
PA200 - Cloud Computing
Lecture 10: Cloud software architecture and containers

by Ilya Etingof, Red Hat

Warm-up
Let's rehearse on the previous lectures...

Using OpenStack

• Spawn a single virtual machine

• Deploy the infrastructure

HEAT orchestration engine

• HOT templates render stacks

• Resources stack up to infrastructure

• HEAT takes HOT template(s) + environment

HOT resources

my_server:
 type: OS::Nova::Server
 properties:
 image: { get_param: image_id }

HOT parameters

parameters:

 key_name:
 type: string
 default: my_key

 instance_type:
 type: string
 default: m1.small
 constraints:
 - allowed_values: [m1.tiny, m1.small, m1.medium,
 m1.large, m1.xlarge]

Create the infrastructure

$ openstack --os-cloud muni-cloud stack create --wait \
 --template pa200.yaml pa200
$ openstack --os-cloud muni-cloud stack list
$ openstack --os-cloud muni-cloud stack show pa200

OpenStack administration

• PackStack, Fuel etc

• TripleO

OpenStack-on-OpenStack (1/2)

• Deployment cloud: Undercloud

• Workload cloud: Overcloud

OpenStack-on-OpenStack (2/2)

In this lecture...

• Cloud-naive software architecture

• Containers

• Container orchestration

On-premises applications (1/2)

• Monolithic

• Tied to the infrastructure

• Languages: a Visual Studio language, enterprise Java, Cobol

• Developed in a waterfall model

On-premises applications (2/2)
Problems:

• Hard to scale, migrate, distribute

• Risky updates

• Low code reuse

Cloud-native applications

• Modular and stateless

• Shared resources

• Elastic and redundant by design

• Web-service architecture

• Rolling updates

• Agile, DevOps, CI/CD

Cloud-native: modularity
Microservices

Cloud-native: multitenancy

Cloud-native: elasticity and redundancy

• Services accommodate work load

• Services migrate towards the clients

• Service instances ensure redundancy

Cloud-native: application design

• Modular and task-specific

• Stateless - horizontally scalable

• REST API RPC

• Application databases

• Web-centric languages (Go, Python, Node.js, Ruby etc.)

• Configure from cloud

Cloud-native: rolling updates

• Frequent, minor per-service updates

• Redundancy to replace updating instances

• CI/CD automation to ensure code quality

Cloud-native: team changes

• Service-centric teams

• Cross-team collaboration

• Agile, minimal viable product development

• Software developers <-> customers

• Software development & IT operations (DevOps)

• System administrators <-> software developers

Cloud-native: tooling

• Multiple teams - multiple tools

• Toolchains:

• Source code management

• Continuous integration and testing

• Infrastructure as a code

Cloud-native: CI/CD

• Continuous integration

• Test every change

• Continuous delivery

• Stage every change

• Continuous deployment

• Automatic release

Cloud-native challenges

• Root cause analysis/debugging/testing

• Logging/monitoring

• Security

• Expensive changes to legacy apps & teams

Containers: agenda

• Concurrency and isolation

• OS-level virtualization

• Container orchestration

Concurrency and isolation
Multiple systems, VMs, containers, processes, threads

Containers vs VMs

• Containers: share kernel

• VMs: share physical hardware

Linux containers
Based on kernel features:

• Namespaces present resources to process

• Cgroups govern resource isolation and usage

• Container is temporary and transient, much like a process

Examples: LXC, Docker, OpenVZ

Docker to manage containers
Docker concepts

• Dockerfile to build Docker image

• Docker image to run the container(s)

• Containers are live image instances

Docker features

• Container is temporary and transient, but it can be

• deployed, suspended, replicated, moved, backed up etc.

• Docker Hub shares Docker images

• Docker Compose hitches containers on the same host

• Docker Swarm orchestrates multi-node deployments

• Clustering, redundancy, load-balancing etc.

Container orchestration: Kubernetes (1/3)

• Cluster

• master + nodes (on bare metal or VMs)

• nodes run pods

• Pods

• Pod contains one+ containers

• Application runs in its pod

• Controllers

• Pod management logistics (e.g. Deployment, StatefulSet)

• Services

• Represent application to the world

Container orchestration: Kubernetes (2/3)

Container orchestration: Kubernetes (3/3)

Kubernetes pros&cons

• Automates application maintenance

• Deployment (e.g. Helm), health, balances load, resilience

• Simplifies management of shared resources

• Storage, secrets etc.

• Utilizes hardware resources

• Soft & hard limits per-app

• Learning curve is high

Kubernetes vs Docker

• Docker (prior to Swarm) builds and run containers locally

• Kubernetes orchestrates multiple nodes

• Docker and Kubernetes may or may not be used together

The alternatives

• Alternatives to Docker

• rkt, LXC etc.

• Alternatives to Kubernetes

• Docker Swarm, Apache Mesos etc.

Containers are on the rise

• Facilitates microservices design

• Portability

• Composability and throttling

• Easy scaling

Containers challenges

• Keeping software up to date is difficult

• Isolation can be insufficient

• Overhead can be noticeable

Recap: cloud software architecture

• Requires changes in software design towards:

• Modularity

• Statelessness

• Automatic testability

• Requires changes in team work

• Team focusing on service

• Agile, MVP

• DevOps

Recap: containers

• Container for concurrency and isolation

• Docker for container lifecycle automation

• Kubernetes for container-based clouds

Questions
?

	Warm-up
	Using OpenStack
	HEAT orchestration engine
	HOT resources
	HOT parameters
	Create the infrastructure
	OpenStack administration
	OpenStack-on-OpenStack (1/2)
	OpenStack-on-OpenStack (2/2)
	In this lecture...
	On-premises applications (1/2)
	On-premises applications (2/2)
	Cloud-native applications
	Cloud-native: modularity
	Cloud-native: multitenancy
	Cloud-native: elasticity and redundancy
	Cloud-native: application design
	Cloud-native: rolling updates
	Cloud-native: team changes
	Cloud-native: tooling
	Cloud-native: CI/CD
	Cloud-native challenges
	Containers: agenda
	Concurrency and isolation
	Containers vs VMs
	Linux containers
	Docker to manage containers
	Docker features
	Container orchestration: Kubernetes (1/3)
	Container orchestration: Kubernetes (2/3)
	Container orchestration: Kubernetes (3/3)
	Kubernetes pros&cons
	Kubernetes vs Docker
	The alternatives
	Containers are on the rise
	Containers challenges
	Recap: cloud software architecture
	Recap: containers
	Questions

