SOLUTIONS

Exercises on Block3: Link Analysis - PageRank Advertising Recommender Systems

Advanced Search Techniques for Large Scale Data Analytics
Pavel Zezula and Jan Sedmidubsky
Masaryk University
http://disa.fi.muni.cz

PageRank (1) - Assignment

- For the following graph

- Compute the PageRank of each page, assuming no taxation

PageRank (1) - Recap

- Each link's vote is proportional to the importance of its source page
- If page j with importance r_{j} has n out-links, each link gets r_{j} / n votes
- Page j's own importance is the sum of the votes on its in-links

$$
r_{j}=r_{i} / 3+r_{k} / 4
$$

PageRank (1) - Recap

- Stochastic adjacency matrix M
- Let page i has d_{i} out-links
- If $i \rightarrow j$, then $M_{j i}=\frac{1}{d_{i}}$ else $M_{j i}=0$
- \boldsymbol{M} is a column stochastic matrix
- Columns sum to 1
- Rank vector r : vector with an entry per page
- r_{i} is the importance score of page i
- $\sum_{i} r_{i}=1$
- The flow equations can be written $\quad r_{j}=\sum_{i \rightarrow j} \frac{r_{i}}{\mathrm{~d}_{\mathrm{i}}}$
$\boldsymbol{r}=\boldsymbol{M} \cdot \boldsymbol{r}$

PageRank (1) - Recap

- Given a web graph with n nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
- Suppose there are N web pages
- Initialize: $\mathbf{r}^{(0)}=[1 / \mathrm{N}, \ldots ., 1 / \mathrm{N}]^{\top}$
- Iterate: $\mathbf{r}^{(t+1)}=\mathbf{M} \cdot \mathbf{r}^{(t)}$

$$
r_{j}^{(t+1)}=\sum_{i \rightarrow j} \frac{r_{i}^{(t)}}{\mathrm{d}_{\mathrm{i}}}
$$

$d_{i} \ldots$ out-degree of node i

- Stop when $\left|\mathbf{r}^{(t+1)}-\mathbf{r}^{(t)}\right|_{1}<\varepsilon$ $|\mathbf{x}|_{1}=\sum_{1 \leq i \leq N}\left|x_{i}\right|$ is the L_{1} norm Can use any other vector norm, e.g., Euclidean

PageRank (1) - Solution

- The transition matrix for the graph is:

$$
M=\left(\begin{array}{ccc}
1 / 3 & 1 / 2 & 0 \\
1 / 3 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 1 / 2
\end{array}\right)
$$

- By equation method ($M \cdot r=r$), we get the result:

$$
\begin{array}{rlrl}
A & =\frac{1}{3} A+\frac{1}{2} B & A & =\frac{3}{13} \\
B=\frac{1}{3} A+\frac{1}{2} C & B & =\frac{4}{13} & r=\left(\begin{array}{lll}
\frac{\mathbf{3}}{\mathbf{1 3}} & \frac{\mathbf{4}}{\mathbf{1 3}} & \frac{\mathbf{6}}{\mathbf{1 3}}
\end{array}\right)^{T} \\
C=\frac{1}{3} A+\frac{1}{2} B+\frac{1}{2} C & C & =\frac{6}{13} &
\end{array}
$$

- By iteration method, we get the following list:

$$
\left(\begin{array}{l}
0.3333 \\
0.3333 \\
0.3333
\end{array}\right),\left(\begin{array}{l}
0.2777 \\
0.2777 \\
0.4444
\end{array}\right),\left(\begin{array}{l}
0.2314 \\
0.3148 \\
0.4537
\end{array}\right),\left(\begin{array}{l}
0.2345 \\
0.3040 \\
0.4614
\end{array}\right),\left(\begin{array}{l}
0.2301 \\
0.3088 \\
0.4609
\end{array}\right), \ldots,\left(\begin{array}{l}
0.2307 \\
0.3076 \\
0.4615
\end{array}\right)
$$

PageRank (2) - Assignment

- For the following graph

1) Set up the PageRank equations, assuming $\beta=0.8$
2) Order nodes by PageRank from highest to lowest

