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Basis and Coordinate Systems 

• In any scene, we need a way to be able to 
position and orientate points, vectors, objects, 
etc:  

– We do this be defining a basis 

• The basis is defined by an origin and a number of 
basis vectors 

– Can think of the basis as a ‘starting point’ 

• We employ a Cartesian basis 

Basis and Coordinate Systems . 

• The basis vectors are mutually orthogonal and 
unit length 

– Unit length:  

• Have a length of 1 

– Mutually Orthogonal:  

• Each vector is at a right angle to the others 

• Basis vectors for 3 dimensions 

– Use ‘x’ and ‘y’ for 2 dimensions 

– Position in Cartesian coordinates specified by (x, y, z) 

Left-handed vs. Right-Handed 

Y

X

Z

X

Y

Z

 left handed   right handed 
Z axis goes "into" the page  Z axis goes "out" of the page 

OpenGL is right handed in  
object space and world space 
 
But in window space (screen 
space) left handed 
 

Local Coordinate System 

• Preferred system for 
construction of object parts 

• 3D Cartesian system 

• Object vertices centered 
about the local origin 

Y 

X 

Z 

3D World Coordinate System 

• 3D Cartesian coordinate 
system 

• Arbitrary centre, 
handedness and 
orientation  

• Used in the construction 
stage 
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Camera Coordinate System  

• Used to define the view onto the 3D world 
that the user will see on the screen 

• Centre (0,0,0) is located at the Imaginary 
User’s eye 

• Axes oriented such that:  

– One indicates the direction in which the user looks 

– The second indicates roughly the ‘up’ direction  

– The third indicates the handedness 

Example of Camera Coordinate System 

Y 

X 

Z 

U 

V 

N 

DIRECTION 
VECTOR 

{ 0, 0, 0} 

UP 
VECTOR OpenGL: see gluLookAt 

https://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml  

3D Camera Viewing 

• Note that the following scenes should produce the 
same image 
 
 
 
 
 

• In ‘Scene 2’, relative position of objects and camera 
remain constant but the actually scene has been 
changed  
– It has been transformed 

 

SCENE 2 SCENE 1 

Notation: Scalars, Vectors, Matrices 

• Scalar 

– Lower case, italic 

• Vector 

– Lower case, bold 

• Matrix 

– Upper case, bold 
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Vectors 

• A quantity characterized by a magnitude and 
direction 
– Can be represented by an arrow, where magnitude 

is the length of the arrow and the direction is given 
by slope of the line 
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A vector in 3D 

Vectors in 3D Co-ordinates 
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https://www.opengl.org/sdk/docs/man2/xhtml/gluLookAt.xml


2/28/2020 

3 

Vector Subtraction 
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Can be seen as an addition of  

u + (-1v) 
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Vector Magnitude 

• The magnitude or “norm” of a vector of 
dimension n is given by the standard 
Euclidean distance metric: 

222

21 n
vvv  v

Vectors for Direction 

• Vectors represent 

– Direction  

– Magnitude 

• In games can be used for representing: 

– Position 

– Velocity 

– Forces / impulses 

 

Example Vectors for Direction 

• Describing velocity (direction and speed) of 
roller coaster and ball at different points in 
time 

Other Vectors 

DRAG 

THRUST 

LIFT 

GRAVITY 

Vertices and Points 

• Vectors can however 
communicate a position 

• Referred to as a point 
or vertex 

• A vertex is actually 
represented by its 
displacement from the 
origin { 0, 0, 0 } 
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both vectors equal 

With the origin O, we can use this to 
represent a unique position in space 
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Unit Vectors 

• Vectors of length 1 are often termed unit 
vectors  

– Normalised vectors 

• When we only wish to describe direction we use 
normalised vectors 

– Often to avoid redundancy 

• For this (and other reasons), we often need to 
normalise a vector: 

v
v

v
v
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Dot Product Definition 

• Dot product (inner product) is defined as: 
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Dot Product Magnitude 

• Therefore we can redefine magnitude in terms 
of the dot-product operator: 

 

 

• Note that the dot product operator is 
commutative and associative 

– Changing the order of the operands does not change 
the result 

– (x * y) * z = x * (y * z) 
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Dot Product Using Angle 

• The Dot Product can also be 
obtained from the following 
equation: 

                         

      

• where q is the angle 
between the two vectors 

u 

q qcosvuvu 

Angle Between Two Vectors 

• So, if we know the vectors u and v, then the dot 
product is useful for finding the angle between 
two vectors: 

 

 

• Note that if we had already normalised the 
vectors u and v then it would simply be: 
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 vu ˆˆcos 1  q

Dot Product Special Case 

• If both vectors are normal, the dot product 
defines the cosine of the angle between the 
vectors: 
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But in general: 

if q > 90 then the dot product is negative 
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Projection Using Dot Product 

• Can find length of projection of u onto v 

 

 

 

 

• As lines become perpendicular: 

 

qcosvuvu  u

v
q

qcosuv
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Cross Product 

• Used for defining orientation and constructing 
co-ordinate axes 

• Cross product defined as: 

 

 

 

• The result is a vector, perpendicular to the 
plane defined by u and v: 
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Cross Product Examples 

Right Handed Coordinate System 

Cross Product Properties 

• Cross product is anti-commutative: 

 

• It is not associative: 

 

• Direction of resulting vector defined by operand 
order: 

 

 uvvu 

    wvuwvu 

Vector Class 

class TVector { 
 public: 
  double _x, _y, _z; 
 
  // Constructors 
  TVector(double x, double y, double z, TStatus s) : _x(x),  _y(y), 

 _z(z), _Status(s) {} 
  TVector(double x, double y, double z) : _x(x), _y(y),  _z(z), 

 _Status(DEFAULT) {} 
 
  // Functions here 
 
}; 
#endif 

Vector Subtraction Example 

TVector &TVector::subtract(const TVector &v1, const TVector 
&v2, TVector &result)  

{ 
 if (v1.isValid() && v2.isValid())  
 { 
  result._x = v1._x - v2._x; 
  result._y = v1._y - v2._y; 
  result._z = v1._z - v2._z; 
  result._Status = DEFAULT; 
 } else 
  result = TVector(); 
 return result; 
} 
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What is a Matrix? 

• A matrix is a set of elements, organized into 
rows (m) and columns (n) 
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321

2232221

1131211

Columns,  

j = 1, …, n 

Rows,  

i = 1, …, m 

Why Use Matrices? 

