
PB152 Operating Systems 1/93 July 4, 2020

PB152 Operating Systems
Petr Ročkai

Part A: Preliminaries
These are draft (work in progress) lecture notes for PB152. It is expected
to be gradually filled in, hopefully before the semester ends. For now,
it is mostly a printable version of the slides.

3Organisation
• lectures, with an optional seminar
• written exam at the end
∘ multiple choice
∘ free-form questions

• 1 online test mid-term, 1 before exam
∘ mainly training for the exam proper

The written examwill consist of two parts, a multiple-choice test (with
exactly one correct answer on each question) and a free-form question.
Additionally, you will be required to pass a mid-term test with the
same pool of multiple-choice questions. The question pool is known in
advance: both the entire mid-term and the multiple-choice part of the
final exam will contain questions that are listed in these notes (on the
last slide in each lecture).
The possible answers will be, however, not known in advance, and will
be randomized for each instance of the test. Do not try to learn the
correct answer by its wording: you need to understand the questions
and the correct answers to pass the test.

4Seminars
• a separate, optional course (code PB152cv)
• covers operating systems from a practical perspective
• get your hands on the things we’ll talk about here
• offers additional practice with C programming

The seminar is a good way to gain some practical experience with
operating systems. It will mainly focus on interaction of programswith
OS services, but will also cover user-level issues like virtualisation, OS
installation and shell scripting.

5Mid-Term and End-Term Tests
• 24 hours to complete, 2 attempts possible
• 10 questions, picked from review questions
∘ mid-term→ first 24, end-term second 24

• 8 out of 10 is required on each of them
• preliminary mid-term date: 7.4., 6pm

Even though passing the mid-term/end-term online tests is easy (and
it is easy for you to collaborate), I strongly suggest that you use the op-
portunity to evaluate your knowledge for yourself, honestly. The same
questions will appear on the exam, and this time, it won’t be possible to
consult the slides, the internet or your friends. Also, you will be only
allowed 1 mistake (out of 10 questions). Use the few opportunities to
practice for the exam wisely.

6Study Materials
• this course is undergoing a major update
• lecture slides will be in the IS
∘ they will be added as we go

• you can also use slides from previous years
∘ they are already in study materials
∘ but: not everything is covered in those

You are reading the lecture notes for the course PB152 Operating Sys-
tems. This is a supplementary resource based on the lecture slides, but
with additional details that would not fit into the slide format. These
lecture notes should be self-contained in the sense that they only rely
on knowledge you have from other courses, like PB150 Computer Sys-
tems (or PB151) or PB071 Principles of Low-Level programming. Like-
wise, being familiar with the topics covered in these lecture notes is
sufficient to pass the exam.

7Books
• there are a few good OS books
• you are encouraged to get and read them
• A. Tanenbaum: Modern Operating Systems
• A. Silberschatz et al.: Operating System Concepts
• L. Skočovský: Principy a problémy OS UNIX
• W. Stallings: Operating Systems, Internals and Design
• many others, feel free to explore

The books mentioned here usually cover a lot more ground than it is
possible to include in a single-semester course. The study of operating
systems is, however, very important in many sub-fields of computer
science, and also in most programming disciplines. Spending extra
time on this topic will likely be well worth your time.

8Topics
1. Anatomy of an OS
2. System Libraries and APIs
3. The Kernel
4. File Systems
5. Basic Resources and Multiplexing
6. Concurrency and Locking

In the first half of the semester, wewill deal with the basic components
and abstractions used in general-purpose operating systems. The first
lecture will simply give an overview of the entire OS and will attempt
to give you an idea how those fit together. In the second lecture, wewill
cover the basic programming interfaces provided by the OS, provided
mainly by system libraries.

PB152 Operating Systems 2/93 July 4, 2020

9Topics (cont’d)
7. Device Drivers
8. Network Stack
9. Command Interpreters & User Interfaces
10.Users and Permissions
11.Virtualisation & Containers
12.Special-Purpose Operating Systems

The second half of the semester will start with device drivers, which
form an important part of operating systems in general, since they
mediate communication between application software and hardware
peripherals connected to the computer. In a similar fashion, the net-
work stack allows programs to communicate with other computers
(and software running on those other computers) that are attached to
a computer network.

10Related Courses
• PB150/PB151 Computer Systems
• PB153 Operating Systems and their Interfaces
• PA150 Advanced OS Concepts
• PV062 File Structures
• PB071 Principles of Low-level programming
• PB173 Domain-specific Development in C/C++

There is a number of courses that overlap, provide prerequisite knowl-
edge or extend what you will learn here. The list above is incomplete.
The course PB153 is an alternative to this course. Most students are
expected to take PB071 in parallel with this course, even though knowl-
edge of C won’t be required for the theory we cover. However, C basics
will be needed for the optional seminar (PB152cv).

11Organisation of the Semester
• generally, one lecture = one topic
• there will be most likely 13 lectures
• the 13th lecture will be review
• online mid-term in April

Part B: Semester Overview
This section gives a high-level overview of the topics that will be cov-
ered in individual lectures. Think of it as an extended table of contents,
or as a collection of abstracts, one for each of the upcoming lectures.

132 System Libraries and APIs
• POSIX: Portable Operating System Interface
• UNIX: (almost) everything is a file
• the least common denominator of programs: C
• user view: objects, archives, shared libraries
• compiler, linker

System libraries and their APIs provide the most direct access to op-
erating system services. In the second lecture, we will explore how
programs access those services and how the system libraries tie into
the C programming language. We will also deal with basic artifacts
that make up programs: object files, archive files, shared libraries and
how those come about: how we go from a C source file all the way to
an executable file through compilation and linking.
Throughout this lecture, we will use POSIX as our go-to source of
examples, since it is the operating system interface that is most widely
implemented. Moreover, there is abundance of documentation and
resources both online and offline.

143 The Kernel
• privileged CPU mode
• the boot process
• boundary enforcement
• kernel designs: micro, mono, exo, ...
• system calls

In the third lecture, we will focus on the kernel, arguably the most
important (and often themost complicated) part of an operating system.
We will start from the beginning, with the boot process: how the

kernel is loaded into memory, initialises the hardware and starts the
user-space components (that is, everything that is not the kernel) of
the operating system.
Wewill then talk about boundary enforcement: how the kernel polices
user processes so they cannot interfere with each other, or with the
underlying hardware devices. Wewill touch on how this enforcement
makes it possible to allow multiple users to share a single computer
without infringing on each other (or at least limiting any such infringe-
ment).
Another topic of considerable interest will be how kernels are designed
and what is and what isn’t part of the kernel proper. We will explore
some of the trade-offs involved in the various designs, especially with
regards to security and correctness vs performance.
Finally, we will look at the system call mechanism, which is how the
user-space communicates with the kernel, and requests various low-
level operating system services.

154 File Systems
• why and how
• abstraction over shared block storage
• directory hierarchy
• everything is a file revisited
• i-nodes, directories, hard & soft links

Next up are file systems, which are a very widely used abstraction
on top of persistent block storage, which is what hardware storage
devices provide. We will ask ourselves, first of all, why filesystems are
important and why they are so pervasively implemented in operating
systems, and then we will look at how they work on the inside. In par-
ticular, we will explore the traditional UNIX filesystem, which offers
important insights about the architecture of the operating system as a
whole, and about important aspects of the POSIX file semantics.

PB152 Operating Systems 3/93 July 4, 2020

165 Basic Resources and Multiplexing
• virtual memory, processes
• sharing CPUs & scheduling
• processes vs threads
• interrupts, clocks

Oneof the basic roles of the operating system ismanagement of various
resources, starting with the most basic: the CPU cores and the RAM.
Since those resources are very important to every process or program,
we will spend the entire lecture on them. In particular, we will look
at the basic units of resource assignment: threads for the CPU and
processes for memory. We will also look at the mechanisms used by
the kernel to implement assignment and protection of those resources,
namely the virtual memory subsystem and the scheduler.

176 Concurrency and Locking
• inter-process communication
• accessing shared resources
• mutual exclusion
• deadlocks and deadlock prevention

Scheduling and slicing of CPU time is closely related to another impor-
tant topic that pervades operating system design: concurrency. We
will take a high-level, introductory look at this topic, since the details
are often complicated, architecture-specific and require deep under-
standing of both hardware (SMP, cache hierarchies) and of kernels.

187 Device Drivers
• user vs kernel drivers
• interrupts &c.
• GPU
• PCI &c.
• block storage
• network devices, wifi
• USB
• bluetooth

One of the fundamental roles of an operating system is to mediate
access to hardware devices. Some of the code that provides hardware
access deals mainly with the software interfaces and APIs – this is
known as hardware abstraction. However, to make this abstraction
work, there is often a large amount of device-specific (or at least device-
class-specific) ‘glue’ – also known as device drivers.
One of the important questionswill be the interplay betweenprocessor-
level protections and direct hardware access and what this means for
drivers. We will see that for some (but not all) types of hardware, only
privileged programs (either inside the kernel, or close to it) can reason-
ably mediate between hardware itself and between higher levels of
the system (hardware abstraction layer, application software, etc.).

198 Network Stack
• TCP/IP
• name resolution
• socket APIs
• firewalls and packet filters
• network file systems

While there is a dedicated course about networking, we will spend one

of our lectures talking about networks: in modern operating systems,
networking is an integral part of the package and networking consid-
erations often influence other parts of the system. We will look at the
ubiquitous TCP/IP stack, how it integrates into an operating system
and what are the APIs that applications can use to take advantage of
network services. Wewill also touch on network-related functionality
that is often deeply integrated into operating systems: packet filtering
and network file systems.

209 Command Interpreters & User Interfaces
• interactive systems
• history: consoles and terminals
• text-based terminals, RS-232
• bash and other Bourne-style shells, POSIX
• graphical: X11, Wayland, OS X, Windows, Android, iOS

The next lecture will focus on human-computer interaction, which
is clearly a central aspect of the experience of using a computer and
is therefore an important part of most general-purpose operating sys-
tems. Even computers that do not directly (physically) interact with
humans usually present some form of an interface, usually mediated
over the network.
We will first look at ‘traditional’ text-based interfaces, which are still
in common use among system and network engineers and computer
programmers, butwewill also look in some depth at the graphics stacks
that power modern devices (up to and including smartphones).

2110 Users and Permissions
• multi-user systems
• isolation, ownership
• file system permissions
• capabilities

There are two important use-cases for computers (and hence operating
systems) in which higher-level access control and permission manage-
ment is important: first, when a single computer is shared by multiple
users (this is the more traditional case), but in more modern times, also
whenever we execute untrusted or semi-trusted programs on our de-
vices (think application permissions on smartphones, web pages that
execute javascript on your laptop and so on).

2211 Virtualisation & Containers
• resource multiplexing redux
• isolation redux
• multiple kernels on a single system
• type 1 and type 2 hypervisors
• virtio

A computer, along with its operating system, is a natural ‘unit’ of com-
putation resources – it conveniently packages up the resources them-
selves, with a software stack and configuration. Unfortunately, com-
puters – being physical devices – are somewhat inflexible andunwieldy:
they have to be procured, placed in racks in air-conditioned rooms, at-
tached to a power source, to each other and to the larger network.
Their physical components are prone to wear and failure, and need to
be replaced or repaired regularly.
Virtualization makes it possible to detach the logical aspects of a com-
puter – its installed software, data storage and configuration – from the
physical box. This improves hardware utilization, decouples hardware
maintenance from software aspects and makes everyone’s life easier

PB152 Operating Systems 4/93 July 4, 2020

(most of the time, anyway).
In this lecture, we will peek under the hood of modern hypervisor-
based virtual machines and how they are implemented in the current
generation of operating systems.