PageRank (2) - Recap

- The Google solution for spider traps: At each time step, the random surfer has two options
- With prob. β, follow a link at random
- With prob. 1- β, jump to some random page
- Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

PageRank (2) - Recap

- Google's solution that does it all:

At each step, random surfer has two options:

- With probability β, follow a link at random
- With probability 1- β, jump to some random page
- PageRank equation [Brin-Page, 98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N} \quad \begin{gathered}
\mathrm{d}_{i} \ldots \text { out-degree } \\
\text { of node } \mathrm{i}
\end{gathered}
$$

This formulation assumes that \boldsymbol{M} has no dead ends. We can either preprocess matrix \boldsymbol{M} to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

PageRank (2) - Recap

- PageRank equation [Brin-Page, '98]

$$
r_{j}=\sum_{i \rightarrow j} \beta \frac{r_{i}}{d_{i}}+(1-\beta) \frac{1}{N}
$$

- The Google Matrix A:

$$
A=\beta M+(1-\beta)\left[\frac{1}{N}\right]_{N \times N}
$$

- We have a recursive problem: $\boldsymbol{r}=\boldsymbol{A} \cdot \boldsymbol{r}$

And the Power method still works!

- What is β ?
- In practice $\beta=0.8,0.9$ (make 5 steps on avg., jump)

PageRank (2) - Solution

- Equations:
- $r_{1}=0.8 \cdot\left(1 / 6 \cdot r_{1}+1 / 2 \cdot r_{4}+r_{6}+1 / 5 \cdot r_{2}\right)+0.2 / 6$
- $r_{2}=0.8 \cdot\left(1 / 6 \cdot r_{1}+1 / 3 \cdot r_{3}+1 / 2 \cdot r_{5}\right)+0.2 / 6$
- $r_{3}=0.8 \cdot\left(1 / 6 \cdot r_{1}+1 / 5 \cdot r_{2}+1 / 2 \cdot r_{5}\right)+0.2 / 6$
- $r_{4}=0.8 \cdot\left(1 / 6 \cdot r_{1}+1 / 5 \cdot r_{2}\right)+0.2 / 6$
- $r_{5}=0.8 \cdot\left(1 / 6 \cdot r_{1}+1 / 5 \cdot r_{2}+1 / 3 \cdot r_{3}\right)+0.2 / 6$
- $r_{6}=0.8 \cdot\left(1 / 6 \cdot r_{1}+1 / 5 \cdot r_{2}+1 / 3 \cdot r_{3}+1 / 2 \cdot r_{4}\right)+0.2 / 6$
- Without the need of computing the actual importance from the above stated equations, we can derive order between the following pairs of nodes:
$r_{1}>r_{6} \quad r_{4}<r_{5}<r_{6} \quad r_{2}>r_{3} \quad r_{3}>r_{5} \quad r_{6}>r_{2}$
- This implies final order:

$$
r_{1}>r_{6}>r_{2}>r_{3}>r_{5}>r_{4}
$$

PageRank (3) - Assignment

- For the following graph

- Assuming $\beta=0.8$, compute the topic-sensitive PageRank for the following teleport sets:

1) $\{\mathrm{A}\}$
2) $\{A, C\}$

PageRank (3) - Recap

- Random walker has a small probability of teleporting at any step
- Teleport can go to:
- Standard PageRank: Any page with equal probability
- To avoid dead-end and spider-trap problems
- Topic Specific PageRank: A topic-specific set of "relevant" pages (teleport set)
- Idea: Bias the random walk
- When walker teleports, she pick a page from a set \boldsymbol{S}
- S contains only pages that are relevant to the topic
- E.g., Open Directory (DMOZ) pages for a given topic/query
- For each teleport set S, we get a different vector $\boldsymbol{r}_{\boldsymbol{s}}$

PageRank (3) - Recap

- To make this work all we need is to update the teleportation part of the PageRank formulation:

$$
A_{i j}= \begin{cases}\beta M_{i j}+(1-\beta) /|S| & \text { if } i \in S \\ \beta M_{i j}+0 & \text { otherwise }\end{cases}
$$

- \boldsymbol{A} is stochastic!
- We weighted all pages in the teleport set S equally
- Could also assign different weights to pages!
- Compute as for regular PageRank:
- Multiply by \mathbf{M}, then add a vector
- Maintains sparseness