• Variety of engineering problems lead to the 
need to solve systems of linear equations 
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matrix column vectors 

Row and Column Matrices (vectors) 

• Row matrix (or row vector) is a matrix with 
one row 

 

• Column vector is a matrix with only one 
column 
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Square Matrix 

• When the row and column dimensions of a 
matrix are equal (m = n) then the matrix is 
called square 
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Matrix Transpose 

• The transpose of the (m x n) matrix A is the (n x 
m) matrix formed by interchanging the rows 
and columns such that row i becomes column i 
of the transposed matrix 
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Matrix Equality 

• Two (m x n) matrices A and B are equal if and 
only if each of their elements are equal 

• That is when: 

– A = B  

• If and only if: 

– aij = bij   

– For i = 1,...,m & j = 1,...,n 
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Matrix Addition General Format 
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Scalar Matrix Multiplication 

• Multiplication of a matrix A by a scalar  is 
defined as: 
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Matrix Multiplication with Matrix 
General Format 
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Diagonal Matrices 

• Simple diagonal Matrix 
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Identity Matrix 

• The identity matrix has the property that if A 
is a square matrix, then: 
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Matrix Inverse 

• If A is an (n x n) square matrix and there is a 
matrix X with the property that: 

 

 

• X is defined to be the inverse of A and is 
denoted A-1  
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IAA   1  IAA    1 
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Matrix Class 

class TMatrix33 
{ 
  public: 
  double _Mx[3][3]; 
 
  // Constructors 
  TMatrix33(); 
  TMatrix33(double Phi, double Theta, double Psi); 
  TMatrix33(TVector& Axis,double Psi); 
   
  // Functions here 
}; 
#endif 

Matrix Addition 

TMatrix33 &TMatrix33::add(const TMatrix33 &m1, const 
TMatrix33 &m2, TMatrix33 &result) { 
 result._Mx[0][0] = m1._Mx[0][0] + m2._Mx[0][0]; 
 result._Mx[0][1] = m1._Mx[0][1] + m2._Mx[0][1]; 
 result._Mx[0][2] = m1._Mx[0][2] + m2._Mx[0][2]; 
 result._Mx[1][0] = m1._Mx[1][0] + m2._Mx[1][0]; 
 result._Mx[1][1] = m1._Mx[1][1] + m2._Mx[1][1]; 
 result._Mx[1][2] = m1._Mx[1][2] + m2._Mx[1][2]; 
 result._Mx[2][0] = m1._Mx[2][0] + m2._Mx[2][0]; 
 result._Mx[2][1] = m1._Mx[2][1] + m2._Mx[2][1]; 
 result._Mx[2][2] = m1._Mx[2][2] + m2._Mx[2][2]; 
 return result; 

} 

Transformations 

• Allow us to move, orientate and change the 
primitives in our scene 
– Move, Rotate, Stretch, Squash, Shear 

• Represented as matrices, such as: 
– We can store a translation and a rotation in a matrix 

– When we apply this matrix to an object, it will be 
translated and rotated as specified by the matrix 

• Two ways of understanding a transformation: 
– Object Transformation 

– Coordinate Transformation 

 

Object vs Coordinate Transformations 

• Object Transformation  

– Alters the coordinates of each point according to 
some rule  

– The underlying coordinate system remains 
unchanged 

• Coordinate Transformation  

– Produces a different coordinate system  

– Then represents all original points in this new 
system 

 

Examples 

{1,1} 

{.4, 2} 

{1,1} 

{1,1} 

Object  
Transformation  
 

Coordinate 
Transformation  
 

Affine Transformations Definition 

• An affine transformation is any transformation 
that preserves:  

– Collinearity  

• i.e. All points lying on a line initially still lie on a line after 
transformation 

– Ratios of distances  

• i.e. The midpoint of a line segment remains the midpoint 
after transformation 
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Elementary Transformations 

Translation 

Scaling 

Rotation 

Shearing 

Homogeneous Coordinates 

• Introduced in mathematics: 

– For projections and drawings 

– Used in artillery, architecture 

– Used to be classified material (in the 1850s) 

• Add a third coordinate, w 

• A 2D point is a 3 coordinates vector: 
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Homogeneous Coordinates . 

• Two points are equal if and only if: 

– x’/w’ = x/w   and   y’/w’= y/w 

• w=0: points at infinity  

– Useful for projections and curve drawing 

• Homogenize = divide by w 

• Homogenized points: 
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

cosqx  sinqy

sinqx  cosqy

w

 x 
 w 

 y 

 w 





cosq x
w  sinq y

w

sinq x
w  cosq y

w

 
 
 
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Composition of Transformations 

• To compose transformations, multiply the 
matrices: 

–Composition of a rotation and a translation: 
   M = RT 

• All transformations can be expressed as 
matrices 

– Even transformations that are not 
translations, rotations and scaling 

 

Rotation Around a Point Q 

• Rotation about a point Q: 

– translate Q to origin (TQ), 

– rotate about origin (RQ) 

– translate back to Q (- TQ). 

 

P’=(-TQ)RQTQ P 

Beware! 

• Matrix multiplication is not commutative 

• The order of the transformations is vital 

– Rotation followed by translation is very different 
from translation followed by rotation 

– Careful with the order of the matrices! 

• Small commutativity: 

– Rotation commute with rotation, translation with 
translation… 

 

Matrices in OpenGL 

• To initialise a matrix in OpenGL: 

– glLoadIdentity() 

– This clears the currently selected 
OpenGL matrix to the identity 
matrix 

• To select a matrix as the current 
matrix: 

– glMatrixMode(mode) 

• GL_MODELVIEW, GL_PROJECTION, 
GL_TEXTURE 

 

How do we do this ? 

• OpenGL does most of it for us ! 

– OpenGL keeps a current matrix that allows us to 
orientate our primitives 

• This is known as the model-view matrix 

– All primitives placed are altered by the 
transformation stored in the model-view matrix 

– Model-view matrix acts as a state parameter; once 
set it remains until altered 

• Use calls such as glTranslate() to modify the current 
model-view matrix 

Translation 

• Think of translations as ‘moving’ without rotating 

• Translation only applies to points 
– Doesn’t apply to vectors, since vectors are just directions 

 

 

 

 

 

 

• The translation displacement is written in the 12th, 13th, and 14th 
positions of our OpenGL matrix 

• These correspond to the displacements in the x, y and z 
directions 
– So 12th position is the translation in the x direction 

Translate along y axis 
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The Translation Matrix 

• Example: Translate the point 
(x,y,z) by a displacement (a,b,c): 
– Gives us our translated point (x+a, 

y+b, z+c) 

• glTranslate(dx, dy, dz) 
– Translates by a displacement (dx, 

dy, dz) 
– Calling glTranslate() concatenates 

the specified translation to the 
current model-view matrix 

– Any primitives drawn after this will 
be modified by the specified 
translation 

Rotation 

• Change the orientation of a primitive, without 
affecting its position 

• Rotation applies to both points and vectors 

– Rotating a vector will change its direction 

• Rotations are conducted anti-clockwise about 
the origin 

rotation of 45o about the Z axis 

Rotation 

• Remember: 
Sin a = Opp / Hyp 

Cos a = Adj / Hyp 

Tan a = Opp / Adj 

Rotation 

• Derivation: 
• Expanding (a + b) from log tables: 

