SOLUTIONS

Exercises on Block1: Map-Reduce Retrieval Evaluation Clustering

Advanced Search Techniques for Large Scale Data Analytics
Pavel Zezula and Jan Sedmidubsky
Masaryk University
http://disa.fi.muni.cz

Map-Reduce (1) - Assignment

- Suppose our input data to a map-reduce system are integer values (the keys are not important)
- The map function takes an integer i and produces pairs (p, i) such that p is a prime divisor of i
- Example: map('any_key', 12) = [(2,12), (3,12)]
- The reduce function is addition
- Example: reduce($p,[i, i, \ldots, i]$) is $(p, i+i+\ldots+i)$
- Compute the output, if the input is the set of integers 15, 21, 24, 30, 49

Map-Reduce (1) - Recap

- Map-reduce input: a set of key-value pairs
- Programmer specifies two methods:
- Map(k, v) $\rightarrow\left\langle k^{\prime}, ~ v ’\right\rangle^{*}$
- Takes a key-value pair and outputs a set of key-value pairs
- E.g., key is the filename, value is a single line in the file
- There is one Map call for every (k, v) pair
- Reduce(k', <v’>*) $\rightarrow\left\langle\mathrm{k}^{\prime}\right.$, v">*
- All values v^{\prime} with same key k^{\prime} are reduced together and processed in v^{\prime} order
- There is one Reduce function call per unique key k^{\prime}

Map-Reduce (1) - Solution

- Map functions:
- map('any_key', 15) = [(3, 15), $(5,15)]$
- $\operatorname{map}($ 'any_key', 21) $=[(3,21),(7,21)]$
- $\operatorname{map}\left({ }^{\prime}\right.$ any_key', 24) $=[(2,24),(3,24)]$
- map('any_key', 30) $=[(2,30),(3,30),(5,30)]$
- map('any_key', 49) $=[(7,49)]$
- Reduce functions:
- reduce(2, $[24,30])=(2,54)$
- reduce $(3,[15,21,24,30])=(3,90)$
- reduce $(5,[15,30])=(5,45)$
- reduce $(7,[21,49])=(7,70)$
- Output: $(2,54),(3,90),(5,45),(7,70)$

Map-Reduce (2) - Assignment

- Suppose we have the following relations R, S:

\mathbf{R}	S			
A	B	B	C	
0	1	0	1	
1	2	1	2	
2	3	2	3	

- Apply the natural join algorithm
- Apply the Map function to the tuples of relations
- Construct the elements that are input to the Reduce function

Map-Reduce (2) - Recap

- Natural-join algorithm
- Finding tuples that agree on common attributes, i.e., only the attribute B is in both relations R and S
- Description of natural-join algorithm is in textbook in Section 2.3.7

Map-Reduce (2) - Solution

- Map functions - for each tuple (a, b) of R, the key-value pair (b, (R, a)) is produced and, analogically, for each tuple (b, c) of S, the pair $(b,(S, c))$ is created:
- R:
- $\operatorname{map}(0,1)=(1,(R, 0))$
- $\operatorname{map}(1,2)=(2,(R, 1))$
- $\operatorname{map}(2,3)=(3,(R, 2))$

S:

$$
\begin{aligned}
& \operatorname{map}(0,1)=(0,(\mathrm{~S}, 1)) \\
& \operatorname{map}(1,2)=(1,(\mathrm{~S}, 2)) \\
& \operatorname{map}(2,3)=(2,(\mathrm{~S}, 3))
\end{aligned}
$$

- Based on the 4 different keys as the result of all the map calls, the following elements are input to the 4 reduce functions:
- (0, [(S, 1)])
- (1, [(R, 0), (S, 2)])
- (2, [(R, 1), (S, 3)])
- (3, [(R, 2)])
reduce $(0,[(S, 1)])=\{ \}$
reduce $(1,[(R, 0),(S, 2)])=\{(0,1,2)\}$
reduce $(2,[(R, 1),(S, 3)])=\{(1,2,3)\}$
reduce $(3,[(R, 2)])=\{ \}$

Map-Reduce (3) - Assignment

- Design MapReduce algorithms that take a very large file of integers and produce as output:

1) The largest integer;
2) The average of all the integers;
3) The same set of integers, but with each integer appearing only once;
4) The count of the number of distinct integers in the input.

- Suppose that the file is divided into parts that can be read in parallel by map functions

Map-Reduce (3) - Recap

- Example of algorithm for counting words

```
map(key, value):
// key: document name; value: text of the document
    for each word w in value:
        emit(w, 1)
reduce(key, values):
// key: a word; value: an iterator over counts
        result = 0
        for each count v in values:
        result += v
        emit(key, result)
```


Map-Reduce (3) - Solution 1/4

- 1) The largest integer
- The idea is to compute a local maximum independently within each map function and then compute the global maximum within a single reducer - ensured by using the same "max" key within all map-function calls

```
map(file_id, iterator_over_numbers)
    max_local = MIN_INTEGER
    for each number n in interator_over_numbers
        if (n > max_local)
                            max_local = n
    emit(`max', max_local)
reduce(key, iterator_over_all_max_values)
    max_total = MIN_INTEGER
    for each number n in iterator_over_all_max_values
        if (n > max_total)
                            max_total = n
```

 emit('max', max_total)