2312 Special-Purpose Operating Systems
• general-purpose vs special-purpose
• embedded systems
• real-time systems
• high-assurance systems (seL4)

Throughout most of the course, we will have talked about general-
purpose operating systems: those that run on personal computers and
servers. The last lecture will be dedicated to more specialised systems:
those that run inwashingmachines, on satellites or on theMars rovers.
We will also briefly cover high-assurance systems, which focus on
extremely high reliability and/or security.

Part 1: Anatomy of an OS
In the first lecture, we will first pose the question “what is an operating
system” and give some short, but largely unsatisfactory answers. Since
an operating system is a complex system, it is built from a number of
components. Each of those components is described more easily than
the entire operating system, and for this reason, we will attempt to
understand an operating system as the sum of its parts.

25Lecture Overview
1. Components
2. Interfaces
3. Classification

After talking about what is an operating system, we will give more
details about its components and afterwards move on to the interfaces
between those components. Finally, we will look at classifying oper-
ating systems: this is another angle that could help us pin down what
an operating system is.

26What is an OS?
• the software that makes the hardware tick
• and makes other software easier to write

Also
• catch-all phrase for low-level software
• an abstraction layer over the machine
• but the boundaries are not always clear

Our first (very approximate) attempt at defining an OS is via its re-
sponsibilities towards hardware. Since it sits between hardware and
the rest of software, in some sense, it is what makes the hardware
work. Modern hardware alone is rarely capable of achieving anything
useful on its own. It needs to be programmed, and the basic layer of
programming is provided by the operating system.

27What is not (part of) an OS?
• firmware: (very) low level software
∘ much more hardware-specific than an OS
∘ often executes on auxiliary processors

• application software
∘ runs on top of an operating system
∘ this is what you got the computer for
∘ eg. games, spreadsheets, photo editing, ...

One approach to understand what is an operating system could be to
look at things that are related, but are not an operating system, nor
a part of one. There is one additional software-ish layer below the
operating system, usually known as firmware. In a typical computer,
many pieces of firmware are present, but most of them execute on
auxiliary processors – e.g. those in a WiFi card, or in the graphics
subsystem, in the hard drive and so on. In contrast, the operating
system runs on the main processor. There is one piece of firmware
that typically runs on the main CPU: on older systems, it’s known as
BIOS, on modern systems it is simply known as “the firmware”.
In the other direction, on top of an operating system, there is a whole
bunch of application software. While some software of this typemight
be bundled with an operating system, it is not, strictly speaking, a
part of it. Application software is the programs that you use to get
things done, like text editors, word processors, but also programming
IDEs (integrated development environment), computer games or web
applications (do I say Facebook?). And so on and so forth.

28What does an OS do?
• interact with the user
• manage and multiplex hardware
• manage other software
• organises and manages data
• provides services for other programs
• enforces security

The tasks and duties that the operating system performs are rather
varied. On one side, it takes care of the basic interaction with the user:
a command interpreter, a graphical user interface or batch-mode job
processing system with input provided as punch cards. Then there
is the hardware, which needs to be managed and shared between
individual programs and users. Installation of additional (application)
software is another of the responsibilities of an operating system.
Organisation and management of data is a major task as well: this is
what file systems do. This again includes access control and sharing
among users of the underlying hardware which stores the actual bits
and bytes.
Finally, there is the third side that the operating system interfaceswith:
the application software. In addition to the user and the hardware,
application programs need operating services to be able to perform
their function. Among other things, they need to interact with users
and use hardware resources, after all. It is the operating system that is
in charge of both.

PB152 Operating Systems 5/93 July 4, 2020

Part 1.1: Components
In this section, wewill considerwhat an operating consists of, asmeans
to understand what it is.

30What is an OS made of?
• the kernel
• system libraries
• system daemons / services
• user interface
• system utilities

Basically every OS has those.

Operating systems are made of a number of components, some more
fundamental than others. Basically all of the above are present, in
some form, in any operating system (excluding perhaps the smallest,
most special-purpose systems). The kernel is the most fundamental
and lowest layer of an operating system, while system libraries sit on
top and use the services of the kernel. They also broker the services
of the kernel to user-level programs and provide additional services
(which do not need to be part of the kernel itself).
The remaining layers are mostly made of programs in the usual sense:
other than being a part of the operating systems, there isn’t much
to distinguish them from user programs. The first category of such
programs are system daemons or system services, which are typically
long-running programs which react to requests or perform mainte-
nance tasks.
The user interface is slightly more complicated, in the sense that it
consists of multiple sub-components that align with other parts here.
The bullet point here summarises those parts of the user interface that
are more or less standard programs, like the command interpreter.

31The Kernel
• lowest level of an operating system
• executes in privileged mode
• manages all the other software
∘ including other OS components

• enforces isolation and security
• provides low-level services to programs

The kernel is the lowest and arguably the most important part of an
operating system. Its main distinction is that it executes in a special
processor mode (often known as privileged, monitor or supervisor
mode). The main tasks of the kernel are management of basic hard-
ware resources (processor, memory) and specifically providing those
resources to other software running on the computer. This includes
the rest of the operating system.
Another crucial task is enforcement of isolation and security. The
hardware typically providesmeans to isolate individual programs from
each other, but it is up to the software (OS kernel) to set up those
hardware facilities correctly and effectively.
Finally, the kernel often provides the lowest level of various services
to the upper layers. Those are provided mainly in the form of system
calls, and mainly relate (directly or indirectly) to hardware access.

32System Libraries
• form a layer above the OS kernel
• provide higher-level services
∘ use kernel services behind the scenes
∘ easier to use than the kernel interface

• typical example: libc
∘ provides C functions like printf

∘ also known as msvcrt onWindows

One rung above the kernel reside system libraries: among other things,
they provide an interface between the kernel and higher levels of the
system. The interface provided by the library to the application is also
one level of abstraction above kernel services, which typically makes
them easier to use.
Like all libraries, they are linked into other programs and effectively be-
come their part: as such, library code executeswith the same privileges
as application code – for functionality that is not purely computational,
system libraries need to communicate with other parts of the operat-
ing system: either the kernel, or other privileged components (system
services, also known as daemons).

33System Daemons
• programs that run in the background
• they either directly provide services
∘ but daemons are different from libraries
∘ we will learn more in later lectures

• or perform maintenance or periodic tasks
• or perform tasks requested by the kernel

Daemons are long-running system programs: they take care of tasks
which need to be done continuously or periodically, but at the same
time do not need to reside in the kernel. This includes things like de-
livery of internet mail, remote access to the system (e.g. a secure shell
daemon), synchronisation of the system clock (network time protocol
daemon), configuration and leasing of network addresses (dynamic
host control protocol daemon) and so on, printer spooling, domain
name services, parts of the network file system, hardware health mon-
itoring, system-wide logging and others.

34User Interface
• mediates user-computer interaction
• the main shell is typically part of the OS
∘ command line on UNIX or DOS
∘ graphical interfaces with a desktop and windows
∘ but also buttons on your microwave oven

• also building blocks for application UI
∘ buttons, tabs, text rendering, OpenGL...
∘ provided by system libraries and/or daemons

In most systems, application programs cannot directly drive hardware
– it is therefore up to the operating system to provide an interface
between the user (who operates the hardware) and the application
program. This includes user inputs (like keystrokes, mouse movement,
touchpad or touchscreen events and the like) and relaying the outputs
of the application to the user (printing text, drawing windows on the
screen, audio output, etc.).

PB152 Operating Systems 6/93 July 4, 2020

35System Utilities
• small programs required for OS-related tasks
• e.g. system configuration
∘ things like the registry editor onWindows
∘ or simple text editors

• filesystem maintenance, daemon management, ...
∘ programs like ls/dir or newfs or fdisk

• also bigger programs, like file managers

Not all ‘short-running’ (i.e. non-daemon) programs are application
software. There is a number of utilities which aid with the manage-
ment of the operating system itself, configuration of services and of
the underlying hardware and so on. Those utilities typically use the
same type of interface that application software does – whether it is a
command-driven interface or a graphical one.
The distinction between bundled application software and system util-
ities is sometimes blurry: things like the file explorer inWindows is a
fairly big and complicated program, but it also serves a rather central
role in day-to-day use of the system. It can be imagined, however, that
someone would take a program like the Explorer and port it to a differ-
ent operating system. Perhaps the effort would be non-trivial, but the
program would probably not appear out of place in another GUI-based
OS.
There is, however, a number of small programs with a clear-cut pur-
pose, which are much easier to classify, like the network configuration
tool ifconfig or the disk partitioning tool fdisk. Likewise with tools
like fsck (or chkdisk on windows), which are quite meaningless outside
of the operating system that they came with.

36Optional Components
• bundled application software
∘ web browser, media player, ...

• (3rd-party) software management
• a programming environment
∘ eg. a C compiler & linker
∘ C header files &c.

• source code

It is often the case that an operating system comes bundled with pro-
grams which are not an integral part of the operating system, nor are
they in any way involved in its normal operation. A typical example
would be a small collection of games – a tradition that dates back to
the original Berkeley UNIX, if not further into the past, and has been
observed by almost all general-purpose operating systems since: the
Solitaire and Minesweeper games that come bundled withWindows
have an almost iconic status. Of course there is other software that
falls into this category: arguably, MS Paint or Windows Media Player
is not in any way essential to operate Windows, nor is a web browser.
On UNIX, the software that has traditionally been bundled is of a
slightly different nature and stems from the different target audience
(and also from a a different era): a C compiler, a linker and compara-
tively advanced source code editors are often found distributed with
UNIX-like systems. In some cases, part of those tools was in fact es-
sential, since the user would have had to compile a kernel tailored for
their computer. This has, however, not been the case for a while, but
most UNIX users expect to have a C compiler available anyway. Along
with a C compiler would usually come header files for system libraries
and other files needed to create and build your own programs. As I
said, a different era.
Finally, you may get the source code of the operating system: strictly
speaking, this is not a software component, but rather a different

(human-readable, instead of machine-executable) representation of
the same operating system. It is quite useful if you want to learn the
low-level details of how computers and operating systems work.

Part 1.2: Interfaces
Another way to look at an operating system is from the point of view
of its surroundings – what kinds of interfaces there are between the
operating system and other components of a computer?