  
– Rotated x = r cos a cos b – r sin a sin b 
– Rotated y = r cos a sin b + r sin a cos b 

• But: 
– Original x = r cos a 
– Original y = r sin a 

• So: 
– Rotated x = original x cos b – original y sin b 
– Rotated y = original x sin b + original y cos b 

• Elements 0, 1, 2, 4, 5, 6, 8, 9, 10 define any 
rotations in our transformation matrix 

The Rotation Matrix 

• Rotations around the: x-axis (Rx), y-axis (Ry) and z-axis 
(Rz) 
 
 
 

 

• glRotatef(angle, vx, vy, vz) 
– Rotates around the axis (vx, vy, vz) by angle degrees 
– Calling glRotate() concatenates the specified rotate to the 

current model-view matrix 
– Any primitives drawn after this will be modified by the 

specified rotation 

Scaling 

• Allows us to make primitives larger and smaller, without 
changing the vertex positions of the original 
 
 
 
 
 

• Elements 1, 6, 11 define scales in our transformation matrix: 
• glScalef(sx, sy, sz) 

– Scale a scene by sx in the y axis, sy in the y axis and sz in the z axis 
– The default value for sx,sy,sz is (1.0,1.0,1.0), which doesn’t scale a 

scene at all 
– Any primitives drawn after this will be modified by the specified 

scaling 

 

Original scale all axes scale Y axis 
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OpenGL Perspective Projection 

• The call glFrustum(l, r, b, t, n, f) generates R, 
where: 

 

 

 

 

• R is defined as long as l x r, t x b, and n x f 

OpenGL Orthographic Projection 

• The call glOrtho(l, r, b, t, n, f ) generates R, 
where: 

 

 

 

 

• R is defined as long as l x r, t x b, and n x f 

 

2D and 3D Lines 

• In 2D, two different lines can either be  
– Parallel, meaning they never meet 

– May intersect at one and only one point 

• In 3D (or more dimensions), lines may also be 
skew (meaning they don't meet) but also don't 
define a plane 

• Two distinct planes intersect in at most one line 

• Three or more points that lie on the same line 
are called collinear 

2D Line Equation 

• Lines in a Cartesian plane can 
be described algebraically by  
– Linear equations and functions 

• In 2D the characteristic 
equation is often given by the 
slope-intercept form:  

  y = mx + b 
• where: 

– m is the slope of the line 
– b is the y-intercept of the line 
– x is the independent variable of 

the function y 

Slope Definition 

• Slope is often used to describe 
the measurement of the 
steepness, incline, gradient, or 
grade of a straight line 
– A higher slope value indicates a 

steeper incline 

• The slope is defined as the ratio 
of the altitude change to the 
horizontal distance between any 
two points on the line 
– Using calculus, one can calculate 

the slope of the tangent to a curve 
at a point 

Slope Calculation  

• Slope is defined as the change in the y 
coordinate divided by the corresponding 
change in the x coordinate, between two 
distinct points on the line 

 

 

• Given two points (x1, y1) and (x2, y2), the change 
in x from one to the other is x2 - x1, while the 
change in y is y2 - y1 
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Slope Special Cases 

• The larger the absolute value of a slope, the 
steeper the line 
– A horizontal line has slope 0  

• Note that a vertical line's slope is undefined 

– A 45° rising line has a slope of +1 

– A 45° falling line has a slope of -1 

• The angle θ a line makes with the positive x axis 
is closely related to the slope m via the tangent 
function: 

Slope Special Cases . 

• Two lines are parallel if and only if  

– Their slopes are equal and they are not coincident or 
if 

– They both are vertical and therefore have undefined 
slopes 

• Two lines are perpendicular if and only if  

– The product of their slopes is -1 or  

– One has a slope of 0 (a horizontal line) and the other 
has an undefined slope (a vertical line) 

Derivative 

• By moving the two points closer 
together Δy and Δx decreases 
– The line more closely 

approximates a tangent line to 
the curve  

– The slope of the secant 
approaches that of the tangent 

• If y is dependent on x, then it is 
sufficient to take the limit 
where only Δx approaches zero 

• Therefore, the slope of the 
tangent is the limit of Δy/Δx as 
Δx approaches zero 
 

Differentiation and the Derivative 

• Differentiation is a method to compute the rate 
at which a quantity, y, changes with respect to 
the change in another quantity, x, upon which it 
is dependent 

• This rate of change is called the derivative of y 
with respect to x 

• In more precise language, the dependency of y 
on x means that y is a function of x 

• If x and y are real numbers, and if the graph of y 
is plotted against x, the derivative measures the 
slope of this graph at each point 

 

Differentiation and the Derivative . 

• This functional relationship is often denoted y = 
f(x), where f denotes the function 

• The simplest case is when y is a linear function of x, 
meaning that the graph of y against x is a straight 
line 

• In this case, y = f(x) = m x + c, for real numbers m 
and c, and the slope m is given by 
 
 

• where the symbol Δ is an abbreviation for ‘change 
in’ 
 

Differentiation and the Derivative .. 

• It follows that Δy = m Δx 

– This gives an exact value for the slope of a straight line 

• If the function f is not linear, then the change in y 
divided by the change in x varies 

– Differentiation is a method to find an exact value for this rate 
of change at any given value of x  

• In Leibniz's notation, such an infinitesimal 
change in x is denoted by dx, and the derivative 
of y with respect to x is written: 
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3D Line Parametric Equations 

• In 3D a line is often described by parametric equations: 

   

  x = x0 + at 

  y = y0 + bt 

  z = z0 + ct  

 

• where: 
– x, y, and z are all functions of the independent variable t 

– x0, y0, and z0 are the initial values of each respective variable 

– a, b, and c are related to the slope of the line, such that the 
vector (a, b, c) is a parallel to the line 

Ray 

• In Euclidean geometry, a ray, or half-line, given 
two distinct points A (the origin) and B on the 
ray, is the set of points C on the line containing 
points A and B such that A is not strictly 
between C and B 

• In geometry, a ray starts at one point, then 
goes on forever in one direction 

 

Example Class Tray.h 

class TRay 
{ 
 private: 
  TVector _P; // Any point on the line 
  TVector _V; // Direction of the line 
 
 public: 
  // Constructor 
  TRay() {} 
 
  // Line betwen two points OR point and a direction 
  TRay(const TVector &point1, const TVector &point2); 
 
  // Adjacent points on both lines 
  bool adjacentPoints(const TRay &ray, TVector &point1, TVector &point2) const; 

 
  // Distances 
  double dist(const TRay &ray) const; 
  double dist(const TVector &point) const; 
 
