(x - x1) + (-x2 + x1)*(y - y1);
}

 function pointInTriangle(x1, y1, x2, y2, x3, y3, x, y:

Number): Boolean
{

 var checkSide1:Boolean = side(x1, y1, x2, y2, x, y) >= 0;
 var checkSide2:Boolean = side(x2, y2, x3, y3, x, y) >= 0;
 var checkSide3:Boolean = side(x3, y3, x1, y1, x, y) >= 0;
 return checkSide1 && checkSide2 && checkSide3;

} http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html

Cross Product Solution

• Calculate:
– c1 = p1 x p

– c2 = p2 x p

– c3 = p3 x p

• P is inside triangle if:
– Clockwise order if

• c1> 0 && c2> 0 && c3 > 0

– Counterclockwise if
• c1< 0 && c2< 0 && c3 < 0

– No information if
• (c1> 0 && c2> 0 && c3 > 0) || (c1< 0 && c2< 0 && c3 < 0)

http://www.sunshine2k.de/coding/java/PointInTriangle/PointInTriangle.html

Conic Sections

• A conic section is a
curve obtained as
the intersection of a
cone (more precisely,
a right circular
conical surface) with
a plane

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://www.sunshine2k.de/coding/java/PointInTriangle/PointInTriangle.html

2/28/2020

19

Circle

• The circumference of a circle
means the length of the circle

• The interior of the circle is called
a disk

• An arc is any continuous portion
of a circle

• A diameter is a straight line
through the center and
terminating in both directions on
the circumference

Equation of a Circle

• In an x-y coordinate system, the circle with
centre (a, b) and radius r is the set of all points
(x, y) such that:

• The equation of the circle follows from the
Pythagorean theorem applied to any point on
the circle

Circle at Origin

• If the circle is centred at the origin (0, 0), then
the above formula can be simplified:

• and its tangent will be:

• where x1, y1 are the coordinates of the
common point

Tangent and Secant Lines

• A line is tangent to a curve, at
some point, if both line and
curve pass through the point
with the same direction
– This is called the tangent line
– Tangent line is the best straight-

line approximation to the curve at
that point

• The slope of a tangent line can
be approximated by a secant line
– It is a mistake to think of tangents

as lines which intersect a curve at
only one single point

Circle Parametric Equations

• When expressed in parametric equations (x, y)
can be written using the trigonometric functions
sine and cosine as:

 x = a + r cost

 y = b + r sint

• where t is a parametric variable

– Understood as the angle the ray to (x, y) makes with
the x-axis

Definition of π

• π symbolizes the ratio
– The relationship with respect to relative

size of the circumference of circle to its
diameter, whatever that relationship
might be

– So when we say that π ≈ 3.14, we mean
that the circumference of circle is a little
more than three times longer than the
diameter:

 C / D = π ≈ 3.14

– π indicates the ratio of a curved line to a

straight

2/28/2020

20

Circumference of a Circle

• Since: C / D = π
• Can use that as a formula for calculating the

circumference of a circle:

 C = πD

• Or, since D = 2r

 C = π· 2r = 2πr

Calculation of Area Enclosed

• The area enclosed by a circle
is the radius squared,
multiplied by π

Calculation of Area Enclosed .

• Using a square with side lengths equal to the
diameter of the circle, then dividing the square
into four squares with side lengths equal to the
radius of the circle, take the area of the smaller
square and multiply by π

– approximately 79% of the circumscribing square

Unit Circle

• A unit circle is a circle with a unit
radius
– This is a circle whose radius is 1

• Often, the unit circle is the circle of
radius 1 centered at the origin (0, 0) in
the Cartesian coordinate system in the
Euclidean plane
– If (x, y) is a point on the unit circle in the

first quadrant, then x and y are the
lengths of the legs of a right triangle
whose hypotenuse has length 1, then:

 x2 + y2 = 1

Circle Properties

• The circle is the shape with the highest area for a
given length of perimeter

• The circle is a highly symmetric shape
– Every line through the centre forms a line of reflection

symmetry and it has rotational symmetry around the
centre for every angle

• All circles are similar:
– A circle's circumference and radius are proportional