PageRank (3) - Recap

- $r=A \cdot r$, where $\boldsymbol{A}_{\boldsymbol{j} \boldsymbol{i}}=\boldsymbol{\beta} M_{\boldsymbol{j i}}+\frac{\mathbf{1 - \beta}}{\boldsymbol{N}}$
- $r_{j}=\sum_{\mathrm{i}=1}^{N} A_{j i} \cdot r_{i}$
- $r_{j}=\sum_{i=1}^{N}\left[\beta M_{j i}+\frac{1-\beta}{N}\right] \cdot r_{i}$
$=\sum_{\mathrm{i}=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \sum_{\mathrm{i}=1}^{N} r_{i}$
$=\sum_{\mathrm{i}=1}^{N} \beta M_{j i} \cdot r_{i}+\frac{1-\beta}{N} \quad$ since $\sum r_{i}=1$
- So we get: $\boldsymbol{r}=\boldsymbol{\beta} \boldsymbol{M} \cdot \boldsymbol{r}+\left[\frac{1-\beta}{N}\right]_{N}$

Note: Here we assumed \mathbf{M} has no dead-ends

PageRank (3) - Recap

- We just rearranged the PageRank equation

$$
r=\beta M \cdot r+\left[\frac{1-\beta}{N}\right]_{N}
$$

- where $[(1-\beta) / N]_{N}$ is a vector with all N entries $(1-\beta) / N$
- \boldsymbol{M} is a sparse matrix! (with no dead-ends)
- 10 links per node, approx 10N entries
- So in each iteration, we need to:
- Compute $r^{\text {new }}=\beta \boldsymbol{M} \cdot \boldsymbol{r}^{\text {old }}$
- Add a constant value (1- β)/N to each entry in $\boldsymbol{r}^{\text {new }}$
- Note if M contains dead-ends then $\sum_{j} r_{j}^{\text {new }}<1$ and we also have to renormalize $r^{\text {new }}$ so that it sums to 1

PageRank (3) - Solution 1/4

- The transition matrix for the graph is:

$$
M=\left(\begin{array}{cccc}
0 & 1 / 2 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right) \quad \beta \cdot M=\left(\begin{array}{cccc}
0 & 2 / 5 & 4 / 5 & 0 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 2 / 5 & 0 & 0
\end{array}\right)
$$

1) Computing PageRank for teleport set $\{\mathrm{A}\}$ using equations:

$$
\begin{aligned}
(1-\beta) \cdot\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 5 \\
0 \\
0 \\
0
\end{array}\right) \Rightarrow \begin{aligned}
A & =\frac{2}{5} B+\frac{4}{5} C+\frac{\mathbf{1}}{5} \\
B & =\frac{4}{15} A+\frac{2}{5} D \\
C & =\frac{4}{15} A+\frac{2}{5} D \quad \Rightarrow \quad r=\left(\begin{array}{llll}
\frac{\mathbf{3}}{\mathbf{7}} & \frac{\mathbf{4}}{\mathbf{2 1}} & \frac{\mathbf{4}}{\mathbf{2 1}} & \frac{\mathbf{4}}{\mathbf{2 1}}
\end{array}\right)^{T} \\
D & =\frac{4}{15} A+\frac{2}{5} B \\
A & +B+C+D=1
\end{aligned}
\end{aligned}
$$

PageRank (3) - Solution 2/4

- The transition matrix for the graph is:

$$
M=\left(\begin{array}{cccc}
0 & 1 / 2 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right) \quad \beta \cdot M=\left(\begin{array}{cccc}
0 & 2 / 5 & 4 / 5 & 0 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 2 / 5 & 0 & 0
\end{array}\right)
$$

1) Computing PageRank for teleport set $\{A\}$ using iterations:

$$
(1-\beta) \cdot\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 5 \\
0 \\
0 \\
0
\end{array}\right) \Rightarrow r^{(1)}=\beta \cdot M \cdot r^{(0)}+\left(\begin{array}{c}
1 / 5 \\
0 \\
0 \\
0
\end{array}\right)
$$