   // More functions here 
}; 
#endif 
 

Plane Definition 

• A plane can be uniquely 
determined by any of the 
following (sets of) objects: 
– Three non-collinear points  

• i.e. not lying on the same line  

– A line and a point not on the 
line  

– Two lines with one point of 
intersection  

– Two parallel lines  

Plane Properties 

• Two planes are either parallel or they intersect in 
a line 

• A line is either parallel to a plane or intersects it 
at a single point or is contained in the plane 

• Two lines normal (perpendicular) to the same 
plane must be parallel to each other 

• Two planes normal to the same line must be 
parallel to each other 

Standard Plane Equation 

• The standard equation of a 
plane in 3 space is:  

 

  Ax + By + Cz + D = 0 

 

• The normal to the plane is 
the vector (A,B,C) 
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Plane Definition with a Point and a 
Normal Vector 

• In a 3D space, another important way of 
defining a plane is by specifying a point and a 
normal vector to the plane 

• Let p be the point we wish to lie in the plane, 
and let n be a nonzero normal vector to the 
plane 

• The desired plane is the set of all points r such 
that:  

 

Plane Definition with a Point and a 
Normal Vector . 

• If we write   

 

 

• and d as the dot product   

 

• then the plane Π is determined by the condition   

 

• where a, b, c and d are real numbers and a, b, 
and c are not all zero 

 

Define a Plane using three Points 

• The plane passing through three points p1=(x1, 
y1, z1), p2=(x2, y2, z2) and p3=(x3, y3, z3) can be 
defined as the set of all points (x, y, z) that 
satisfy the following determinant equations: 

 

Determinant  

• A determinant is a function depending on n 
that associates a scalar, det(A), to every n×n 
square matrix A 

• The determinant of a matrix A is also 
sometimes denoted by |A| 

 

Dihedral Angle 

• Given two intersecting planes described by   

 

and  

 

• the dihedral angle between them is defined to 
be the angle α between their normal directions 

 

Minimum Distance between  
a Point and a Line 

• Find the shortest 
distance from a point to 
a line or line segment 

• The equation of a line 
defined through two 
points P1 (x1, y1) and P2 
(x2, y2) is: 

 

  P = P1 + u (P2 - P1) 

P 
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Minimum Distance between  
a Point and a Line . 

• The point P3 (x3, y3) is closest to the line at the 
tangent to the line which passes through P3, 
that is, the dot product of the tangent and line 
is equal to zero, thus: 
 

  (P3 - P)●(P2 - P1) = 0  
 

• Substituting the equation of the line gives:  
 

  [P3 - P1 - u(P2 - P1)]●(P2 - P1) = 0  

 

Minimum Distance between  
a Point and a Line .. 

• Solving this gives the value of u 
 
 
 

• Substituting this into the equation of the line gives 
the point of intersection (x, y) of the tangent as  
 

  x = x1 + u (x2 - x1) 
  y = y1 + u (y2 - y1)  

 
• The distance therefore between the point P3 and 

the line is the distance between (x, y) above and P3 

 

Minimum Distance between  
a Point and a Line … 

• Notes 

– The only special testing for a software 
implementation is to ensure that P1 and P2 are not 
coincident (denominator in the equation for u is 0)  

– If the distance of the point to a line segment is 
required then it is only necessary to test that u lies 
between 0 and 1 

– The solution is similar in higher dimensions 

 

Minimum Distance between  
a Point and a Plane 

• Let Pa = (xa, ya, za) be the 
point in question 

• A plane can be defined by 
its normal n = (A, B, C) and 
any point on the plane Pb = 
(xb, yb, zb)  

• Any point P = (x, y, z) lies on 
the plane if it satisfies the 
following 

  A x + B y + C z + D = 0  

Minimum Distance between  
a Point and a Plane . 

• Consider the projection of the line (Pa - Pb) onto the 
normal of the plane n, that is just ||Pa - Pb|| cosθ 
– Where θ is the angle between (Pa - Pb) and the normal n 

• This projection is the minimum distance (D) of Pa to the 
plane and can be written in terms of the dot product: 
 

   D = (Pa - Pb) ● n / ||n||  
 

• That is: D = (A (xa - xb) + B (ya - yb) + C (za - zb))  
                                 / sqrt(A2 + B2 + C2)   

 

Minimum Distance between  
a Point and a Plane .. 

• Since point (xb, yb, zb) is a point on the plane  

 

  Axb + Byb + Czb + D = 0 

 

• Substituting gives: 

 

  (Axa + Bya + Cza + D) / sqrt(A2 + B2 + C2)  
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Point inside a Triangle 

• Consider a triangle T defined by 3 
points p1(x1, y1), p2(x2, y2), p3(x3, y3) 
and a single point p(x, y) 

• Four solutions: 

– Barycentric solution 

– Parametric solution 

– Dot product solution 

– Cross product solution 

p2 (x2, y2) 

p1 (x1, y1) 

p3 (x3, y3) 

. p (x, y) 

Barycentric Solution 

• Barycentric coordinate allows to express new p 
coordinates as a linear combination of p1, p2, p3  

• More precisely, it defines 3 scalars a, b, c such 
that : 

– x = a * x1 + b * x2  + c * x3 

– y = a * y1 + b * y2 + c * y3 

– a + b + c = 1 

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html  

p2 (x2, y2) 

p1 (x1, y1) 

p3 (x3, y3) 

. p (x, y) 

Barycentric Solution . 

• The way to compute a, b, c is not difficult : 

– a = ((y2 - y3)*(x - x3) + (x3 - x2)*(y - y3)) / ((y2 - y3)*(x1 - 
x3) + (x3 - x2)*(y1 - y3)) 

– b = ((y3 - y1)*(x - x3) + (x1 - x3)*(y - y3)) / ((y2 - y3)*(x1 - 
x3) + (x3 - x2)*(y1 - y3)) 

– c = 1 - a - b 

• Then p lies in T if and only if:  

– 0 <= a <= 1 and 0 <= b <= 1 and 0 <= c <= 1 

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html  

Barycentric Code Sample 

function pointInTriangle(x1, y1, x2, y2, x3, y3, x, y: Number): 
Boolean 

{ 
var denominator:Number = ((y2 - y3)*(x1 - x3) + (x3 - x2)*(y1 - y3)); 
var a:Number = ((y2 - y3)*(x - x3) + (x3 - x2)*(y - y3)) / denominator; 
var b:Number = ((y3 - y1)*(x - x3) + (x1 - x3)*(y - y3)) / denominator; 
var c:Number = 1 - a - b; 

  
  return 0 <= a && a <= 1 && 0 <= b && b <= 1 && 0 <= c && c 

<= 1; 
} 

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html  

Parametric Solution 

• Consider the parametric expressions 
of the 2 edges [p1, p2] and [p1, p3] in T : 
– x(t1) = t1*(x2 - x1) 

– y(t1) = t1*(y2 - y1) 

– x(t2) = t2*(x3 - x1) 

– y(t2) = t2*(y3 - y1) 

• Then express p(x, y) as a linear 
combination of them: 
– x = x1 + x(t1) + x(t2) 

– y = y1 + y(t1) + y(t2) 

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html  

p2 (x2, y2) 

p1 (x1, y1) 

p3 (x3, y3) 

. p (x, y) 

Parametric Solution . 