– The area enclosed and the square of its radius are
proportional

– The constants of proportionality are 2π and π,
respectively

Calculate x, y of Segment

d = 2sqrt(r2-x2)
x

z

2/28/2020

21

Calculate x, y of Segment .

 d = 2sqrt(r2-x2) → z = sqrt(r2 - x2) →
 z = sqrt(r2 - r2/(1 + tanθ2) →
 z = r sqrt(1 - 1 / (1 + tanθ2)

 z = sqrt(r2-x2) → z2 = r2-x2

But tanθ = z/x, so:

 x2tanθ2 = r2-x2 → x2(1+ tanθ2) = r2 →
 x = r/sqrt(1 + tanθ2)

Ground Implementation in C++

• TGround Class

– Variables

• Define 37 points in the surface of the ground

• Define the normal of the ground

– Functions

• Ground Constructor

• Draw Ground

TGround Class

class TGround
{
 public:
 TVector _points[37]; // points in the surface of the

ground
 TVector _normal; // normal of the ground

 public:
 // Default constructor
 TGround();

 // Function that draws the ground
 void DrawGround();
};

Constructor
for(i=0; i<=36; i++)
{
 // Transform degrees in rads
 rad_angle=(pi*angle)/180.0;

 // Calculate the x and z co-ordinates of a circle ground
 x = radius/(sqrt(1.0 + tan(rad_angle)*tan(rad_angle)));
 z = radius*(sqrt(1.0 - (1.0/(1.0 + tan(rad_angle)*tan(rad_angle)))));
 angle+= 10;

 // Check the co-ordinates in all the quadrants of the circle ground
 if ((i>=0) && (i<10)) // First quadrant
 {
 if (i==9) { _points[i] = TVector(0.0, 0.0, 1.0); }
 _points[i] = TVector(x, y, z);
 }
 if ((i>=10) && (i<19)) // Second quadrant
 {
 _points[i] = TVector(-x, y, z);
 }
 if ((i>=19) && (i<28)) // Third quadrant
 {
 if (i==27) { _points[i] = TVector(0.0, 0.0, -1.0); }
 _points[i] = TVector(-x, y, -z);
 }
 if ((i>=27) && (i<=36)) // Fourth quadrant
 {
 _points[i] = TVector(x, y, -z);
 }
}

// Construct the vector for the normal of the ground
_normal = TVector(0.0, 1.0, 0.0);

Draw Ground Function

void TGround::DrawGround()
{
 int i=0.0;

 glPushMatrix();
 glPushAttrib(GL_ENABLE_BIT);
 glCallList(50);

 glBegin(GL_POLYGON);
 for(i=0; i<=36; i++)
 {
 glNormal3f(0.0, 1.0, 0.0);
 glVertex3f(_points[i].X(), _points[i].Y(), _points[i].Z());
 }
 glEnd();

 glPopAttrib();
 glPopMatrix();
}

Ellipse

• An ellipse is a curve on a
plane surrounding two focal
points such that the sum of
the distances to the two focal
points is constant for every
point on the curve

• You can think of an ellipse as
an oval

2/28/2020

22

Parabola

• The standard form of a parabola's equation is
generally expressed:

– y = ax2 + bx + c

• The role of 'a‘

– If a> 0, the parabola opens upwards

– If a< 0, it opens downwards

• The axis of symmetry

– The axis of symmetry is the line x = -b/2a

http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php

Vertex Form of Parabola

• The vertex form of a parabola's
equation is generally expressed as:
– y = a(x-h)2+k where (h,k) is the vertex

• If a is + then the parabola opens
upwards like a regular "U"

• If a is - then the graph opens
downwards like an upside down "U"

• If |a| < 1, the graph of the parabola
widens

• If |a| > 1, the graph of the graph
becomes narrower
– The effect is the opposite of |a| < 1

http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php

Hyperbola

• The equation of the hyperbola
can be written as:

• If c is the distance from the
center to either focus, then:

 a2+b2 = c2

Parametric surfaces

• A torus with major radius R
and minor radius r may be
defined parametrically as

 x = cos(t)(R + r cos(u))

 y = sin(t)(R + r cos(u))

 z = r sin(u)

• where the two parameters t
and u both vary between 0
and 2π

Equation of a Sphere

• Pythagoras theorem generalises to 3D giving:

– a2 + b2 + c2 = d2

• Based on that we can easily prove that the

general equation of a sphere is:

– (x- xc)
2 + (y- yc)

2 + (z- zc)
2 = r2

• and at origin:

– x2 + y2 + z2 = r2

Ray-Sphere Intersection

Ray: P = P0 + tV

Sphere: (x - cx)
2 + (y - cy)

2 + (z - cz)
2 = r 2 or |P - C|2 - r 2 = 0

Substituting for P, we get: |P0 + tV - C|2 - r 2 = 0

Solve quadratic equation: at2 + bt + c = 0

where:

 a = |V|2 = 1

 b = 2 V • (P0 - C)

 c = |P0 - C|2 - r 2

 P = P0 + tV P0

V

C

P

r

P’

http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php
http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php

2/28/2020

23

Advanced Methods of Rotation

• Different advanced methods exist including:

– Euler angles

– Quaternions

Euler Angles

• In many fields Euler
angles are used to
represent rotations

• Any rotation can be
broken down into a
series of three rotations
about the major axes

Euler Angles .

• We can simulate any arbitrary rotation with
one rotation about the x-axis, one about the
y-axis, and then one about the z-axis

– i.e. consider an airplane pointing along the x-axis
with the z-axis pointing up

Roll, Pitch, Yaw

• Can represent any pose
as a vector (roll, pitch,
yaw)
– The "roll" about the x-axis

along the plane

– The "pitch" about the y-
axis which extends along
the wings of the plane

– The "yaw" or "heading"
about the z-axis

Disadvantages

• No universal standard for Euler rotations

– Different fields use different sequences

• i.e. some use z-y-z as opposed to the x-y-z system

• Although any rotation can be represented by
either a set of Euler angles or a matrix

– Computing the required angles is expensive and
can introduce errors

• Interpolation does not work well!

Standard Rotations

2/28/2020

24

Angles to Axis

• Can combine the separate axis rotations into
one matrix by multiplying standard rotational
matrices together

– Multiplication of matrices is not commutative

• Different order of matrix multiplication results in a
different outcome

• 6 different combinations are possible;

– RxRyRz, RxRzRy, RyRxRz, RyRzRx, RzRxRy and RzRyRx

RxRyRz & RxRzRy Rotations

RyRxRz & RyRzRx Rotations RzRxRy & RzRyRx Rotations

Code Example

void anglesToAxes(const Vector3 angles, Vector3& left, Vector3& up, Vector3& forward)
{
 const float DEG2RAD = 3.141593f / 180;
 float sx, sy, sz, cx, cy, cz, theta;

 // rotation angle about X-axis (pitch)
 theta = angles.x * DEG2RAD;
 sx = sinf(theta);
 cx = cosf(theta);

 // rotation angle about Y-axis (yaw)
 theta = angles.y * DEG2RAD;
 sy = sinf(theta);
 cy = cosf(theta);

 // rotation angle about Z-axis (roll)
 theta = angles.z * DEG2RAD;
 sz = sinf(theta);
 cz = cosf(theta);
}

Code Example .

left.x = cy*cz;
left.y = sx*sy*cz + cx*sz; determine left axis
left.z = -cx*sy*cz + sx*sz;

up.x = -cy*sz;
up.y = -sx*sy*sz + cx*cz; determine up axis
up.z = cx*sy*sz + sx*cz;

forward.x = sy;
forward.y = -sx*cy; determine forward axis
forward.z = cx*cy;

2/28/2020

25

Rotation About Arbitrary Axis

• In addition to the set of three Euler angles and
the rotation matrix, a rotation can also be
represented by a vector specifying the
rotation axis and the angle of rotation around
this axis