38Programming Interface
• kernel provides system calls
∘ ABI: Application Binary Interface
∘ defined in terms of machine instructions

• system libraries provide APIs
∘ Application Programming Interface
∘ symbolic / high-level interfaces
∘ typically defined in terms of C functions
∘ system calls also available as an API

The most obvious interface of an operating system (if you are a pro-
grammer, anyway) is its API: the Application Programming Interface –
as the name suggests, it is the functionality that application programs
can obtain from the operating system. Most of this API is provided
by system libraries – bundles of subroutines in the form of machine
code that application programs (and system daemons and system utili-
ties) can call into. Those subroutines often further communicate with
the kernel, using a system-specific low-level protocol: this protocol is
known as the ABI (Application Binary Interface) of the kernel. Pro-
grammers are, for the most part, not exposed to the details of the ABI.
The API is typically described in terms of functions in a higher-level
programming language: most often C, sometimes C++ or Objective C,
rarely some other language. Programmers use those functions just like
they use functions they have themselves implemented, but intsead of
providing definitions, the compiler translates them into calls into the
corresponding machine code subroutines stored in system libraries.

39Message Passing
• APIs do not always come as C functions
• message-passing interfaces are possible
∘ based on inter-process communication
∘ possible even across networks

• form of API often provided by system daemons
∘ may be also wrapped by C APIs

Nonetheless, C functions (or C++ or Objective C or other programming
language functions) are not the only API that there is. Often, there are
interfaces described in terms of inter-process communication, most
often some form of message passing. Those are often interfaces that
are provided by system daemons, e.g. syslogd (usually a UNIX domain
socket) or the mail daemon (often a TCP socket).

PB152 Operating Systems 7/93 July 4, 2020

40Portability
• some OS tasks require close HW cooperation
∘ virtual memory and CPU setup
∘ platform-specific device drivers

• but many do not
∘ scheduling algorithms
∘ memory allocation
∘ all sorts of management

• porting: changing a program to run in a new environment
∘ for an OS, typically new hardware

It is desirable that operating systems can run on different hardware
platforms: this reduces costs in a number of ways. The best (and cheap-
est) code is the code that you don’t need to write – using the same
operating system on different hardware platforms achieves exactly
this (to a degree). On the other side, this saves resources of application
developers, who can target a single operating system and reach a num-
ber of different hardware devices, and also training costs – users can
bemigrated from one hardware platform to anotherwithout extensive
retraining for new software.
While it is basically impossible to write an operating system in an en-
tirely hardware-independentway,many of its components do not need
to care about the particulars of the hardware platform. This includes
even some of the core kernel components (again, to a degree). Any
given thread scheduler can be often used without changes (and some-
times without any sort of additional tuning) on a different hardware
platform, same goes for memory allocators, filesystem code and so on.
Of course, there are also pieces that are closely tied to particular hard-
ware: the boot sequence (which includes things like setting up the CPU
and the virtual memory subsystem), device drivers (which are tied to
particular devices) and so on.
Finally, when we talk about portability, porting the operating system
itself is not the only concern: it is often desirable to port application
programs to run on a different software stack. In general, portability
is the ability of a program to be (easily) adapted to a new environment.

41Hardware Platform
• CPU instruction set (ISA)
• busses, IO controllers
∘ PCI, USB, Ethernet, ...

• firmware, power management

Examples
• x86 (ISA) – PC (platform)
• ARM – Snapdragon, i.MX 6, ...
• m68k – Amiga, Atari, ...

42Platform & Architecture Portability
• an OS typically supports many platforms
∘ Android on many different ARM SoC’s

• quite often also different CPU ISAs
∘ long tradition in UNIX-style systems
∘ NetBSD runs on 15 different ISAs
∘ many of them comprise 6+ different platforms

• special-purpose systems are usually less portable

43Code Re-Use
• it makes a lot of sense to re-use code
• majority of OS code is HW-independent
• this was not always the case
∘ pioneered by UNIX, which was written in C
∘ typical OS of the time was in machine language
∘ porting was basically “writing again”

44Application Portability
• applications care more about the OS than about HW
∘ apps are written in high-level languages
∘ and use system libraries extensively

• it is enough to port the OS to new/different HW
∘ most applications can be simply recompiled

• still a major hurdle (cf. Itanium)

45Application Portability (2)
• same application can often run on many OSes
• especially within the POSIX family
• but same app can run onWindows, macOS, UNIX, ...
∘ Java, Qt (C++)
∘ web applications (HTML, JavaScript)

• many systems provide the same set of services
∘ differences are mostly in programming interfaces
∘ high-level libraries and languages can hide those

46Abstraction
• instruction sets abstract over CPU details
• compilers abstract over instruction sets
• operating systems abstract over hardware
• portable runtimes abstract over operating systems
• applications sit on top of the abstractions

47Abstraction Costs
• more complexity
• less efficiency
• leaky abstractions

Abstraction Benefits
• easier to write and port software
• fewer constraints on HW evolution

48Abstraction Trade-Offs
• powerful hardware allows more abstraction
• embedded or real-time systems not so much
∘ the OS is smaller & less portable
∘ same for applications
∘ more efficient use of resources

PB152 Operating Systems 8/93 July 4, 2020

Part 1.3: Classification
Our last attempt at understanding what an operating is will revolve
around different types of operating systems and their differences.

50General-Purpose Operating Systems
• suitable for use in most situations
• flexible but complex and big
• run on both servers and clients
• cut down versions run on smartphones
• support variety of hardware

The most important and interesting category is ‘general-purpose op-
erating systems’. This is the one that we will mostly talk about in this
course. The systems in this category are usually quite flexible (so they
can cover everything that people usually use computers for) but, for
the same reason, also quite complex. Often the same operating system
will be able to run on both so-called ‘server’ computers (those mainly
sitting in data centres providing services to other computers remotely)
and ‘client’ computers – those that interact with users directly.
Likewise, the same operating system can, perhaps in a slimmed down
version, run on a smartphone, or a similar size- and power-constrained
device. All current major smartphone operating systems are of this
type. Historically, there were a few more specialised phone operating
systems, mainly because at that time, phone hardware was consider-
ably more constrained than it is today. Nonetheless, an OS like Sym-
bian, for instance, could conceivably be used on personal computers
assuming its hardware support was extended.

51Operating Systems: Examples
• Microsoft Windows
• Apple macOS & iOS
• Google Android
• Linux
• FreeBSD, OpenBSD
• MINIX
• many, many others

There is a whole bunch of operating systems, even of general-purpose
operating systems. While running the OS itself is not the primary
reason for getting a computer (application software is), it does form an
important part of user experience. Of course, it also interfaces with
computer hardware andwith application programs, andnot all systems
run on all computers and not all applications run on all operating
systems.

52Special-Purpose Operating Systems
• embedded devices
∘ limited budget
∘ small, slow, power-constrained
∘ hard or impossible to update

• real-time systems
∘ must react to real-world events
∘ often safety-critical
∘ robots, autonomous cars, space probes, ...

We have mentioned earlier, that general-purpose operating systems
are usually large and complex. The smallest complete operating sys-
tems (if they are not merely educational toys) start around 100 thou-

sand lines of code, butmillions of lines ismore typical. It is not unheard
of that an operating system containsmore than 10million lines of code.
These amounts clearly represent thousands of man-years of work –
writing your own operating system, solo, is not very realistic.
That said, special-purpose systems are often much smaller. They usu-
ally only support far fewer hardware devices and they provide simpler
and less varied services to the ‘application’ software.

53Size and Complexity
• operating systems are usually large and complex
• typically 100K and more lines of code
• 10+ million is quite possible
• many thousand man-years of work
• special-purpose systems are much smaller

Let’s recall that the kernel runs in privileged CPUmode. Any software
running in thismode is prettymuch all-powerful and can easily circum-
vent any access restrictions or security protections. It is a well-known
fact that the more code you have, the more bugs there are. Since bugs
in the kernel can have far-fetching and catastrofic consequences, it is
imperative that there are as few as possible. Even more importantly,
device drivers often need hardware access and the easiest (and some-
times only) way to achieve that is by executing in kernel (privileged)
mode.
As you may also know, device drivers are often of rather questionable
quality: hardware vendors often consider those an after-thought and
don’t pay too much attention to their software teams. If those drivers
then execute in kernel mode, this is a serious problem. Different OS
vendors employ different strategies to mitigate this issue.
Accordingly, we would like to make kernels small and banish as many
drivers from the kernel as we could. It is, however, not an easy (or
even obviously right) thing to do. There are two main design schools
when it comes to kernel ‘size‘:

54Kernel Revisited
• bugs in the kernel are very bad
∘ system crashes, data loss
∘ critical security problems

• bigger kernel means more bugs
• third-party drivers inside the kernel?

55Monolithic Kernels
• lot of code in the kernel
• less abstraction, less isolation
• faster and more efficient

Microkernels
• move as much as possible out of kernel
• more abstraction, more isolation
• slower and less efficient

The monolithic kernel is an older and in some sense simpler design. A
lot of code ends up in the kernel, which is not really a problem until
bugs happen. There is less abstraction involved in this design, fewer
interfaces and in general, fewer moving parts for the same amount
of functionality. Those traits then translate to faster execution and
more efficient resource use. Such kernels are called monolithic be-
cause everything that a traditional kernel does is performed by a single
(monolithic) piece of software.

PB152 Operating Systems 9/93 July 4, 2020

The opposite ofmonolithic kernels aremicrokernels. The kernel proper
in such a system is the smallest possible subset of code that must run
in privileged mode. Everything that can be banished into user mode
(of the processor) is. This design provides a lot more isolation and
requires more abstraction. The interfaces within different parts of
the low-level OS services are more complicated. However, subsystems
are well isolated from each other and faults do not propagate nearly
as easily. However, operating systems which use this kernel type run
more slowly and use resources less efficiently.

56Paradox?
• real-time & embedded systems often use microkernels
• isolation is good for reliability
• efficiency also depends on the workload
∘ throughput vs latency

• real-time does not necessarily mean fast

Finally, there is a bit of a paradox around microkernels: it is a fact

that they are often used in embedded (real-time) systems – some of
the most performance-critical software stacks around. However, one
thing is more important than performance when it comes to embed-
ded software: reliability. And reliability is where microkernels shine.
Additionally, even in hard real-time systems, where we often consider
performance to be paramount, raw speed is a bit of a red herring –
what is important is latency, and even more important is an upper
bound on this latency. Providing one is, however, much easier in a
microkernel system, where the code base is small and much easier to
reason about.

57Review Questions
1. What are the roles of an operating system?
2. What are the basic components of an OS?
3. What is an operating system kernel?
4. What is an Application Programming Interface?

Part 2: System Libraries and APIs
In this section, we will study the programming interfaces of operating
systems, first in some generality, without a specific system in mind.
We will then go on to deal specifically with the C-language interface
of POSIX systems.

59Programming Interfaces
• kernel system call interface
• → system libraries / APIs←
• inter-process protocols
• command-line utilities (scripting)

In most operating systems, the lowest-level interface accessible to ap-
plication programs is the system call interface. It is, typically, specified
in terms of a machine-language-level protocol (that is, an ABI), but
usually also provided as a C API. This is the case for POSIX-mandated
system calls, but also on e.g. Windows NT systems.

60Lecture Overview
1. The C Programming Language
2. System Libraries
∘ what is a library?
∘ header files & libraries

3. Compiler & Linker
∘ object files, executables

4. File-based APIs

In this lecture, we will start by reviewing (or perhaps introducing)
the C programming language. Then we will move on to the subject of
libraries in general and system libraries in particular. We will look at
how libraries enter the program compilation process and what other
ingredients there are. Finally, we will have a closer look at a specific
set of file-based programming interfaces.