Map-Reduce (3) - Solution 2/4

- 2) The average of all the integers
- The idea is to compute a local sum and count independently within each map function and then compute the global average within a single reducer - ensured by using the same "avg" key within all map-function calls

```
map(file_id, iterator_over_numbers)
    sum_local = 0
    count_local = 0
    for each number n in interator_over_numbers
        sum_local += n
        count_local += 1
    emit(`avg', (sum_local, count_local))
reduce(key, iterator_over_sum_count_pairs)
    sum_total = 0
    count_total = 0
    for each pair (sum_local, count_local) in iterator_over_sum_count_pairs
        sum_total += sum_local
        count_total += count_local
```

 emit('avg', sum_total/count_total)

Map-Reduce (3) - Solution 3/4

- 3) The same set of integers, but with each integer appearing only once
- The idea is to send each specific number to a single reducer, thus guaranteeing that each reducer emits the given value only once

```
map(file_id, iterator_over_numbers)
    for each number n in interator_over_numbers
        emit(n, 1)
```

reduce (key, iterator_over_numbers)
emit (key, 1)

Map-Reduce (3) - Solution $4 / 4$

- 4) The count of the number of distinct integers in the input
- The idea is to send all the different numbers to a single reducer that eliminates duplicates using the union operation and counts the values

```
map(file_id, iterator_over_numbers)
    number_set = {}
    for each number n in interator_over_numbers
            number_set = number_set U {n}
    emit('count', number_set)
reduce(key, iterator_over_number_sets)
    total_number_set = {}
    for each number_set in iterator_over_number_sets
        total_number_set = total_number_set U number_set
    emit('count', |total_number_set|)
```


Retrieval Evaluation (1) - Assignment

- The algorithm retrieves the six most convenient documents for each query. We focus on the first relevant document retrieved.

1) Determine a convenient measure for this task
2) Compute the measure on the following four query rankings with relevant/irrelevant objects:

- $R_{1}=\left\{d_{7}, d_{5}, d_{3}, d_{8}, d_{1}\right\}$
- $R_{2}=\left\{d_{5}, d_{6}, d_{3}, d_{2}, d_{4}\right\}$
- $R_{3}=\left\{d_{9}, d_{3}, d_{4}, d_{8}, d_{5}\right\}$
- $R_{4}=\left\{d_{9}, d_{3}, d_{1}, d_{7}, d_{5}\right\}$

3) How can be the result value interpreted?

Retrieval Evaluation (1) - Recap

- Mean Reciprocal Rank (MRR)
- A good metric for those cases in which we are interested in the first correct answer
- MRR = an average over reciprocal rankings $R R$
- Definition of $R R$:
- R_{i} : ranking relative to a query q_{i}
- $S_{\text {correct }\left(R_{i}\right)}$: position of the first correct answer in R_{i}
- S_{h} : threshold for ranking position
- Then, the reciprocal rank $R R\left(R_{i}\right)$ for query q_{i} is:

$$
R R\left(\mathcal{R}_{i}\right)= \begin{cases}\frac{1}{S_{\text {correct }}\left(\mathcal{R}_{i}\right)} & \text { if } S_{\text {correct }}\left(\mathcal{R}_{i}\right) \leq S_{h} \\ 0 & \text { otherwise }\end{cases}
$$

Retrieval Evaluation (1) - Solution

1) The Mean Reciprocal Rank (MRR) is the most convenient measure for this task
2) Results for individual rankings $\left(R R_{j}\right)$:

3) The first correct answer is at the 3.7-th position within an algorithm ranking ($1 / 0.27=3.7$) on average

Retrieval Evaluation (2) - Assignment

- Assume the following two rankings of documents (for some query):
- $R_{1}=\left\{d_{7}, d_{5}, d_{3}, d_{8}, d_{1}\right\}$
- $R_{2}=\left\{d_{5}, d_{8}, d_{3}, d_{1}, d_{7}\right\}$
- Based on these rankings compute:
- Spearman rank correlation coefficient
- Kendall Tau coefficient

Retrieval Evaluation (2) - Recap

- The Spearman coefficient
- The mostly used rank correlation metric
- Based on the differences between the positions of the same document in two rankings
- Definition:
- $s_{1, j}$ be the position of a document d_{j} in ranking R_{1}
- $\mathrm{s}_{2, j}$ be the position of d_{j} in ranking R_{2}
- K indicates the size of the ranked sets
- $S\left(R_{1}, R_{2}\right)$ is the Spearman rank correlation coefficient

$$
S\left(\mathcal{R}_{1}, \mathcal{R}_{2}\right)=1-\frac{6 \times \sum_{j=1}^{K}\left(s_{1, j}-s_{2, j}\right)^{2}}{K \times\left(K^{2}-1\right)}
$$