• The problem of rotation about an arbitrary
axis in three dimensions arises in many fields
including computer graphics and computer
games

3x3 Matrix Representing Axis

• We can express the 3×3 rotation matrix in
terms of a 3×3 matrix representing the axis:

– [R] = [I] + s*[~axis] + t*[~axis]2

• or equivalently:

– [R] = c*[I] + s*[~axis] + t*([~axis]2 + [I])

Matrix Expansion

 t*x*x + c t*x*y - z*s t*x*z + y*s

[R] = t*x*y + z*s t*y*y + c t*y*z - x*s

 t*x*z - y*s t*y*z + x*s t*z*z + c

• where:
– c = cos(angle)

– s = sin(angle)

– t = 1 - c

– x = normalised axis x coordinate

– y = normalised axis y coordinate

– z = normalised axis z coordinate

Code Example

public void matrixFromAxisAngle(AxisAngle4d a1)
{
 double c = Math.cos(a1.angle);
 double s = Math.sin(a1.angle);
 double t = 1.0 - c;

 m00 = c + a1.x*a1.x*t;
 m11 = c + a1.y*a1.y*t;
 m22 = c + a1.z*a1.z*t;

 double tmp1 = a1.x*a1.y*t;
 double tmp2 = a1.z*s;

 m10 = tmp1 + tmp2;
 m01 = tmp1 - tmp2;
 tmp1 = a1.x*a1.z*t;
 tmp2 = a1.y*s;
 m20 = tmp1 - tmp2;
 m02 = tmp1 + tmp2; tmp1 = a1.y*a1.z*t;
 tmp2 = a1.x*s;
 m21 = tmp1 + tmp2;
 m12 = tmp1 - tmp2;
}

Quaternions

• Complex numbers were discovered in 1800’s
and had the characteristic property to be
defined in terms of i, where i is the square root
of –1

• In 1843, sir William Rowan Hamilton discovered
a number called the quaternion, which has a
very similar form to complex numbers

Quaternion Definition

• A quaternion is based on three different
numbers that are all square roots of –1 and
are labeled i, j and k, where:

2/28/2020

26

Quaternion Properties Quaternion Rotations

Quaternion Representation

• Defined like complex numbers but with 4
coordinates
– q[w, (x, y, z)] also written q[w, v] where v = (x, y, z)

– q = w + xi + yj + zk
• Here, w is real part, and (x,y,z) are imaginary parts

• Think of w as angle in an angle-axis representation

• Think of (x, y, z) as axis in an axis-angle representation

• Based on three different roots of -1:
– i2 = j2 = k2 = -1

Quaternion Representation .

• For a right-hand rotation of q radians about
unit vector v, quaternion is:

 q = (cos(q/2); v sin(q/2))

– Note how the 3 imaginary coordinates
are noted as a vector

– Only unit quaternions represent rotations

• Such a quaternion describes a point on the 4D unit
hyper-sphere

– Important note: q and –q represent the exact same
orientation

Quaternion Toolbox

• Addition
– q1 + q2 = [w1 + w2, v1 + v2]

• Multiplication
– q1q2 = [w1w2 – v1.v2, v1 x v2 + w1v2 + w2v1] (note: q1q2 != q2q1)

• Magnitude
– | q | = sqrt(w2 + x2 + y2 + z2)

• Normalisation
– N(q) = q / | q |

• Conjugate
– q* = [w , -v]

• Inverse
– q-1 = q* / | q | 2

• Unit quternion
– q is unit if | q | = 1 and q-1 = q*

• Identity
– qIdentity = [1,(0,0,0)] for multiplication, qIdentity = [0,(0,0,0)] for addition

Transforming a Point or Vector

• To transform a vector P by the rotation
specified by the quaternion q, there are two
options:

– Multiply conj(q) by (0, Px, Py, Pz)

• See next slide

– Convert q to matrix and use matrix transformation

2/28/2020

27

First Method

• Rotate vector P angle q around unit axis R:
– Form the quaternion representing the vector P

• q1 = (0,Px,Py,Pz)