61Sidenote: UNIX and POSIX
• we will mostly use those terms interchangeably
• it is a family of operating systems
∘ started in late 60s / early 70s

• POSIX is a specification
∘ a document describing what the OS should provide
∘ including programming interfaces

Wewill assume POSIX unless noted otherwise

Before we begin, it should be noted that throughout this course, we
will use POSIX and UNIX systems as examples. If a specific function
or interface is mentioned without further qualification, it is assumed
to be specified by POSIX and implemented by UNIX-like systems.

Part 2.1: The C Programming Language
The C programming language is one of the most commonly used lan-
guages in operating system implementations. It is also the subject of
PB071, and at this point, you should be already familiar with its ba-
sic syntax. Likewise, you are expected to understand the concept of
a function and other basic building blocks of programs. Even if you
don’t know the specific C syntax, the idea is very similar to any other
programming language you might know.

63Programming Languages
• there are many different languages
∘ C, C++, Java, C#, ...
∘ Python, Perl, Ruby, ...
∘ ML, Haskell, Agda, ...

• but C has a special place in most OSes

Different programming languages have different use-cases in mind,
and exist at different levels of abstraction. Most languages other than
C that you will meet, both at the university and in practice, are so-
called high-level languages. There are quite a few language families,
and there is a number of higher-level languages derived from C, like

PB152 Operating Systems 10/93 July 4, 2020

C++, Java or C#.
For the purposes of this course, we will mostly deal with plain C, and
with POSIX (Bourne-style) shell, which can also be thought of as a
programming language.

64C: The Least Common Denominator
• except for assembly, C is the “bare minimum”
• you can almost think of C as portable assembly
• it is very easy to call C functions
• and to use C data structures

You can use C libraries in almost every language

You could think of C as a ‘portable assembler’, with a few minor bells
and whistles in form of the standard library. Apart from this library of
basic and widely useful subroutines, C provides: abstraction from ma-
chine opcodes (with human-friendly infix operator syntax), structured
control flow, and automatic local variables as its main advantages over
assembly.
In particular the abstraction over the target processor and its instruc-
tion set proved to be instrumental in early operating systems, and
helped establish the idea that an operating system is an entity separate
from the hardware.
On top of that, C is also popular as a systems programming language
because almost any program, regardless of what language it is written
in, can quite easily call C functions and use C data structures.

65The Language of Operating Systems
• many (most) kernels are written in C
• this usually extends to system libraries
• and sometimes to almost the entire OS
• non-C operating systems provide C APIs

Consequently, C has essentially become a ‘language of operating sys-
tems’: most kernels and even the bulk of most operating systems is
written in C. Each operating system (apart from perhaps a few excep-
tions) provides a C standard library in some form and can execute
programs written in C (and more importantly, provide them with es-
sential services).

Part 2.2: System Libraries
We have already touched the topic of system libraries last week, in
the ‘anatomy’ section. It is now time to look at them in more detail:
what they contain, how are they stored in the file system, how are
they combined with programs. We will also briefly talk about system
call wrappers (which mediate low-level access to kernel services – we
will discuss this topic in more detail in the next lecture). Finally, we
will look at a few examples of system libraries which appear in popular
operating systems.

67(System) Libraries
• mainly C functions and data types
• interfaces defined in header files
• definitions provided in libraries
∘ static libraries (archives): libc.a
∘ shared (dynamic) libraries: libc.so

• onWindows: msvcrt.lib and msvcrt.dll

• there are (many) more besides libc / msvcrt

In this course, when we talk about libraries, we will mean C libraries

specifically. Not Python or Haskell modules, which are quite different.
That said, a typical C library has basically two parts, one is header files
which provide a description of the interface (the API) and the compiled
library code (an archive or a shared library).
The interface (as described in header files) consists of functions (for
which, the types of arguments and the type of return value are given
in a header file) and of data structures. The bodies of the functions
(their implementation) is what makes up the compiled library code. To
illustrate:

68Declaration: what but not how

int sum(int a, int b);

Definition: how is the operation done?

int sum(int a, int b)

{

return a + b;

}

The first example on this slide is a declaration: it tells us the name
of a function, its inputs and its output. The second example is called
a definition (or sometimes a body) of the function and contains the
operations to be performed when the function is called.

69Library Files
• /usr/lib on most Unices
∘ may be mixed with application libraries
∘ especially on Linux-derived systems
∘ also /usr/local/lib for user/app libraries

• onWindows: C:\Windows\System32
∘ user libraries often bundled with programs

The machine code that makes up the library (i.e. the code that was gen-
erated from function definitions) resides in files. Those files are what
we usually call ‘libraries’ and they usually live in a specific filesystem
location. On most UNIX system, those locations are /usr/lib and possi-
bly /lib for system libraries and /usr/local/lib for user or application
libraries. On certain systems (especially Linux-based), user libraries
are mixed with system libraries and they are all stored in /usr/lib.
On Windows, the situation is similar in that both system and appli-
cation libraries are installed in a common location. Additionally, on
Windows (and onmacOS), shared libraries are often installed alongside
the application.

70Static Libraries
• stored in libfile.a, or file.lib (Windows)
• only needed for compiling (linking) programs
• the code is copied into the executable
• the resulting executable is also called static
∘ and is easier to work with for the OS
∘ but also more wasteful

Static libraries are only used when building executables and are not
required for normal operation of the system. Therefore, many operat-
ing systems do not install them by default – they have to be installed
separately as part of the developer kit. When a static library is linked
into a program, this basically entails copying the machine code from
the library into the final executable.
In this scenario, after linking is performed, the library is no longer

PB152 Operating Systems 11/93 July 4, 2020

needed since the executable contains all the code required for its ex-
ecution. For system libraries, this means that the code that comes
from the library is present on the system in many copies, once in each
program that uses the library. This is somewhat alleviated by linkers
only copying the parts of the library that are actually needed by the
program, but there is still substantial duplication.
The duplication arising this way does not only affect the file system,
but also memory (RAM) when those programs are loaded – multiple
copies of the same function will be loaded into memory when such
programs are executed.

71Shared (Dynamic) Libraries
• required for running programs
• linking is done at execution time
• less code duplication
• can be upgraded separately
• but: dependency problems

The other approach to libraries is dynamic, or shared libraries. In this
case, the library is required to actually run the program: the linker
does not copy the machine code from the library into the executable.
Instead, it only notes that the library must be loaded alongside with
the program when the latter is executed.
This reduces code duplication, both on disk and in memory. It also
means that the library can be updated separately from the application.
This often makes updates easier, especially in case a library is used
by many programs and is, for example, found to contain a security
problem. In a static library, this would mean that each program that
uses the library needs to be updated. A shared library can be replaced
and the fixed code will be loaded alongside programs as usual.
The downside is that it is difficult to maintain binary compatibility
– to ensure that programs that were built against one version of the
library also work with a later version. When this is violated, as often
happens, people run into dependency problems (also known as DLL
hell onWindows).

72Header Files
• on UNIX: /usr/include
• contains prototypes of C functions
• and definitions of C data structures
• required to compile C and C++ programs

Like static libraries, header files are only required when building pro-
grams, but not when using them. Header files are fragments of C
source code, and on UNIX systems are traditionally stored in /usr/in-

clude. User-installed header files (i.e. not those provided by system
libraries) live under /usr/local/include (though again, on Linux-based
systems user and system headers are often intermixed in /usr/include).

73Header Example 1 (from unistd.h)

int execv(char *, char **);

pid_t fork(void);

int pipe(int *);

ssize_t read(int, void *, size_t);

(and many more prototypes)

This is an excerpt from an actual system header file, and declares a few
of the functions that comprise the POSIX C API.

74Header Example 2 (from sys/time.h)

struct timeval

{

time_t tv_sec;

long tv_usec;

};

/* ... */

int gettimeofday(timeval *, timezone *);

int settimeofday(timeval *, timezone *);

This is another excerpt from an actual header – this time the snippet
contains a definition of a data structure. The layout (order of fields
and their types, along with hidden padding) of such structures is quite
important, since that becomes part of the ABI. In other words, the
definition above describes not just the high-level interface but also
how bytes are laid out in memory.

75The POSIX C Library
• libc – the C runtime library
• contains ISO C functions
∘ printf, fopen, fread

• and a number of POSIX functions
∘ open, read, gethostbyname, ...
∘ C wrappers for system calls

As we have already mentioned previously, it is a tradition of UNIX
systems that libc combines the basic C library and the basic POSIX
library. For the following, a particular subset of the POSIX library is
going to be rather important, namely the system call wrappers. Those
are C functions whose only purpose is to invoke their matching system
calls.

76System Calls: Numbers
• system calls are performed at machine level
• which syscall to perform is decided by a number
∘ e.g. SYS_write is 4 on OpenBSD
∘ numbers defined by sys/syscall.h

∘ different for each OS

At the level of the OS kernel (cue next week), system calls are rep-
resented by numbers (which are often given symbolic names like
SYS_write, but are nonetheless just small integers and not memory
addresses like with ordinary C functions). The numbers are specific to
any given kernel. And of course, the libcmust use the same number-
ing as the kernel.

PB152 Operating Systems 12/93 July 4, 2020

77System Calls: the syscall function
• there is a C function called syscall

∘ prototype: int syscall(int number, ...)

• this implements the low-level syscall sequence
• it takes a syscall number and syscall parameters
∘ this is a bit like printf

∘ first parameter decides what are the other parameters
• (more about how syscall()works next week)

Typically, all system calls work essentially the same: the library takes
the (syscall) number and some additional data (parameters), stores them
at the pre-arranged location (registers, memory) and jumps into the
kernel. Since this sequence is uniform across system calls, it is possible
to have a single C function which can perform any system call, given
its number.
This function actually exists and is called syscall. It’s entirely possible
to perform all your syscalls using this one C function, and never call
the more convenient single-purpose wrappers (see also below).

78System Calls: Wrappers
• using syscall() directly is inconvenient
• libc has a function for each system call
∘ SYS_write→ int write(int, char *, size_t)

∘ SYS_open→ int open(char *, int)

∘ and so on and so forth
• those wrappers may use syscall() internally

To make programming a fair bit more convenient, instead of saying

syscall(SYS_write, fd, buffer, size);

we can use a function called write, like this:

write(fd, buffer size);

Besides being shorter to type, it is also safer: the compiler can check
thatwe passed the right number and types of arguments. The function
might internally use the equivalent syscall() invocation – though in
practice, we prefer to sacrifice this particular bit of abstraction to save
a few instructions on the comparatively hot (read oft-invoked) syscall
path.

79Portability
• libraries provide an abstraction layer over OS internals
• they are responsible for application portability
∘ along with standardised filesystem locations
∘ and user-space utilities to some degree

• higher-level languages rely on system libraries

An important function of libraries is to provide a uniform API to the
upper layers of the system. The designers of an operating system may
decide to substantially depart from the traditional system call protocol,
or even from the traditional set of system calls. However, even if the
kernel looks quite non-POSIX-y, it is often still possible to provide a
set of C functions that behave as POSIX specifies. This has been done
more than once, most often on top of microkernels, e.g. Microsoft NT
(Windows NT, XP and later) or on Mach (macOS, HURD). All those
systems are capable of supporting POSIX programs without being built
around a UNIX-like monolithic kernel.
Of course, the API alone is not sufficient to make POSIX programs
work correctly: there are certain expectations about the filesystem

(both semantics of the file system itself, but also which files exist and
what they contain) and other aspects of the system.