• Solving the system: 

– t1 = (x*(y3 - y1) + y*(x1 - x3) - x1*y3 + y1*x3) / (x1*(y2 - 
y3) + y1*(x3 - x2) + x2*y3 - y2*x3) 

– t2 = (x*(y2 - y1) + y*(x1 - x2) - x1*y2 + y1*x2) / -(x1*(y2 
- y3) + y1*(x3 - x2) + x2*y3 - y2*x3) 

• Then p lies in T if and only if:  

– 0 <= t1 <= 1 and 0 <= t2 <= 1 and t1 + t2 <= 1 

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html  

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html


2/28/2020 

18 

Parametric Code Sample 

function pointInTriangle(x1, y1, x2, y2, x3, y3, x, y: Number): 
Boolean 

{ 
 var denominator:Number = (x1*(y2 - y3) + y1*(x3 - x2) + x2*y3 

- y2*x3); 
 var t1:Number = (x*(y3 - y1) + y*(x1 - x3) - x1*y3 + y1*x3) / 

denominator; 
 var t2:Number = (x*(y2 - y1) + y*(x1 - x2) - x1*y2 + y1*x2) / -

denominator; 
 var s:Number = t1 + t2; 
  
 return 0 <= t1 && t1 <= 1 && 0 <= t2 && t2 <= 1 && s <= 1; 

} 
http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html  

Dot Product Solution 

• Assume that p1, p2, p3 are ordered in counterclockwise 
and check if p lies at left of the 3 oriented edges  
– [p1, p2], [p2, p3], [p3, p1] 

• First consider the 3 vectors v1, v2 and v3 that are left-
orthogonal to [p1, p2], [p2, p3] and [p3, p1] : 
– v1 = <y2 - y1, -x2 + x1> 

– v2 = <y3 - y2, -x3 + x2> 

– v3 = <y1 - y3, -x1 + x3> 

• Then we get the 3 following vectors : 
– v1' = <x - x1, y - y1> 

– v2' = <x - x2, y - y2> 

– v3' = <x - x3, y - y3> p2 (x2, y2) 

p1 (x1, y1) 

p3 (x3, y3) 

. p (x, y) 

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html  

v1 
v3 

v2 

Dot Product Solution . 

• Compute the 3 dot products: 

– dot1 = v1 . v1' = (y2 - y1)*(x - x1) + (-x2 + x1)*(y - y1) 

– dot2 = v1 . v2' = (y3 - y2)*(x - x2) + (-x3 + x2)*(y - y2) 

– dot3 = v3 . v3' = (y1 - y3)*(x - x3) + (-x1 + x3)*(y - y3) 

• Check if p lies in T if and only if  

– 0 <= dot1 and 0 <= dot2 and 0 <= dot3 

http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html  

Dot Product Sample Code 

function side(x1, y1, x2, y2, x, y:Number):Number 
{ 
  return (y2 - y1)*(x - x1) + (-x2 + x1)*(y - y1); 
} 
 
 function pointInTriangle(x1, y1, x2, y2, x3, y3, x, y: 

Number): Boolean 
{ 

 var checkSide1:Boolean = side(x1, y1, x2, y2, x, y) >= 0; 
 var checkSide2:Boolean = side(x2, y2, x3, y3, x, y) >= 0; 
 var checkSide3:Boolean = side(x3, y3, x1, y1, x, y) >= 0; 
 return checkSide1 && checkSide2 && checkSide3; 

} http://totologic.blogspot.fr/2014/01/accurate-point-in-triangle-test.html  

Cross Product Solution 

• Calculate:  
– c1 = p1 x p 

– c2 = p2 x p 

– c3 = p3 x p 

• P is inside triangle if: 
– Clockwise order if 

• c1> 0 && c2> 0 && c3 > 0 

– Counterclockwise if 
• c1< 0 && c2< 0 && c3 < 0 

– No information if  
• (c1> 0 && c2> 0 && c3 > 0) || (c1< 0 && c2< 0 && c3 < 0) 

http://www.sunshine2k.de/coding/java/PointInTriangle/PointInTriangle.html  

Conic Sections 

• A conic section is a 
curve obtained as 
the intersection of a 
cone (more precisely, 
a right circular 
conical surface) with 
a plane 
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Circle 

• The circumference of a circle 
means the length of the circle 

• The interior of the circle is called 
a disk 

• An arc is any continuous portion 
of a circle 

• A diameter is a straight line 
through the center and 
terminating in both directions on 
the circumference 

 

Equation of a Circle 

• In an x-y coordinate system, the circle with 
centre (a, b) and radius r is the set of all points 
(x, y) such that: 

 

 

• The equation of the circle follows from the 
Pythagorean theorem applied to any point on 
the circle 

 

Circle at Origin 

• If the circle is centred at the origin (0, 0), then 
the above formula can be simplified: 
 

  
• and its tangent will be: 

 
 

• where x1, y1 are the coordinates of the 
common point 

 

Tangent and Secant Lines 

• A line is tangent to a curve, at 
some point, if both line and 
curve pass through the point 
with the same direction 
– This is called the tangent line 
– Tangent line is the best straight-

line approximation to the curve at 
that point 

• The slope of a tangent line can 
be approximated by a secant line 
– It is a mistake to think of tangents 

as lines which intersect a curve at 
only one single point 

 

Circle Parametric Equations 

• When expressed in parametric equations (x, y) 
can be written using the trigonometric functions 
sine and cosine as: 

    x = a + r cost 

    y = b + r sint 

• where t is a parametric variable 

– Understood as the angle the ray to (x, y) makes with 
the x-axis 

Definition of π 

• π symbolizes the ratio 
– The relationship with respect to relative 

size of the circumference of circle to its 
diameter, whatever that relationship 
might be 

– So when we say that π ≈ 3.14, we mean 
that the circumference of circle is a little 
more than three times longer than the 
diameter: 

   
  C / D   =  π ≈ 3.14  

 
– π indicates the ratio of a curved line to a 

straight 
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Circumference of a Circle 

• Since: C / D   =  π 
• Can use that as a formula for calculating the 

circumference of a circle: 
 

    C = πD  
 

• Or, since D = 2r 
 

    C = π· 2r = 2πr 

Calculation of Area Enclosed 

• The area enclosed by a circle 
is the radius squared, 
multiplied by π 

Calculation of Area Enclosed . 