– Form the rotation quaternion from the axis R and
angle q
• q2 = (cos(q /2),Rx sin(q /2),Ry sin(q /2),Rz sin(q /2))

– The rotated vector is given by v entry of the
quaternion:
• q3 = q2 q1 q2*

– q2 must be of unit magnitude for this to work properly

Quaternion and Axis-Angle

• From axis-angle to quaternion:

– q = (cos(q/2); v sin(q/2))

– where:

• v is the axis

• q is the angle

• From quaternion to axis-angle:

– Axis v = (x, y, z) / sqrt(x2 + y2 + z2)

– Angle q = acos(w) * 2

Quaternion to Matrix

• From quaternion to a 3x3 rotation matrix:

Euler Angles to Quaternion

• From Euler angles (pitch, yaw, roll)

– Create three quaternions

– One for each of pitch, roll, yaw

– Then multiply them together

• Here, P = pitch/2, Y = yaw/2, R = roll/2
– w = cos(R)*cos(P)*cos(Y) + sin(R)*sin(P)*sin(Y)

– x = sin(R)*cos(P)*cos(Y) – cos(R)*sin(P)*sin(Y)

– y = cos(R)*sin(P)*cos(Y) + sin(R)*cos(P)*sin(Y)

– z = cos(R)*cos(P)*sin(Y) – sin(R)*sin(P)*cos(Y)

Quaternion Code Example

• Three functions:

– Convert an axis and angle rotation to a quaternion

– Convert a quaternion to a rotation matrix

– Rotate the quaternion

Convert an axis and angle rotation to a
quaternion

void Tquaternion::CreateFromAxisAngle(float X,
float Y, float Z, float degree)

{
 float angle = float((degree / 180.0f) * PI);
 float result = (float)sin(angle / 2.0f);
 w = (float)cos(angle / 2.0f);
 x = float(X * result);
 y = float(Y * result);
 z = float(Z * result);
}

2/28/2020

28

Convert a quaternion to a rotation
matrix

void Tquaternion::CreateMatrix(float *pMatrix)
{
 pMatrix[0] = 1.0f - 2.0f * (y * y + z * z);
 pMatrix[1] = 2.0f * (x * y + z * w);
 pMatrix[2] = 2.0f * (x * z - y * w);
 pMatrix[3] = 0.0f;
 pMatrix[4] = 2.0f * (x * y - z * w);
 pMatrix[5] = 1.0f - 2.0f * (x * x + z * z);
 pMatrix[6] = 2.0f * (z * y + x * w);
 pMatrix[7] = 0.0f;
 pMatrix[8] = 2.0f * (x * z + y * w);
 pMatrix[9] = 2.0f * (y * z - x * w);
 pMatrix[10] = 1.0f - 2.0f * (x * x + y * y);
 pMatrix[11] = 0.0f;
 pMatrix[12] = 0;
 pMatrix[13] = 0;
 pMatrix[14] = 0;
 pMatrix[15] = 1.0f;
}

Rotate the Quaternion

void Tquaternion::quaternionRotation(double x, double y, double z)
{
 float matrixX[16], matrixY[16], matrixZ[16];
 static float rotation = 0;

 Tquaternion qRotationX;
 Tquaternion qRotationY;
 Tquaternion qRotationZ;
 qRotationX.CreateFromAxisAngle(1, 0, 0, x);
 qRotationY.CreateFromAxisAngle(0, 1, 0, y);
 qRotationZ.CreateFromAxisAngle(0, 0, 1, z);

 qRotationX.CreateMatrix(matrixX);
 qRotationY.CreateMatrix(matrixY);
 qRotationZ.CreateMatrix(matrixZ);

 glMultMatrixf(matrixX);
 glMultMatrixf(matrixY);
 glMultMatrixf(matrixZ);
}

Quaternion Interpolation

• One of the most important reasons for using
quaternions is that they are very good at
representing rotations in space

• Quaternions overcome the issues that plague
other methods of rotating points in 3D space
such as Gimbal lock