- We can initialize vector r in different ways; however, the sum of values must equal to 1, e.g., $r^{(0)}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)^{T}$

$$
\Rightarrow\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0.2 \\
0.2666 \\
0.2666 \\
0.2666
\end{array}\right),\left(\begin{array}{l}
0.52 \\
0.16 \\
0.16 \\
0.16
\end{array}\right), \ldots,\left(\begin{array}{l}
0.4285 \\
0.1904 \\
0.1904 \\
0.1904
\end{array}\right)
$$

PageRank (3) - Solution 3/4

- The transition matrix for the graph is:

$$
M=\left(\begin{array}{cccc}
0 & 1 / 2 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right) \quad \beta \cdot M=\left(\begin{array}{cccc}
0 & 2 / 5 & 4 / 5 & 0 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 2 / 5 & 0 & 0
\end{array}\right)
$$

2) Computing PageRank for teleport set $\{A, C\}$ using equations:

$$
\begin{aligned}
& (1-\beta) \cdot\left(\begin{array}{c}
1 / 2 \\
0 \\
1 / 2 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 10 \\
0 \\
1 / 10 \\
0
\end{array}\right) \Rightarrow \begin{array}{c}
A=\frac{2}{5} B+\frac{4}{5} C+\frac{\mathbf{1}}{10} \\
B=\frac{4}{15} A+\frac{2}{5} D
\end{array} \\
& C=\frac{4}{15} A+\frac{2}{5} D+\frac{1}{10} \Rightarrow r=\left(\begin{array}{llll}
\frac{27}{70} & \frac{6}{35} & \frac{19}{70} & \frac{6}{35}
\end{array}\right)^{T} \\
& D=\frac{4}{15} A+\frac{2}{5} B \\
& A+B+C+D=1
\end{aligned}
$$

PageRank (3) - Solution 4/4

- The transition matrix for the graph is:

$$
M=\left(\begin{array}{cccc}
0 & 1 / 2 & 1 & 0 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 0 & 0 & 1 / 2 \\
1 / 3 & 1 / 2 & 0 & 0
\end{array}\right) \quad \beta \cdot M=\left(\begin{array}{cccc}
0 & 2 / 5 & 4 / 5 & 0 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 0 & 0 & 2 / 5 \\
4 / 15 & 2 / 5 & 0 & 0
\end{array}\right)
$$

2) Computing PageRank for teleport set $\{A, C\}$ using iterations:

$$
(1-\beta) \cdot\left(\begin{array}{c}
1 / 2 \\
0 \\
1 / 2 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 10 \\
0 \\
1 / 10 \\
0
\end{array}\right) \Rightarrow r^{(1)}=\beta \cdot M \cdot r^{(0)}+\left(\begin{array}{c}
1 / 10 \\
0 \\
1 / 10 \\
0
\end{array}\right)
$$

- We can initialize vector r in different ways; however, the sum of values must equal to 1, e.g., $r^{(0)}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)^{T}$

$$
\Rightarrow\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0.1 \\
0.2666 \\
0.3666 \\
0.2666
\end{array}\right),\left(\begin{array}{c}
0.5 \\
0.1333 \\
0.2333 \\
0.1333
\end{array}\right), \ldots,\left(\begin{array}{c}
0.3857 \\
0.1714 \\
0.2714 \\
0.1714
\end{array}\right)
$$

Advertising (1) - Assignment

- Suppose the BALANCE algorithm with bids of 0 or 1 only, to a situation where advertiser
- A bids on query words x and y
- B bids on query words x and z
- Both have a budget of $\$ 2$. Decide whether the following sequences of queries are certainly handled optimally by the algorithm:

1) yzyy
2) $x y y z$
3) $x y z x$

Advertising (1) - Recap

- BALANCE Algorithm by Mehta, Saberi, Vazirani, and Vazirani
- For each query, pick the advertiser with the largest unspent budget
- Break ties arbitrarily (but in a deterministic way)

Advertising (1) - Recap

- Two advertisers A and B
- A bids on query $\boldsymbol{x}, \mathbf{B}$ bids on \boldsymbol{x} and \boldsymbol{y}
- Both have budgets of $\$ \mathbf{4}$
- Query stream: xxxxyyy
- BALANCE choice: A B A B B B _ _
- Optimal: A A A A B B B B
- In general: For BALANCE on $\mathbf{2}$ advertisers Competitive ratio = 3/4