80NeXTSTEP and Objective C
• the NeXT OS was built around Objective C
• system libraries had ObjC APIs
• in API terms, ObjC is very different from C
∘ also very different from C++
∘ traditional OOP features (like Smalltalk)

• this has been partly inherited into macOS
∘ evolving into Swift

Not all operating systems provide (exclusively) C APIs. Historically, one
of the earlier departures was the NeXT operating system, which used
Objective C extensively. While the procedural part of the language is
simply C, the object-oriented part is based on Smalltalk, with pervasive
late binding and dynamic types.

81System Libraries: UNIX
• the math library libm

∘ implements math functions like sin and exp

• thread library libpthread

• terminal access: libcurses
• cryptography: libcrypto (OpenSSL)
• the C++ standard library libstdc++ or libc++

While libc is quite central, there are many other libraries that are part
of a UNIX system. You would find most of the above examples on most
UNIX systems in some form.

82System Libraries: Windows
• msvcrt.dll – the ISO C functions
• kernel32.dll – basic OS APIs
• gdi32.dll – Graphics Device Interface
• user32.dll – standard GUI elements

System libraries look quite differently onWindows: there is no libc:
instead, the C standard library has its own DLL (the msvcrt, fromMi-
croSoft Visual C RunTime) while operating system services (the low-
level kind) live in kernel32.dll. The other two libraries allow applica-
tions to provide a graphical user interface. The libraries mentioned
here all provide C APIs, though there are also C++ and C# interfaces
(which are partly wrappers around the above libraries, but not exclu-
sively).

83Documentation
• manual pages on UNIX
∘ try e.g. man 2 write on aisa.fi.muni.cz

∘ section 2: system calls
∘ section 3: library functions (man 3 printf)

• MSDN for Windows
∘ <https://msdn.microsoft.com>

• you can learn a lot from those sources

Most OS vendors provide extensive documentation of their program-
mer’s interfaces. On UNIX, this is typically part of the OS installation
itself (manual pages, command man), while onWindows, this is a sepa-
rate resource (these days accessible online, previously distributed in

PB152 Operating Systems 13/93 July 4, 2020

print or on optical media).

Part 2.3: Compiler & Linker
While compiling (and linking) programs is not core functionality of an
operating system, it is quite useful to understand how these compo-
nents work. Moreover, in earlier systems, a C compiler was considered
a rather essential component and this tradition continues in many
modern UNIX systems to this day. We will discuss different artefacts
of compilation – object files, libraries and executables, as well as the
process of linking object code and libraries to produce executables. We
will also highlight the differences between static and shared (dynamic)
libraries.

85C Compiler
• many POSIX systems ship with a C compiler
• the compiler takes a C source file as input
∘ a text file with a .c suffix

• and produces an object file as its output
∘ binary file with machine code in it
∘ but cannot be directly executed

Compilers transform human-readable programs into machine-
executable programs. Of course, both those forms of the program need
to be stored in memory: the first is usually in the form of plain text
(usually encoded as UTF-8, or in older systems as ASCII). In this form,
bytes stored in the file encode human-readable letters.
On the output side, the file is binary (which is really just a catch-all
term for files that are not plain text), and stores machine-friendly
instructions – primitive operations that the CPU can execute. Only the
compiler output cannot be directly executed yet, even though most of
the instructions are in their final form.
The missing piece are addresses: numbers which describe memory
locations within the program itself (they may point at instructions
or at data embedded in the program). At this stage, though, neither
code nor data has been assigned to particular addresses, and hence
the program cannot be executed (it will need to be linked first, more
on that later).

86Object Files
• contain native machine (executable) code
• along with static data
∘ e.g. string literals used in the program

• possibly split into a number of sections
∘ .text, .rodata, .data and so on

• and metadata
∘ list of symbols (function names) and their addresses

The purpose of object files is to store this semi-finished machine code,
alongwith any static data (like string literals or numeric constants) that
appear in the program. All this is sorted into sections – usually one
section for machine code (also called text and called .text in the object
file), another for read-only data (e.g. string literals), called .rodata,
another formutable but statically-initialized variables – .data. Bundled
with all this is metadata, which describes the content of the file (again
in a machine-readable form).
One example of such metadata is a symbol table, which gives file-
relative addresses of high-level functions that have been compiled
into the object file. That is, the compiler will take a definition of a func-
tion that we wrote in C and emit machine code for this function. The
.text section of an object file will consist of a number of such functions,
one after another: the symbol table then tells us where each of the

functions begins.

87Object File Formats
• a.out – earliest UNIX object format
• COFF – Common Object File Format
∘ adds support for sections over a.out

• PE – Portable Executable (MSWindows)
• Mach-O – Mach Microkernel Executable (macOS)
• ELF – Executable and Linkable Format (all modern Unices)

There is a number of different physical layouts of object files, and
each of those also carries slightly different semantics. By far the most
common format used in POSIX systems is ELF. The other common
formats in contemporary use are PE (used by MS operating systems)
and Mach-O (used by Apple operating systems).

88Archives (Static Libraries)
• static libraries on UNIX are called archives
• this is why they get the .a suffix
• they are like a zip file full of object files
• plus a table of symbols (function names)

An archive is the simplest way to bundle multiple object files. As the
name implies, it is essentially just a collection of object files stored as a
single file. Each object file retains its identity and its content does not
change in any way when it is bundled into an archive.
The only difference from a typical data archive (a tar or a zip archive,
say) is that besides the object files themselves, the archive contains
an additional metadata section – a symbol table, or rather a symbol
index. If someone (typically the linker) needs to find the definition of
a particular function (symbol), it can first consult this archive-wide
index to findwhich object file provides that symbol. Thismakes linking
more efficient, since the linker does not need to sequentially scan each
object file in the archive to find the definition.

89Linker
• object files are incomplete
• they can refer to symbols that they do not define
∘ the definitions can be in libraries
∘ or in other object files

• a linker puts multiple object files together
∘ to produce a single executable
∘ or maybe a shared library

As pointed out earlier, it is the job of a linker to combine object files
(and libraries) into executables. The process is fairly involved, so we
will describe it across the next few slides. The input to the linker is a
bunch of object files and the output is a single executable or sometimes
a single shared library.
Even though archives are handled specially by the linker: object files
which are given to the linker directly will always become part of the
final executable. Object files provided in archives are only used if they
provide symbols which are required to complete the executable.

PB152 Operating Systems 14/93 July 4, 2020

90Symbols vs Addresses
• we use symbolic names to call functions &c.
• but the callmachine instruction needs an address
• the executable will eventually live in memory
• data and instructions need to be given addresses
• what a linker does is assign those addresses

The main entities that come up during linking are symbols and ad-
dresses. In a program, the machine code and the data is loaded in
memory, and as we know, each memory location has an address. The
program in its compiled form can use addresses to refer to parts of
itself. For instance, to call a subroutine, we provide its starting address
to a special call instruction, which tells the CPU to start executing
code from that address.
However, when humans write programs, they do not assign addresses
to pieces of data, to functions or to individual instructions. Instead, if
the programneeds to refer to a part of itself, we give those parts names:
thosenames are knownas symbols. It is the shared responsibility of the
compiler and the linker to assign addresses to the individual symbols, in
such a way that the objects stored in memory do not conflict (overlap).
If you think about it, it would be very difficult to do by hand: we
usually don’t know how long the machine code will be for any given
function, and we would need to guess and then add gaps in case we
need to add more code to a function, and so on. And we would need
to remember which code lives at which address and so on. It is all
very uncomfortable, and even assembly programmers usually avoid
assigning addresses by hand. In fact, one of the primary roles of an
assembler is to translate from symbolic to numeric addresses. But I
digress.

91Resolving Symbols
• the linker processes one object file at a time
• it maintains a symbol table
∘ mapping symbols (names) to addresses
∘ dynamically updated as more objects are processed

• relocations are typically processed all at once at the end
• resolving symbols = finding their addresses

The linker works bymaintaining an ‘incomplete executable’ andmakes
progress by merging each of the input object files into this work-
in-progress file. The strategy for assigning final addresses is simple
enough: there’s a single output .text section, a single output .data sec-
tion and so on. When an input file is processed, its own .text section
is simply appended to the .text produced so far. The same process is
repeated for every section.
The symbol tables of the input object files are likewise merged one by
one, and the addresses adjusted as symbols are added. In addition to
symbol definitions, object files contain symbol uses – those are known
as relocations, and are stored in a relocation table. Relocations contain
the address of the instruction that needs to be patched and the symbol
the addresss of which is to be patched in. Like the sections themselves
and the symbol table, the relocation table is built up.
The relocations are also processed by the linker: usually, this means
writing the final address of a particular symbol into an as-of-yet incom-
plete instruction or into a variable in the data section. This is usually
done once the output symbol table is complete.
The relocation and symbol tables are often discarded at the end (but
may be retained in the output file in some cases – the symbol table
more often than the relocation table).

92Executable
• finished image of a program to be executed
• usually in the same format as object files
• but already complete, with symbols resolved
∘ but: may use shared libraries
∘ in that case, some symbols remain unresolved

The output of the linker is, in the usual case, an executable. This is a file
that is based on the same format as object files of the given operating
system, but is complete in some sense. In static executables (those
which don’t use shared libraries), all references and relocations are
already resolved and the program can be loaded into memory and
directly executed by the CPU, without further adjustments.
It is alsoworth noting that the addresses that the executable useswhen
referring to parts of itself are virtual addresses (this is also the case
with shared libraries below). We will talk more about those in a later
lecture, but right nowwe can at least say that this means that different
programs on the same operating system can use overlapping addresses
for their instructions and data. This is not a problem, because virtual
addresses are private to each process, and hence each copy of each
executing program.

93Shared Libraries
• each shared library only needs to be in memory once
• shared libraries use symbolic names (like object files)
• there is a “mini linker” in the OS to resolve those names
∘ usually known as a runtime linker
∘ resolving = finding the addresses

• shared libraries can use other shared libraries
∘ they can form a DAG (Directed Acyclic Graph)

The downside of static libraries is that they need to be loaded separately
(often in slightly different versions) along with each program that uses
them: in fact, since the linker embedded them into the program, they
are quite inseparable from it.
As we have already mentioned, this is not very efficient. Instead, we
can store the library code in separate executable-like files that get
loaded into the address space of programs that need it. Of course,
relocations in the main program that refer to symbols from shared
libraries (and vice versa), and obviously also relocations in shared li-
braries that refer to other shared libraries, those need to be resolved.
This is usually done either when the program is loaded into memory,
or lazily, right before the relocation is first used.
In either case, there needs to be a program which will resolve those
relocations: this is the runtime linker – it is superficially similar to the
normal, compile-time linker, but in reality is quite different.