– An issue when you represent your rotation with
Euler angles

Quaternion Interpolation Methods

• Using quaternions can define several methods
that represents a rotational interpolation in
3D space:

– SLERP

• Used to smoothly interpolate a point between two
orientations

– SQAD (extension of SLERP)

• Used to interpolate through a sequence of orientations
that define a path

Examples SLERP

• SLERP provides a method to smoothly
interpolate a point about two orientations
– SLERP stands for Spherical Linear Interpolation

• Represent the first orientation as q1 and the
second orientation as q2

• The point that is interpolated will be
represented by P and the interpolated point will
be represented by P’

• The interpolation parameter t will interpolate P
from q1 when t=0 to q2 when t=1

2/28/2020

29

SLERP Interpolation

• The standard linear interpolation formula is:

 p’ = p1 + t(p2 – p1)

• The general steps to apply this equation are:

– Compute the difference between p1 and p2

– Take the fractional part of that difference

– Adjust the original value by the fractional difference
between the two points

• Can use the same principle to interpolate
between two quaternion orientations

SQAD

• SQUAD (Spherical and Quadrangle) can be
used to smoothly interpolate over a path of
rotations

– Just as a SLERP can be used to compute an
interpolation between two quaternions

• If we have the sequence of quaternions:

SQAD Representation

• And we also define the “helper” quaternion
(si) which we can consider an intermediate
control point:

SQAD Orientation

• Then the orientation along the sub-curve
defined by:

• at time t is given by:

Quaternion Advantages

• Quaternion interpolation using SLERP and SQUAD
provide a way to interpolate smoothly between
orientations in space

• Rotation concatenation using quaternions is faster
than combining rotations expressed in matrix form

• Converting quaternions to matrices is slightly faster
than for Euler angles

• Quaternions only require 4 numbers
– 3 if they are normalized
– The Real part can be computed at run-time

• To represent a rotation where a matrix requires at least 9
values

Quaternion Disadvantages

• Very hard to understand

• Can become invalid because of floating-point
round-off error

– This can be resolved by re-normalizing the
quaternion

2/28/2020

30

References

• http://www.songho.ca/opengl/gl_anglestoaxes.html
• http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/
• http://www.euclideanspace.com/maths/geometry/rotations/conversi

ons/angleToMatrix/
• http://en.wikipedia.org/wiki/Euler_angles
• http://en.wikipedia.org/wiki/Line_(mathematics)
• http://en.wikipedia.org/wiki/Plane_(mathematics)
• http://inst.eecs.berkeley.edu/~cs283/sp13/lectures/283-lecture18.pdf
• http://www.gamedev.net/page/resources/_/technical/math-and-

physics/quaternion-powers-r1095
• http://www.gamasutra.com/view/feature/3278/
• http://3dgep.com/?p=1815

Programming Links

• http://pages.cs.wisc.edu/~cs368-
2/CppTutorial/NOTES/CLASSES-INTRO.html

• http://www.quantstart.com/articles/Matrix-Classes-in-C-
The-Header-File

• http://www.programiz.com/article/c%2B%2B-
programming-pattern

• http://stackoverflow.com/questions/564877/point-and-
line-class-in-c

• http://www.seasite.niu.edu/CS240/Old_CPP_Notes/lines
_class_cpp_program.htm

• http://www.linuxfocus.org/English/March1998/article28.
html

• http://www.cs.stanford.edu/~acoates/quaternion.h

Questions

http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/
http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/
http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/
http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://en.wikipedia.org/wiki/Line_(mathematics)s
http://en.wikipedia.org/wiki/Plane_(mathematics)
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://3dgep.com/?p=1815
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://stackoverflow.com/questions/564877/point-and-line-class-in-c
http://www.seasite.niu.edu/CS240/Old_CPP_Notes/lines_class_cpp_program.htm
http://www.seasite.niu.edu/CS240/Old_CPP_Notes/lines_class_cpp_program.htm
http://www.linuxfocus.org/English/March1998/article28.html
http://www.linuxfocus.org/English/March1998/article28.html
http://www.cs.stanford.edu/~acoates/quaternion.h