• Using a square with side lengths equal to the 
diameter of the circle, then dividing the square 
into four squares with side lengths equal to the 
radius of the circle, take the area of the smaller 
square and multiply by π 

 

 

– approximately 79% of the circumscribing square 

Unit Circle 

• A unit circle is a circle with a unit 
radius 
– This is a circle whose radius is 1 

• Often, the unit circle is the circle of 
radius 1 centered at the origin (0, 0) in 
the Cartesian coordinate system in the 
Euclidean plane 
– If (x, y) is a point on the unit circle in the 

first quadrant, then x and y are the 
lengths of the legs of a right triangle 
whose hypotenuse has length 1, then: 

 

   x2 + y2 = 1 

Circle Properties 

• The circle is the shape with the highest area for a 
given length of perimeter 

• The circle is a highly symmetric shape 
– Every line through the centre forms a line of reflection 

symmetry and it has rotational symmetry around the 
centre for every angle  

• All circles are similar: 
– A circle's circumference and radius are proportional 

– The area enclosed and the square of its radius are 
proportional 

– The constants of proportionality are 2π and π, 
respectively 

Calculate x, y of Segment 

d = 2sqrt(r2-x2) 
x 

z 
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Calculate x, y of Segment . 

 d = 2sqrt(r2-x2) → z = sqrt(r2 - x2) → 
   z = sqrt(r2 - r2/(1 + tanθ2) → 
   z = r sqrt(1 - 1 / (1 + tanθ2) 
 
 z = sqrt(r2-x2) → z2 = r2-x2  
 
But tanθ = z/x, so: 
 
 x2tanθ2 = r2-x2 → x2(1+ tanθ2) = r2 → 
  x = r/sqrt(1 + tanθ2) 

 

Ground Implementation in C++ 

• TGround Class 

– Variables 

• Define 37 points in the surface of the ground 

• Define the normal of the ground 

– Functions 

• Ground Constructor 

• Draw Ground 

TGround Class 

class TGround 
{ 
  public: 
  TVector _points[37]; // points in the surface of the 

ground 
  TVector _normal;  // normal of the ground 
     
 public: 
  // Default constructor 
  TGround(); 
     
  // Function that draws the ground  
  void DrawGround(); 
}; 

 

Constructor 
for(i=0; i<=36; i++) 
{ 
 // Transform degrees in rads 
 rad_angle=(pi*angle)/180.0; 

 
 // Calculate the x and z co-ordinates of a circle ground 
 x = radius/(sqrt(1.0 + tan(rad_angle)*tan(rad_angle)));  
 z = radius*(sqrt(1.0 - (1.0/(1.0 +  tan(rad_angle)*tan(rad_angle))))); 
 angle+= 10; 
 
 // Check the co-ordinates in all the quadrants of the circle ground 
 if ((i>=0) && (i<10))  // First quadrant 
 { 
  if (i==9) {  _points[i] = TVector(0.0, 0.0, 1.0);  } 
   _points[i] = TVector(x, y, z); 
 } 
 if ((i>=10) && (i<19))  // Second quadrant 
 { 
  _points[i] = TVector(-x, y, z); 
 } 
 if ((i>=19) && (i<28))  // Third quadrant 
 { 
  if (i==27) { _points[i] = TVector(0.0, 0.0, -1.0); } 
  _points[i] = TVector(-x, y, -z); 
 } 
 if ((i>=27) && (i<=36))  // Fourth quadrant 
 { 
  _points[i] = TVector(x, y, -z); 
 } 
} 
 
// Construct the vector for the normal of the ground 
_normal = TVector(0.0, 1.0, 0.0); 
 
 

Draw Ground Function 

void TGround::DrawGround() 
{ 
 int i=0.0; 
 
 glPushMatrix(); 
 glPushAttrib(GL_ENABLE_BIT); 
 glCallList(50); 

 
 glBegin(GL_POLYGON); 
 for(i=0; i<=36; i++) 
 { 
  glNormal3f(0.0, 1.0, 0.0); 
  glVertex3f(_points[i].X(), _points[i].Y(), _points[i].Z());   
 } 
 glEnd(); 

 
 glPopAttrib(); 
 glPopMatrix(); 
} 

Ellipse 

• An ellipse is a curve on a 
plane surrounding two focal 
points such that the sum of 
the distances to the two focal 
points is constant for every 
point on the curve 

 

 

• You can think of an ellipse as 
an oval 
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Parabola 

• The standard form of a parabola's equation is 
generally expressed: 

– y = ax2 + bx + c  

• The role of 'a‘ 

– If a> 0, the parabola opens upwards 

– If a< 0, it opens downwards 

•  The axis of symmetry 

– The axis of symmetry is the line x = -b/2a 

http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php  

Vertex Form of Parabola 

• The vertex form of a parabola's 
equation is generally expressed as:  
– y = a(x-h)2+k  where (h,k) is the vertex  

• If a is + then the parabola opens 
upwards like a regular "U" 

• If a is - then the graph opens 
downwards like an upside down "U" 

• If |a| < 1, the graph of the parabola 
widens 

• If |a| > 1, the graph of the graph 
becomes narrower 
– The effect is the opposite of |a| < 1 

http://www.mathwarehouse.com/geometry/parabola/standard-and-vertex-form.php  

Hyperbola 

• The equation of the hyperbola 
can be written as: 

 

 

• If c is the distance from the 
center to either focus, then: 

   a2+b2 = c2 

Parametric surfaces 

• A torus with major radius R 
and minor radius r may be 
defined parametrically as 

 x = cos(t)(R + r cos(u)) 

 y = sin(t)(R + r cos(u)) 

 z = r sin(u) 

• where the two parameters t 
and u both vary between 0 
and 2π 

 

Equation of a Sphere 

• Pythagoras theorem generalises to 3D giving: 

– a2 + b2 + c2 = d2 

• Based on that we can easily prove that the 

general equation of a sphere is: 

– (x- xc)
2 + (y- yc)

2 + (z- zc)
2 = r2 

• and at origin: 

– x2 + y2 + z2 = r2 

 

Ray-Sphere Intersection 

Ray: P = P0 + tV 

Sphere: (x - cx)
2 + (y - cy)

2 + (z - cz)
2 = r 2  or  |P - C|2 - r 2 = 0  

 

Substituting for P, we get: |P0 + tV - C|2 - r 2 = 0  

 

Solve quadratic equation: at2 + bt + c = 0 

 

where: 

  a = |V|2 = 1 

  b = 2 V • (P0 - C)  

  c = |P0 - C|2 - r 2 

 

 P = P0 + tV P0 

V 

C 

P 

r 

P’ 
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Advanced Methods of Rotation 

• Different advanced methods exist including: 

– Euler angles 

– Quaternions 

Euler Angles 

• In many fields Euler 
angles are used to 
represent rotations 

• Any rotation can be 
broken down into a 
series of three rotations 
about the major axes  

 

Euler Angles . 