94Addresses Revisited
• when you run a program, it is loaded into memory
• parts of the program refer to other parts of the program
∘ this means they need to know where it will be loaded
∘ this is a responsibility of the linker

• shared libraries use position-independent code
∘ works regardless of the base address it is loaded at
∘ we won’t go into detail on how this is achieved

Wementioned that executables and libraries use virtual addresses to
refer to their own parts. However, this does not help shared libraries as
much as it helps with executables. The letdown is that we want to load

PB152 Operating Systems 15/93 July 4, 2020

the same library along with multiple programs: but if the addresses
used by the library are fixed, this means that the library needs to
be loaded at the same start address into each program that uses that
library. This quickly becomes impractical as we add more libraries into
the system – no two libraries would be allowed to overlap and no none
of them would be allowed to overlap with any of the executables.
In practice, what we instead do is that we compile the libraries in
such a way that they don’t use absolute addresses to refer to parts of
themselves. This often adds a little execution overhead, but makes it
possible to load the library at any address range that is available in the
current process. This makes the job of the runtime linker much easier.

95Compiler, Linker &c.
• the C compiler is usually called cc

• the linker is known as ld
• the archive (static library) manager is ar
• the runtime linker is often known as ld.so

On many UNIXes, the compiler and the linker are available as part of
the system itself. The command names are standardized.

Part 2.4: File-Based APIs
On POSIX systems, the API for using the filesystem is a very impor-
tant one, because it in fact provides access to a number of additional
resources, which appear as ‘abstract’ (special) files in the system.

97Everything is a File
• part of the UNIX design philosophy
• directories are files
• devices are files
• pipes are files
• network connections are (almost) files

File is an abstraction: it is an object from which we can read bytes
and into which we can write bytes (not all files will let us do both).
In regular files, we can read and write at any offset, and if we write
something we can later read that same thing (unless it was rewritten
in the meantime).
Directories are somewhat like this: we can read bytes from them to
find outwhat files are present in that directory and how to find them in
the file system. We can create new entries bywriting into the directory.
Incidentally, this is not how things are usually done, but it’s not hard
to imagine it could be.
Quite a few devices (peripherals) behave this way: all kinds of hard
drives (just a big bunch of bytes), printers (write some bytes to have
them printed), scanners (write bytes to send commands, read bytes
with the image data), audio devices (read bytes from microphones,
write bytes into speakers), and so on.
Pipes are like that too: one program writes bytes, and another reads
them. And network connections are more or less just pipes that work
across the network.

98Why is Everything a File
• re-use the comprehensive file system API
• re-use existing file-based command-line tools
• bugs are bad→ simplicity is good
• want to print? cat file.txt > /dev/ulpt0

∘ (reality is a little more complex)

Since we already have an API to work with abstract files (because we
need to work with real files anyway), it becomes reasonable to ask why
not use this existing API to work with other objects that look like files.
It makes sense not just at the level of C functions, but at the level of
command-line programs too. In general, re-using existingmechanisms
makes thingsmore flexible, and often also simpler. Of course, there are
caveats (devices often need to support operations that don’t map well
to reading or writing bytes, sockets are also somewhat problematic).

99What is a Filesystem?
• a set of files and directories
• usually lives on a single block device
∘ but may also be virtual

• directories and files form a tree
∘ directories are internal nodes
∘ files are leaf nodes

While we have a decent idea of what a file is, what about a file system?
Well, a file system is a collection of files and directories, typically stored
on a single block device. The directories and files form a tree (at least
until symlinks come into play, at which point things start going south).
Regular files are always leaf nodes in this tree.

100File Paths
• filesystems use paths to point at files
• a string with / as a directory delimiter
∘ the delimiter is \ onWindows

• a leading / indicates the filesystem root
• e.g. /usr/include

Paths are how we refer to files and directories within the tree. The
top-level (root) directory is named /. Each directory entry carries a
name (and a link to the actual file or directory it represents) – this name
can be used in the path to refer to the given entity. So with a path like
/usr/include, we start at the root directory (the initial slash), then in
that directory, we look for an entity called usr and when we find it, we
check that it is a directory again. If that is so, we then look at its direct
descendants again and look for an entity labelled include.

101The File Hierarchy

/

home var usr

xrockai include lib

stdio.h unistd.h libc.a libm.a

That’s an example of a file system tree. You can practice looking up
various paths in the tree, using the algorithm described above.

PB152 Operating Systems 16/93 July 4, 2020

102The Role of Files and Filesystems
• very central in Plan9
• central in most UNIX systems
∘ cf. Linux pseudo-filesystems
∘ /proc provides info about all processes
∘ /sys gives info about the kernel and devices

• somewhat reduced inWindows
• quite suppressed in Android (and more on iOS)

Different operating systems put different emphasis on the file system.
Wewill take theway POSIX positions the file system as the baseline – in
this case, the file system is quite central, in addition to regular files and
directories, all sorts of special files appear in the file system and provide
access to various OS facilities. However, there are also many services
and APIs that are not based on the file system, including e.g. process
management, memory management and so on. In many UNIX-like
systems, the reliance on FS-based APIs is notched up a bit: e.g. process
management is done via a virtual /proc filesystem (many different
systems), or device discovery and configuration via /sys (Linux). An-
other level above that is Plan9, where essentially everything that can
be made into a file system is made into one. Another experimental
system, GNU/Hurd, has a similar ambition.
If we go the other way from POSIX, we have the native Windows
APIs, which emphasise the file systemmuch less than would be typical
in POSIX. Most objects have dedicated APIs, even if they are rather
file-like. However, the file system is still prominently present both in
the APIs and in the user interface. Both are further suppressed by
modern ‘scaled-down’ operating systems like Android and iOS (even if
both are POSIX-compatible under the hood, ‘normal’ applications are
not allowed to access the POSIX API, or the file system, and it is usually
also hidden from users).

103The Filesystem API
• you open a file (using the open() syscall)
• you can read() and write() data
• you close() the file when you are done
• you can rename() and unlink() files
• you can use mkdir() to create directories

So how does the file system API look on POSIX systems? To work with
a file, you usually need to open it first: you supply a path and some flags
to tell the OS what you intend to do with the file. More on that in a
short while. When you have a file open, you can read data from it and
write data into it. When you are done, you use close to free up the
associated resources. To work with directories, you usually don’t need
to open them (though you can). You can rename files (this is a directory
operation) using rename, remove them from the file system hierarchy
using unlink (this erases the corresponding directory entry), and you
can create new directories using mkdir.

104File Descriptors
• the kernel keeps a table of open files
• the file descriptor is an index into this table
• you do everything using file descriptors
• non-Unix systems have similar concepts
∘ descriptors are called handles onWindows

Remember open? When we want to work with a file, we need a way to
identify that file, and paths are not super convenient in this respect:

someone could rename the file we were working with, and suddenly it
is gone, or worse, the file could be replaced by a different file or even a
directory. Additionally, looking up a file by its path is a comparatively
expensive operation: the OS has to read every directory mentioned
in the path and run a lookup on it. While this information is often
cached in RAM, it still takes valuable time.
When we open a file, we get back a file descriptor – this is a small
integer, and using this descriptor as an index into a table, the kernel
can look up all the metadata it needs (to carry out reads and writes) in
constant time. The descriptor is also associated with the file directly,
so if the file is moved around or even unlinked from the directory tree,
the descriptor still points to the same file.
Most non-POSIX file system APIs have a similar notion (sometimes
open does not return a number but a different data type, e.g. a pointer,
and sometimes this value is called a handle instead of a descriptor...
but the concept is more or less the same).

105Regular files
• these contain sequential data (bytes)
• may have inner structure but the OS does not care
• there is metadata attached to files
∘ like when were they last modified
∘ who can and who cannot access the file

• you read() and write() files

A regular file is what it appears to be. It is a sequence of bytes, stored
on a persistent storage device and has metadata associated that makes
it possible to locate all that data in actual disk sectors. The bytes inside
the file are of no concern to the operating system. When data is read
from a file, the operating system consults the file system metadata to
find the particular sectors on disk that store the content. When data is
overwritten, the same thing happens but those sectors are rewritten
with the new data. When new data is appended, the operating system
looks up some free space on the disk, then adjusts the file metadata to
point at the (now taken) sectors and writes the data in there. There
is some additional metadata stored alongside each file, like whom it
belongs to or when it was modified.

106Directories
• a list of files and other directories
∘ internal nodes of the filesystem tree
∘ directories give names to files

• can be opened just like files
∘ but read() and write() is not allowed
∘ files are created with open() or creat()
∘ directories with mkdir()

∘ directory listing with opendir() and readdir()

A directory is a (potentially) internal node in the file hierarchy: their
role is to give names to files, making them accessible via paths. Like reg-
ular files, directories are self-contained objects, but instead of rawbytes,
they contain structured data: namely, a directory maps file names to
other files (those can be regular files, other directories, or one of the
special file types we will talk about shortly).
In principle, it would be possible to implement read and write for direc-
tories, but this would be problematic: if those functions dealt with the
actual on-disk representation of a directory, user programs could easily
corrupt directory entries. This is quite undesirable: instead, under nor-
mal circumstances, directories are used via paths: when we present
a file path to open, the operating system will automatically traverse
directories as needed.
Of course, user programs sometimes need to iterate through all direc-

PB152 Operating Systems 17/93 July 4, 2020

tory entries, i.e. list all files in a given directory. To this end, POSIX
provides the opendir function alongwith readdir, seekdir, closedir and
so on. These functions provide a high-level API for interacting with
directories. Nonetheless, this API is read-only: directory entries are
created whenever files are created using the corresponding path, e.g.
using mkdir or openwith the O_CREAT flag.

107Mounts
• UNIX joins all file systems into a single hierarchy
• the root of one filesystem becomes a directory in another
∘ this is called a mount point

• Windows uses drive letters instead (C:, D: &c.)

A single computer (and hence, a single operating system) may have
more than one hard drive available to it. In this case, it is custom-
ary that each such device contains its own file system: the question
arises, how to present such multiple file systems to the user. The UNIX
strategy is to present all the file systems within a single directory tree:
to this end, one of the file systems is picked as a root file system: in
this (and only in this) file system, the FS root directory / is the same
as the system root directory. All other file systems are joined existing
directories of other file systems at their root. Consider two file systems:

/ /

home usr include lib

stdio.h libc.a libm.a

If we now mount the second file system onto the /usr directory of the
first, we get the following unified hierarchy:

/

home usr

include lib

stdio.h libc.a libm.a

Usually, file systems are mounted onto empty directories: if /usrwas
not empty on the left (root) file system, its content would be hidden by
the mount.
The other strategy is to present multiple file systems using multiple
separate trees. This is the strategy implemented by the MSWindows
family of operating systems: each file system is assigned a single letter,
and each becomes its own, separate tree.

108Pipes
• pipes are a simple communication device
• one program can write() data to the pipe
• another program can read() that same data
• each end of the pipe gets a file descriptor
• a pipe can live in the filesystem (named pipe)

Pipes are somewhat like files in that it’s possible to write data (bytes)
into them, and read data from them. In most cases, the program doing
the writing is a different program from the one doing the reading.
Unlike a regular file, the data is not permanently stored anywhere: it

disappears from the pipe as soon as it is read.
Of course, there is a buffer associated with a pipe, but it is only stored
in RAM. This allows the writing process to write data even if the other
end is not actively reading at the same time: the OS will buffer the
write until such time it can be read.
Normally, a pipe is an anonymous device, only accessible via file de-
scriptors. When these are closed, the device is destroyed. There is
another variant of a pipe, though, called a named pipe which is given
a name in the file system. This does not mean the data is stored any-
where: a named pipe operates just like an anonymous pipe, the differ-
ence is that it can be passed to open using its a path.