Advertising (1) - Solution

1) Yes (for input sequence: yzyy)

- Balance choice: yzy (\$3) Optimal: yzy (\$3)

2) $\mathbf{N o}$ (for input sequence: $x y y z$)

- If the x is assigned to A, then the second y cannot be satisfied, while the optimum assigns all four queries
- Balance choice: xyz (\$3)

Optimal: xyyz (\$4)
3) Yes (for input sequence: $x y z x$)

- Whichever advertiser is assigned the first x, the other will be assigned the second x , thus using all four queries
- Balance choice: xyzx (\$4)

Optimal: xyzx (\$4)

Recomm. Systems (1) - Assignment

- Bookstore has enough ratings to use a more advanced recommendation system
- Suppose the mean rating of books is 3.4 stars
- Alice has rated 350 books and her average rating is 0.4 stars higher than average users' ratings
- Animals Farm, is a book title in the bookstore with 250,000 ratings whose average rating is 0.7 higher than global average
- What is a baseline estimate of Alice's rating for Animals Farms?

Recomm. Systems (1) - Solution

- Baseline estimate of Alice's rating for Animals Farms:

$$
r=3.4+0.7+0.4=4.5
$$

Recomm. Systems (2) - Assignment

- Computers A, B and C have the following features:

Feature	A	B	C
Processor speed	3.06	2.68	2.92
Disk size	500	320	640
Main-memory size	6	4	6

- Assuming features as a vector for each computer, e.g., A's vector is [3.06, 500, 6], we can compute the cosine distance between any two vectors
- Scaling dimensions can prefer some components
- Assume 1 as the scale factor for processor speed, α for the disk size, and β for the main memory size and compute:
- The cosines of angles between pairs of vectors (in terms of α and β)

Recomm. Systems (2) - Recap

User profile

Recomm. Systems (2) - Recap

Recomm. Systems (2) - Solution

The cosines of angles between pairs of vectors (in

 terms of α and β)$$
\begin{aligned}
& \cos (A, B)=\frac{8.2008+160000 \alpha^{2}+24 \beta^{2}}{\sqrt{9.3636+250000 \alpha^{2}+36 \beta^{2}} \cdot \sqrt{7.1824+102400 \alpha^{2}+16 \beta^{2}}} \\
& \cos (B, C)=\frac{7.8256+204800 \alpha^{2}+24 \beta^{2}}{\sqrt{7.1824+102400 \alpha^{2}+16 \beta^{2}} \cdot \sqrt{8.5264+409600 \alpha^{2}+36 \beta^{2}}} \\
& \cos (A, C)=\frac{8.9352+320000 \alpha^{2}+36 \beta^{2}}{\sqrt{9.3636+250000 \alpha^{2}+36 \beta^{2}} \cdot \sqrt{8.5264+409600 \alpha^{2}+36 \beta^{2}}}
\end{aligned}
$$

Recomm. Systems (3) - Assignment

- A user has rated the three computers as follows:
- A: 4 stars, B: 2 stars, C: 5 stars
- Tasks:

1) Normalize the ratings for this user
2) Compute a user profile for the user, with the following features

Feature	A	B	C
Processor speed	3.06	2.68	2.92
Disk size	500	320	640
Main-memory size	6	4	6

Recomm. Systems (3) - Solution

- 1) Normalized ratings:
- $\operatorname{avg}(4+2+5) / 3=11 / 3$
- A: $4-11 / 3=1 / 3$
- B: $2-11 / 3=-5 / 3$
- C: $5-11 / 3=4 / 3$

2) Computed user profile:

- Processor speed: $3.06 \cdot 1 / 3-2.68 \cdot 5 / 3+2.92 \cdot 4 / 3=0.4467$
- Disk size: $500 \cdot 1 / 3-320 \cdot 5 / 3+640 \cdot 4 / 3=486.6667$
- Main-memory size: $6 \cdot 1 / 3-4 \cdot 5 / 3+6 \cdot 4 / 3=3.3333$