• We can simulate any arbitrary rotation with 
one rotation about the x-axis, one about the 
y-axis, and then one about the z-axis  

– i.e. consider an airplane pointing along the x-axis 
with the z-axis pointing up 

 

Roll, Pitch, Yaw 

• Can represent any pose 
as a vector (roll, pitch, 
yaw) 
– The "roll" about the x-axis 

along the plane 

– The "pitch" about the y-
axis which extends along 
the wings of the plane 

– The "yaw" or "heading" 
about the z-axis 

Disadvantages 

• No universal standard for Euler rotations 

– Different fields use different sequences 

• i.e. some use z-y-z as opposed to the x-y-z system 

• Although any rotation can be represented by 
either a set of Euler angles or a matrix 

– Computing the required angles is expensive and 
can introduce errors 

• Interpolation does not work well! 

Standard Rotations 
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Angles to Axis 

• Can combine the separate axis rotations into 
one matrix by multiplying standard rotational 
matrices together 

– Multiplication of matrices is not commutative 

• Different order of matrix multiplication results in a 
different outcome 

• 6 different combinations are possible;  

– RxRyRz, RxRzRy, RyRxRz, RyRzRx, RzRxRy and RzRyRx 

RxRyRz & RxRzRy Rotations 

RyRxRz & RyRzRx Rotations RzRxRy & RzRyRx Rotations 

Code Example 

void anglesToAxes(const Vector3 angles, Vector3& left, Vector3& up, Vector3& forward) 
{ 
    const float DEG2RAD = 3.141593f / 180; 
    float sx, sy, sz, cx, cy, cz, theta; 

 
    // rotation angle about X-axis (pitch) 
    theta = angles.x * DEG2RAD; 
    sx = sinf(theta); 
    cx = cosf(theta); 
    
    // rotation angle about Y-axis (yaw) 
    theta = angles.y * DEG2RAD; 
    sy = sinf(theta); 
    cy = cosf(theta); 

 
    // rotation angle about Z-axis (roll) 
    theta = angles.z * DEG2RAD; 
    sz = sinf(theta); 
    cz = cosf(theta); 
} 

Code Example . 

left.x = cy*cz;  
left.y = sx*sy*cz + cx*sz;   determine left axis  
left.z = -cx*sy*cz + sx*sz;  
  
up.x = -cy*sz;  
up.y = -sx*sy*sz + cx*cz;   determine up axis  
up.z = cx*sy*sz + sx*cz;  
  
forward.x = sy;  
forward.y = -sx*cy;    determine forward axis  
forward.z = cx*cy; 
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Rotation About Arbitrary Axis 

• In addition to the set of three Euler angles and 
the rotation matrix, a rotation can also be 
represented by a vector specifying the 
rotation axis and the angle of rotation around 
this axis 

• The problem of rotation about an arbitrary 
axis in three dimensions arises in many fields 
including computer graphics and computer 
games 

 

3x3 Matrix Representing Axis 

• We can express the 3×3 rotation matrix in 
terms of a 3×3 matrix representing the axis: 

– [R] = [I] + s*[~axis] + t*[~axis]2 

 

• or equivalently: 

– [R] = c*[I] + s*[~axis] + t*([~axis]2 + [I])  

Matrix Expansion 

  t*x*x + c   t*x*y - z*s   t*x*z + y*s 

[R] =  t*x*y + z*s   t*y*y + c   t*y*z - x*s 

  t*x*z - y*s   t*y*z + x*s   t*z*z + c 

 

• where: 
– c = cos(angle) 

– s = sin(angle) 

– t = 1 - c 

– x = normalised axis x coordinate 

– y = normalised axis y coordinate 

– z = normalised axis z coordinate 

 

Code Example 

public void matrixFromAxisAngle(AxisAngle4d a1)  
{ 
    double c = Math.cos(a1.angle); 
    double s = Math.sin(a1.angle); 
    double t = 1.0 - c; 
  
    m00 = c + a1.x*a1.x*t; 
    m11 = c + a1.y*a1.y*t; 
    m22 = c + a1.z*a1.z*t; 
 
    double tmp1 = a1.x*a1.y*t; 
    double tmp2 = a1.z*s; 
     
    m10 = tmp1 + tmp2; 
    m01 = tmp1 - tmp2; 
    tmp1 = a1.x*a1.z*t; 
    tmp2 = a1.y*s; 
    m20 = tmp1 - tmp2; 
    m02 = tmp1 + tmp2;    tmp1 = a1.y*a1.z*t; 
    tmp2 = a1.x*s; 
    m21 = tmp1 + tmp2; 
    m12 = tmp1 - tmp2; 
} 
  

Quaternions 

• Complex numbers were discovered in 1800’s 
and had the characteristic property to be 
defined in terms of i, where i is the square root 
of –1 

• In 1843, sir William Rowan Hamilton discovered 
a number called the quaternion, which has a 
very similar form to complex numbers  

Quaternion Definition 

• A quaternion is based on three different 
numbers that are all square roots of –1 and 
are labeled i, j and k, where: 
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Quaternion Properties Quaternion Rotations 

Quaternion Representation 

• Defined like complex numbers but with 4 
coordinates 
– q[w, (x, y, z)] also written q[w, v] where v = (x, y, z) 

– q = w + xi + yj + zk 
• Here, w is real part, and (x,y,z) are imaginary parts 

• Think of w as angle in an angle-axis representation 

• Think of (x, y, z) as axis in an axis-angle representation 

• Based on three different roots of -1: 
– i2 = j2 = k2 = -1 

Quaternion Representation . 

• For a right-hand rotation of q radians about 
unit vector v, quaternion is: 

 

   q = (cos(q/2); v sin(q/2)) 

– Note how the 3 imaginary coordinates  
are noted as a vector 

– Only unit quaternions represent rotations 

• Such a quaternion describes a point on the 4D unit 
hyper-sphere 

– Important note: q and –q represent the exact same 
orientation 

Quaternion Toolbox 

• Addition 
– q1 + q2 = [w1 + w2, v1 + v2] 

• Multiplication  
– q1q2 = [w1w2 – v1.v2, v1 x v2 + w1v2 + w2v1]  (note: q1q2 != q2q1) 

• Magnitude 
– | q | = sqrt(w2 + x2 + y2 + z2) 

• Normalisation 
– N(q) = q / | q | 

• Conjugate 
– q* = [w , -v] 

• Inverse 
– q-1 = q* / | q | 2 

• Unit quternion 
– q is unit if | q | = 1 and q-1 = q* 

• Identity 
– qIdentity = [1,(0,0,0)] for multiplication, qIdentity = [0,(0,0,0)] for addition 

Transforming a Point or Vector 

• To transform a vector P by the rotation 
specified by the quaternion q, there are two 
options: 