109Devices
• block and character devices are (special) files
• block devices are accessed one block at a time
∘ a typical block device would be a disk
∘ includes USB mass storage, flash storage, etc
∘ you can create a file system on a block device

• character devices are more like normal files
∘ terminals, tapes, serial ports, audio devices

As we have already mentioned, many peripheral devices look like
sequences of bytes, or possibly as sequences of blocks. A typical block
device is addressable: the user can seek to a particular location of the
device and read a chunk of data (an integer number of blocks). Unless
someone writes to a particular location of the device, reading from the
same address multiple times will yield the same data.
On the other hand, character devices often behave rather like pipes,
in the sense that if a program writes some bytes into the device, read-
ing the device will not yield those same bytes. Instead, character de-
vices usually mediate communication with a peripheral that consumes
bytes (which are written into the device) and/or provides some output
(which is what the program gets when it reads from the device). Con-
sider a printer: writing bytes into the printer’s character device will
cause those bytes to be printed (after possibly being interpreted by the
printer).
Another example would be that after a scanner has been instructed
to scan a document, the pixels captured by its optical sensor can be,
in some form, extracted by reading from its character device. Essen-
tially, these types of character devices behave like a pipe, but instead
of another program, the other end is a hardware device (or rather its
firmware).

110Sockets
• the socket API comes from early BSD Unix
• socket represents a (possible) network connection
• sockets are more complicated than normal files
∘ establishing connections is hard
∘ messages get lost much more often than file data

• you get a file descriptor for an open socket
• you can read() and write() to sockets

Sockets are, in some sense, a generalization of pipes. There are essen-
tially 3 types of sockets:

1. a listening socket, which allows many clients to connect to a sin-
gle server – strictly speaking, these sockets do not transport data,
instead, they allow processes to establish connections,

2. a connected socket, one of which is created for each connection
and which behaves essentially like a bidirectional pipe (standard
pipes being unidirectional),

3. a datagram socket, which can be used to send data without estab-

PB152 Operating Systems 18/93 July 4, 2020

lishing connections, using special send/receive API.

While the third is rather special and un-pipe-like, the first two are usu-
ally used together as a point-to-multipoint means of communication:
the server listens on an address, and any client which has this address
can establish communicationwith the server. This is quite unlike pipes,
which usually need to be pre-arranged (i.e. the programs must already
be aware of each other).

111Socket Types
• sockets can be internet or unix domain
∘ internet sockets connect to other computers
∘ Unix sockets live in the filesystem

• sockets can be stream or datagram
∘ stream sockets are like files
∘ you can write a continuous stream of data
∘ datagram sockets can send individual messages

There are two basic address types: internet sockets, which are used
for inter-machine communication (using TCP/IP), and unix domain
sockets, which are used for local communication. A unix socket is
like a named pipe: it has a path in the file system, and which client
programs can use to establish a connection to the server.

112Review Questions
• What is a shared (dynamic) library?
• What does a linker do?
• What is a symbol in an object file?
• What is a file descriptor?

Part 3: The Kernel
This lecture is about the kernel, the lowest layer of an operating system.
It will be in 5 parts:

114Lecture Overview
1. privileged mode
2. booting
3. kernel architecture
4. system calls
5. kernel-provided services

First, we will look at processor modes and how they mesh with the
layering of the operating system. We will move on to the boot process,
because it somewhat illustrates the relationship between the kernel
and other components of the operating system, and also between the
firmware and the kernel. We will look in more detail at kernel archi-
tecture: things that we already hinted at in previous lectures, and will
also look at exokernels and unikernels, in addition to the architectures
we already know (micro and monolithic kernels).
The fourth part will focus on system calls and their binary interface
– i.e. how system calls are actually implemented at the machine level.
This is closely related to the first part of the lecture about processor
modes, and builds on the knowledge we gained last week about how
system calls look at the C level.
Finally, we will look at what are the services that kernels provide to
the rest of the operating system, what are their responsibilities and we
will also look more closely at how microkernel and hybrid operating
systems work.

115Reminder: Software Layering
• → the kernel←
• system libraries
• system services / daemons
• utilities
• application software

Part 3.1: Privileged Mode

117CPUModes
• CPUs provide a privileged (supervisor) and a user mode
• this is the case with all modern general-purpose CPUs
∘ not necessarily with micro-controllers

• x86 provides 4 distinct privilege levels
∘ most systems only use ring 0 and ring 3
∘ Xen paravirtualisation uses ring 1 for guest kernels

There is a number of operations that only programs running in super-
visor mode can perform. This allows kernels to enforce boundaries
between user programs. Sometimes, there are intermediate privilege
levels, which allow finer-grained layering of the operating system, for
instance, drivers can run in a less privileged level than the ‘core’ of
the kernel, providing a level of protection for the kernel from its own
device drivers. You might remember that device drivers are the most
problematic part of any kernel.
In addition to device drivers, multi-layer privilege systems in CPUs can
be used in certain virtualisation systems. More about this towards the
end of the semester.

PB152 Operating Systems 19/93 July 4, 2020

118Privileged Mode
• many operations are restricted in user mode
∘ this is how user programs are executed
∘ also most of the operating system

• software running in privileged mode can do ~anything
∘ most importantly it can program the MMU
∘ the kernel runs in this mode

The kernel executes in privileged mode of the processor. In this mode,
the software is allowed to do anything that’s possible. In particular, it
can (re)program the memory management unit (MMU, see next slide).
SinceMMU is how program separation is implemented, code executing
in privileged mode is allowed to change the memory of any program
running on the computer. This explains why we want to reduce the
amount of code running in supervisor (privileged) mode to a minimum.
The way most operating systems operate, the kernel is the only piece
of software that is allowed to run in this mode. The code in system
libraries, daemons and so on, including application software, is re-
stricted to the user mode of the processor. In this mode, the MMU
cannot be programmed, and the software can only do what the MMU
allows based on the instructions it got from the kernel.

119Memory Management Unit
• is a subsystem of the processor
• takes care of address translation
∘ user software uses virtual addresses
∘ the MMU translates them to physical addresses

• the mappings can be managed by the OS kernel

Let’s have a closer look at the MMU. Its primary role is address trans-
lation. Addresses that programs refer to are virtual – they do not
correspond to fixed physical locations in memory chips. Whenever
you look at, say, a pointer in C code, that pointer’s numeric value is
an address in some virtual address space. The job of the MMU is to
translate that virtual address into a physical one – which has a fixed
relationship with some physical capacitor or other electronic device
that remembers information.
How those addresses are mapped is programmable: the kernel can tell
the MMU how the translation goes, by providing it with translation
tables. We will discuss how page tables work in a short while; what is
important now is that it is the job of the kernel to build them and send
them to the MMU.

120Paging
• physical memory is split into frames
• virtual memory is split into pages
• pages and frames have the same size (usually 4KiB)
• frames are places, pages are the content
• page tables map between pages and frames

Before we get to virtual addresses, let’s have a look at the other major
use for the address translation mechanism, and that is paging. We do
so, because it perhaps better illustrates how the MMUworks. In this
viewpoint, we split physical memory (the physical address space) into
frames, which are storage areas: places where we can put data and
retrieve it later. Think of them as shelves in a bookcase.
The virtual address space is then split into pages: actual pieces of data
of some fixed size. Pages do not physically exist, they just represent
some bits that the program needs stored. You could think of a page as

a really big integer. Or you can think of pages as a bunch of books that
fits into a single shelf.
The page table, then, is an catalog, or an address book of sorts. Pro-
grams attach names to pages – the books – but the hardware can only
locate shelves. The job of the MMU is to take a name of the book and
find the physical shelf where the book is stored. Clearly, the operating
system is free to move the books around, as long as it keeps the page
table – the catalog – up to date. Remaining software won’t know the
difference.

121Swapping Pages
• RAM used to be a scarce resource
• paging allows the OS to move pages out of RAM
∘ a page (content) can be written to disk
∘ and the frame can be used for another page

• not as important with contemporary hardware
• useful for memory mapping files (cf. next lecture)

If we are short on shelf space, we may want to move some books into
storage. Then we can use the shelf we freed up for some other books.
However, hardware can only retrieve information from shelves and
therefore if a program asks for a book that is currently in storage, the
operating system must arrange things so that it is moved from storage
to a shelf before the program is allowed to continue.
This process is called swapping: the OS, when pressed for memory, will
evict pages from RAMonto disk or some other high-capacity (but slow)
medium. It will only page them back in when they are required. In
contemporary computers, memory is not very scarce and this use-case
is not very important.
However, it allows another neat trick: instead of opening a file and
reading it using open and read system calls, we can use so-called mem-
ory mapped files. This basically provides the content of the file as a
chunk of memory that can be read or even written to, and the changes
are sent back to the filesystem. We will discuss this in more detail next
week.

122Look Ahead: Processes
• process is primarily defined by its address space
∘ address space meaning the valid virtual addresses

• this is implemented via the MMU
• when changing processes, a different page table is loaded
∘ this is called a context switch

• the page table defines what the process can see

Wewill dealwith processes later in the course, but letme just quickly in-
troduce the concept now, so that we can appreciate how important the
MMU is for a modern operating system. Each process has its own ad-
dress space which describes what addresses are valid for that process.
Barring additional restrictions, the process can write to any of its valid
addresses and then read back the stored value from that address.
The fact that the address space of a process is abstract and not tied to
any particular physical layout of memory is quite important. Another
important observation is that the address space does not need to be
contiguous, and that not all physical memory has to be visible in that
address space.

PB152 Operating Systems 20/93 July 4, 2020

123Memory Maps
• different view of the same principles
• the OS maps physical memory into the process
• multiple processes can have the same RAM area mapped
∘ this is called shared memory

• often, a piece of RAM is only mapped in a single process

We can look at the same thing from another point of view. Physical
memory is a resource, and the operating system can ‘hand out’ a piece
of physical memory to a process. This is done by mapping that piece of
memory into the address space of the process. There is nothing that,
in principle, prevents the operating system from mapping the same
physical piece of RAM into multiple processes. In this case, the data is
only stored once, but either process can read it using an address in its
virtual address space (possibly at a different address in each process).
For ‘working’ memory – that is both read and written by the program
– it is most common that any given area of physical memory is only
mapped into a single process. Instructions are, however, shared much
more often: for instance a shared library is often mapped into multiple
different processes. An executable itself may likewise be mapped into
a number of processes if they all run the same program.

124Page Tables
• the MMU is programmed using translation tables
∘ those tables are stored in RAM
∘ they are usually called page tables

• and they are fully in the management of the kernel
• the kernel can ask the MMU to replace the page table
∘ this is how processes are isolated from each other

The actual implementation mechanism of virtual memory is known
as page tables: those are translation tables that tell the MMU which
virtual address maps to which physical address. Page tables are stored
in memory, just like any other data, and can be created and changed
by the kernel. The kernel usually keeps a separate set of page tables for
each process, and when a context switch happens, it asks the MMU
to replace the active page table with a new one (the one that belongs
to the process which is being activated). This is usually achieved by
storing the physical address of the first level of the new page table (the
page directory, in x86 terminology) in a special register.
Often, the writable physical memory referenced by the first set of page
tables will be unreachable from the second set and vice versa. Even
if there is overlap, it will be comparatively small (processes can re-
quest shared memory for communicating with each other). Therefore,
whatever data the previous process wrote into its memory becomes
completely invisible to the new process.