Retrieval Evaluation (2) - Solution 1

- $\left(s_{1, d_{7}}-s_{2, d_{7}}\right)^{2}=16$
- $\left(s_{1, d_{5}}-s_{2, d_{5}}\right)^{2}=1$
- $\left(s_{1, d_{3}}-s_{2, d_{3}}\right)^{2}=0$
- $\left(s_{1, d_{8}}-s_{2, d_{8}}\right)^{2}=4$
- $\left(s_{1, d_{1}}-s_{2, d_{1}}\right)^{2}=1$
- Spearman coefficient:
- 1 - [6 * (16 + $1+0+4+1) / 120]=-0.1$

Retrieval Evaluation (2) - Recap

- The Kendall Tau coefficient
- When we think of rank correlations, we think of how two rankings tend to vary in similar ways
- Consider two documents d_{j} and d_{k} and their positions in rankings R_{1} and R_{2}
- Further, consider the differences in rank positions for these two documents in each ranking, i.e.,
- $\mathrm{s}_{1, k}-\mathrm{s}_{1, j}$
${ }^{-} s_{2, k}-s_{2, j}$
- If these differences have the same sign, we say that the document pair $\left(d_{k}, d_{j}\right)$ is concordant (C) in both rankings; if they have different signs, it is discordant (D)

Retrieval Evaluation (2) - Recap

- The Kendall Tau coefficient
- Definition:
- $\Delta\left(R_{1}, R_{2}\right)$: number of discordant document pairs in R_{1} and R_{2}
- K : the size of the ranked sets

$$
\tau\left(R_{1}, R_{2}\right)=1-\frac{2 \times \Delta\left(R_{1}, R_{2}\right)}{K(K-1)}
$$

Retrieval Evaluation (2) - Solution 2

- R_{1} :
- $\left(d_{7}, d_{5}\right),\left(d_{7}, d_{3}\right),\left(d_{7}, d_{8}\right),\left(d_{7}, d_{1}\right)$ => D D D D
- $\left(d_{5}, d_{3}\right),\left(d_{5}, d_{8}\right),\left(d_{5}, d_{1}\right)=>$ C C C
- $\left(d_{3}, d_{8}\right),\left(d_{3}, d_{1}\right)=>$ D C
- $\left(d_{8}, d_{1}\right)=>C$
- R_{2} :
= $\left(d_{5}, d_{8}\right),\left(d_{5}, d_{3}\right),\left(d_{5}, d_{1}\right),\left(d_{5}, d_{7}\right)=>$ C C C D
- $\left(d_{8}, d_{3}\right),\left(d_{8}, d_{1}\right),\left(d_{8}, d_{7}\right)=>D C D$
- $\left(d_{3}, d_{1}\right),\left(d_{3}, d_{7}\right)=>C D$
- $\left(d_{1}, d_{7}\right)=>D$
- $\Delta\left(R_{1}, R_{2}\right)=10$
- Kendall Tau coefficient:
- 1 - [(2 * 10) / 20] = 0

Clustering (1) - Assignment

- The Sum Squared Error (SSE) is a common measure of the quality of a cluster
- Sum of the squares of the distances between each of the points of the cluster and the centroid
- Sometimes, we decide to split a cluster in order to reduce the SSE
- Suppose a cluster consists of the following three points: $(9,5),(2,2)$ and $(4,8)$
- Calculate the reduction in the SSE if we partition the cluster optimally into two clusters

Clustering (1) - Solution

- Centroid of points is detemined by averaging the values in each dimension independently $=>$ centroid of that three points: $(5,5)$
- $[(9,5)-(5,5)]^{2}=16 \quad[(4,8)-(5,5)]^{2}=10 \quad[(2,2)-(5,5)]^{2}=18$
- $=>$ SSE $=16+10+18=44$
- Then, we group the closest two points, i.e., points $(9,5)$ and $(4,8)$, to one cluster and compute its centroid: $(6.5,6.5)$
" $[(9,5)-(6.5,6.5)]^{2}=8.5[(4,8)-(6.5,6.5)]^{2}=8.5 \quad \Rightarrow$ SSE $_{1}=8.5+8.5=17$
- The second cluster has only one point, which is also centroid
- $[(2,2)-(2,2)]^{2}=0 \quad \Rightarrow$ SSE $_{2}=0$
- $=>$ SSE $=$ SSE $_{1}+$ SSE $_{2}=17+0=17$
- The reduction in the SSE:
- $44-17=27$

Clustering (2) - Assignment

- Perform a hierarchical clustering on points A-F
- Using the centroid proximity measure

[21, 21]
- There is a tie for which pair of clusters is closest. Follow both choices and identify the clusters.

Clustering (2) - Recap

- Hierarchical clustering
- Key operation - repeatedly combine two nearest clusters

Clustering (2) - Solution

- Centroid proximity measure - distance between two clusters is the distance between their centroids

1) $\{A, B\}$ with centroid at $(5,5)$
2) $\{C, F\}$ with centroid at $(24.5,13.5)$
3) Tie :

- $\{A, B, C, F\}$ with centroid at $(14.75,9.25)=>\{A, B, C, E, F\},\{D\}$
- $\{C, D, F\}$ with centroid at $(27.33,20)=>\{A, B, E\},\{C, D, F\}$