– Multiply conj(q) by (0, Px, Py, Pz)  

• See next slide 

– Convert q to matrix and use matrix transformation 
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First Method 

• Rotate vector P angle q around unit axis R: 
– Form the quaternion representing the vector P  

• q1 = (0,Px,Py,Pz) 

– Form the rotation quaternion from the axis R and 
angle q 
• q2 = (cos(q /2),Rx sin(q /2),Ry sin(q /2),Rz sin(q /2)) 

– The rotated vector is given by v entry of the 
quaternion: 
• q3 = q2 q1 q2* 

– q2 must be of unit magnitude for this to work properly 

 

Quaternion and Axis-Angle 

• From axis-angle to quaternion: 

– q = (cos(q/2); v sin(q/2)) 

– where: 

• v is the axis 

• q is the angle 

• From quaternion to axis-angle: 

– Axis v = (x, y, z) / sqrt(x2 + y2 + z2) 

– Angle q = acos(w) * 2 

 

Quaternion to Matrix 

• From quaternion to a 3x3 rotation matrix: 

 

Euler Angles to Quaternion 

• From Euler angles (pitch, yaw, roll) 

– Create three quaternions 

– One for each of pitch, roll, yaw  

– Then multiply them together 

• Here, P = pitch/2, Y = yaw/2, R = roll/2 
– w = cos(R)*cos(P)*cos(Y) + sin(R)*sin(P)*sin(Y) 

– x = sin(R)*cos(P)*cos(Y) – cos(R)*sin(P)*sin(Y) 

– y = cos(R)*sin(P)*cos(Y) + sin(R)*cos(P)*sin(Y)  

– z = cos(R)*cos(P)*sin(Y) – sin(R)*sin(P)*cos(Y) 

 

Quaternion Code Example 

• Three functions: 

– Convert an axis and angle rotation to a quaternion 

– Convert a quaternion to a rotation matrix 

– Rotate the quaternion 

 

Convert an axis and angle rotation to a 
quaternion 

void Tquaternion::CreateFromAxisAngle(float X, 
float Y, float Z, float degree)  

{  
 float angle = float((degree / 180.0f) * PI); 
 float result = (float)sin( angle / 2.0f ); 
 w = (float)cos( angle / 2.0f ); 
 x = float(X * result); 
 y = float(Y * result); 
 z = float(Z * result); 
} 
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Convert a quaternion to a rotation 
matrix 

void Tquaternion::CreateMatrix(float *pMatrix) 
{  
 pMatrix[ 0] = 1.0f - 2.0f * ( y * y + z * z );  
 pMatrix[ 1] = 2.0f * (x * y + z * w); 
 pMatrix[ 2] = 2.0f * (x * z - y * w); 
 pMatrix[ 3] = 0.0f;   
 pMatrix[ 4] = 2.0f * ( x * y - z * w );   
 pMatrix[ 5] = 1.0f - 2.0f * ( x * x + z * z );  
 pMatrix[ 6] = 2.0f * (z * y + x * w );   
 pMatrix[ 7] = 0.0f;   
 pMatrix[ 8] = 2.0f * ( x * z + y * w ); 
 pMatrix[ 9] = 2.0f * ( y * z - x * w ); 
 pMatrix[10] = 1.0f - 2.0f * ( x * x + y * y );   
 pMatrix[11] = 0.0f;   
 pMatrix[12] = 0;   
 pMatrix[13] = 0;   
 pMatrix[14] = 0;   
 pMatrix[15] = 1.0f; 
} 
 

Rotate the Quaternion 

void Tquaternion::quaternionRotation(double x, double y, double z) 
{ 
 float matrixX[16], matrixY[16], matrixZ[16]; 
 static float rotation = 0; 
 
 Tquaternion qRotationX; 
 Tquaternion qRotationY; 
 Tquaternion qRotationZ; 
 qRotationX.CreateFromAxisAngle(1, 0, 0, x); 
 qRotationY.CreateFromAxisAngle(0, 1, 0, y); 
 qRotationZ.CreateFromAxisAngle(0, 0, 1, z); 
 
 qRotationX.CreateMatrix(matrixX); 
 qRotationY.CreateMatrix(matrixY); 
 qRotationZ.CreateMatrix(matrixZ); 
 
 glMultMatrixf(matrixX); 
 glMultMatrixf(matrixY); 
 glMultMatrixf(matrixZ);  
} 
 

Quaternion Interpolation 

• One of the most important reasons for using 
quaternions is that they are very good at 
representing rotations in space 

• Quaternions overcome the issues that plague 
other methods of rotating points in 3D space 
such as Gimbal lock  

– An issue when you represent your rotation with 
Euler angles 

 

Quaternion Interpolation Methods 

• Using quaternions can define several methods 
that represents a rotational interpolation in 
3D space: 

– SLERP  

• Used to smoothly interpolate a point between two 
orientations 

– SQAD (extension of SLERP) 

• Used to interpolate through a sequence of orientations 
that define a path 

 

Examples SLERP 

• SLERP provides a method to smoothly 
interpolate a point about two orientations 
– SLERP stands for Spherical Linear Interpolation 

• Represent the first orientation as q1 and the 
second orientation as q2 

• The point that is interpolated will be 
represented by P and the interpolated point will 
be represented by P’  

• The interpolation parameter t will interpolate P 
from q1 when t=0 to q2 when t=1 
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SLERP Interpolation 

• The standard linear interpolation formula is: 

    p’ = p1 + t(p2 – p1) 

• The general steps to apply this equation are: 

– Compute the difference between p1 and p2 

– Take the fractional part of that difference 

– Adjust the original value by the fractional difference 
between the two points 

• Can use the same principle to interpolate 
between two quaternion orientations 

SQAD 

• SQUAD (Spherical and Quadrangle) can be 
used to smoothly interpolate over a path of 
rotations 

– Just as a SLERP can be used to compute an 
interpolation between two quaternions 

• If we have the sequence of quaternions: 

 

SQAD Representation 

• And we also define the “helper” quaternion 
(si) which we can consider an intermediate 
control point: 

 

SQAD Orientation 

• Then the orientation along the sub-curve 
defined by: 

 

• at time t is given by: 

Quaternion Advantages 

• Quaternion interpolation using SLERP and SQUAD 
provide a way to interpolate smoothly between 
orientations in space 

• Rotation concatenation using quaternions is faster 
than combining rotations expressed in matrix form 

• Converting quaternions to matrices is slightly faster 
than for Euler angles 

• Quaternions only require 4 numbers  
– 3 if they are normalized 
– The Real part can be computed at run-time  

• To represent a rotation where a matrix requires at least 9 
values 

 

Quaternion Disadvantages 

• Very hard to understand 

• Can become invalid because of floating-point 
round-off error  

– This can be resolved by re-normalizing the 
quaternion 
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