125Kernel Protection
• kernel memory is usually mapped into all processes
∘ this improves performance on many CPUs
∘ (until meltdown hit us, anyway)

• kernel pages have a special ’supervisor’ flag set
∘ code executing in user mode cannot touch them
∘ else, user code could tamper with kernel memory

Replacing the page tables is usually a rather expensive operation and
we want to avoid doing it as much as possible. We especialy want to
avoid it in the system call path (you probably remember system calls
from last week, and we will talk about system calls in more detail later

today). For this reason, it is a commonly employed trick to map the
kernel into each process, but make the memory inaccessible to user-
space code. Unfortunately, there have been some CPU bugs which
make this less secure than we would like.

Part 3.2: Booting
The boot process is a sequence of steps which starts with the computer
powered off and ends when the computer is ready to interact with the
user (via the operating system).

127Starting the OS
• upon power on, the system is in a default state
∘ mainly because RAM is volatile

• the entire platform needs to be initialised
∘ this is first and foremost the CPU
∘ and the console hardware (keyboard, monitor, ...)
∘ then the rest of the devices

Computers can be turned off and on (clearly). When they are turned
off, power is no longer available and dynamic RAM will, without ac-
tive refresh, quickly forget everything it held. Hence when we turn
the computer on, there is nothing in RAM, the CPU is in some sort
of default state and variations of the same are true of pretty much
every sub-device in the computer. Except for the content of persistent
storage, the computer is in the state it was when it left the factory door.
The computer in this state is, to put it bluntly, not very useful.

128Boot Process
• the process starts with a built-in hardware init
• when ready, the hardware hands off to the firmware
∘ this was BIOS on 16 and 32 bit systems
∘ replaced with EFI on current amd64 platforms

• the firmware then loads a bootloader
• the bootloader loads the kernel

We will not get into the hardware part of the sequence. The switch
is flipped, the hardware powers up and does its thing. At some point,
firmware takes over and does some more things. The hardware and
firmware is finally put into a state, where it can begin loading the op-
erating system. There is usually a piece of software that the firmware
loads from persistent storage, called a bootloader. This bootloader is,
more or less, a part of the operating system: its purpose is to find and
load the kernel (from persistent storage, usually by using firmware
services to identify said storage and load data from it). It may or may
not understand file systems and similar high-level things. In the sim-
plest case, the bootloader has a list of disk blocks in which the kernel
is stored, and requests those from the firmware. In modern systems,
both the firmware and the bootloader are quite sophisticated, and
understand complicated, high-level things (including e.g. encrypted
drives).

129Boot Process (cont’d)
• the kernel then initialises device drivers
• and the root filesystem
• then it hands off to the init process
• at this point, the user space takes over

We are finally getting to familiar ground. The bootloader has loaded
the kernel into RAM and jumped at a pre-arranged address inside the

PB152 Operating Systems 21/93 July 4, 2020

kernel image. The instructions stored at that address kickstart the
kernel initialization sequence. The first part is usually still rather low-
level: it puts the CPU and some basic peripherals (console, timers and
so on) into a state in which the operating system can use them. Then it
hands off control into C code, which then sets up basic data structures
used by the kernel. Then the kernel starts initializing individual pe-
ripheral devices – this task is performed by individual device drivers.
When peripherals are initialized, the kernel can start looking for the
root filesystem – it is usually stored on one of the attached persistent
storage devices (which should now be operational and available to the
kernel via their device drivers).
After mounting the root filesystem, the kernel can set up an empty
process and load the init program into that process, and hand over
control. At this point, kernel stops behaving like a sequential program
with main in it and fades into background: all action is driven by user-
space processes from now on (or by hardware interrupts, but we will
talk about those much later in the course).

130User-mode Initialisation
• initmounts the remaining file systems
• the init process starts up user-mode system services
• then it starts application services
• and finally the login process

We are far from done. The init process now needs to hunt down all
the other file systems and mount them, start a whole bunch of system
services and perhaps some application services (daemons which are
not part of the operating system – things like web servers).
Once all the essential services are ready, init starts the login process,
which then presents the familiar login screen, asking the user to type
in their name and password. At this point, the boot process is complete,
but we will have a quick look at one more step.

131After Log-In
• the login process initiates the user session
• loads desktop modules and application software
• drops the user in a (text or graphical) shell
• now you can start using the computer

When the user logs in, another initialization sequence starts: the sys-
tem needs to set up a session for the user. Again, this involves some
steps, but at the end, it’s finally possible to interact with the computer.

132CPU Init
• this depends on both architecture and platform
• on x86, the CPU starts in 16-bit mode
• on legacy systems, BIOS & bootloader stay in this mode
• the kernel then switches to protected mode during its boot

Let’s go back to start and fill in some additional details. First of all, what
is the state of the CPU at boot, andwhy does the operating system need
to do anything? This has to do with backward compatibility: a CPU
usually starts up in the most-compatible mode – in case of 32b x86
processors, this is 16b mode with the MMU disabled. Since the entire
platform keeps backward compatibility, the firmware keeps the CPU in
this mode and it is the job of either the bootloader or the kernel itself
to fix this. This is not always the case (modern 64b x86 processors still
start up in 16bmode, but the firmware puts them into longmode – that
is the 64b one – before handing off to the bootloader).

133Bootloader
• historically limited to tens of kilobytes of code
• the bootloader locates the kernel on disk
∘ may allow the operator to choose different kernels
∘ limited understanding of file systems

• then it loads the kernel image into RAM
• and hands off control to the kernel

A bootloader is a short, platform-specific program which loads the
kernel from persistent storage (usually a file system on a disk) and
hands off execution to the kernel. The bootloader might do some very
basic hardware initialization, but most of that is done by the kernel
itself in a later stage.

134Modern Booting on x86

• the bootloader nowadays runs in protected mode
∘ or even the long mode on 64-bit CPUs

• the firmware understands the FAT filesystem
∘ it can load files from there into memory
∘ this vastly simplifies the boot process

The boot process has been considerably simplified on x86 computers in
the last decade or so. Much higher-level APIs have been added to the
standardized firmware interface, making the boot code considerably
simpler.

135Booting ARM
• on ARM boards, there is no unified firmware interface
• U-boot is as close as one gets to unification
• the bootloader needs low-level hardware knowledge
• this makes writing bootloaders for ARM quite tedious
• current U-boot can use the EFI protocol from PCs

Unlike the x86 world, the ARM ecosystem is far less standardized and
each system on a chip needs a slightly different boot process. This
is extremely impractical, since there are dozens of SoC models from
manydifferent vendors, andnewones come out regularly. Fortunately,
U-boot has become a de-facto standard, and while U-boot itself still
needs to be adapted to each new SoC or even each board, the operating
system is, nowadays, mostly insulated from the complexity.

Part 3.3: Kernel Architecture
In this section, we will look at different architectures (designs) of ker-
nels: the main distinction we will talk about is which services and
components are part of the kernel proper, and which are outside of
the kernel.

137Architecture Types
• monolithic kernels (Linux, *BSD)
• microkernels (Mach, L4, QNX, NT, ...)
• hybrid kernels (macOS)
• type 1 hypervisors (Xen)
• exokernels, rump kernels

We have already mentioned the main two kernel types earlier in the
course. Those types represent the extremes of mainstream kernel de-

PB152 Operating Systems 22/93 July 4, 2020

sign: microkernels are the smallest (most exclusive) mainstream design,
while monolithic kernels are the biggest (most inclusive). Systems with
hybrid kernels are a natural compromise between those two extremal
designs: they have 2 components, a microkernel and a so-called super-
server, which is essentially a gutted monolithic kernel – that is, the
functionality covered by the microkernel is removed.
Besides ‘mainstream’ kernel designs, there are a few more exotic
choices. We could consider type 1 (bare metal) hypervisors to be a
special type of an operating system kernel, where applications are sim-
ply virtual machines – i.e. ‘normal’ operating systems (more on this
later in the course). Then there are exokernel operating systems, which
drastically cut down on services provided to applications and uniker-
nels which are basically libraries for running entire applications in
kernel mode.

138Microkernel
• handles memory protection
• (hardware) interrupts
• task / process scheduling
• message passing
• everything else is separate

Amicrokernel handles only the essential services – those that cannot
be reasonably done outside of the kernel (that is, outside of the priv-
ileged mode of the CPU). This obviously includes programming the
MMU (i.e. management of address spaces and memory protection),
handling interrupts (those switch the CPU into privileged mode, so at
least the initial interrupt routine needs to be part of the kernel), thread
and process switching (and typically also scheduling) and finally some
form of inter-process communication mechanism (typically message
passing). With those components in the kernel, almost everything else
can be realized outside the kernel proper (though device drivers do
need some additional low-level services from the kernel not listed here,
like DMA programming and delegation of hardware interrupts).

139Monolithic kernels
• all that a microkernel does
• plus device drivers
• file systems, volume management
• a network stack
• data encryption, ...

A monolithic kernel needs to include everything that a microkernel
does (even though some of the bits have a slightly different form, at
least typically: inter-process communication is present, but may be
of different type, driver integration looks different). However, there
are many additional responsibilities: many device drivers (those that
need interrupts or DMA, or are otherwise performance-critical) are
integrated into the kernel, as are file systems and volume (disk) man-
agement. A complete TCP/IP stack is almost a given. A number of ad-
ditional bits and pieces might be part of the kernel, like cryptographic
services (key management, disk encryption, etc.), packet filtering, a
kitchen sink and so on. Of course, all that code runs in privileged
mode, and as such has complete power over the operating system and
the computer as a whole.

140Microkernel Redux
• we need a lot more than a microkernel provides
• in a “true” microkernel OS, there are many modules
• each device driver runs in a separate process
• the same for file systems and networking
• those modules / processes are called servers

The question that now arises is who is responsible for all the services
listed on the previous slide (those that are part of a monolithic kernel,
but are missing from a microkernel). In a ‘true’ microkernel operating
system, those services are individually covered, each by a separate
process (also known as a server in this context).

141Hybrid Kernels
• based around a microkernel
• and a gutted monolithic kernel
• the monolithic kernel is a big server
∘ takes care of stuff not handled by the microkernel
∘ easier to implement than true microkernel OS
∘ strikes middle ground on performance

In a hybrid kernel, most of the services are provided by a single large
server, which is somewhat isolated from the hardware. It is often
the case that the server is based on a monolithic OS kernel, with the
lowest-level layers removed, and replacedwith calls to themicrokernel
as appropriate.
Hybrid kernels are both cheaper to design and theoretically perform
better than ‘true’ (multi-server) microkernel systems.

142Micro vs Mono
• microkernels are more robust
• monolithic kernels are more efficient
∘ less context switching

• what is easier to implement is debatable
∘ in the short view, monolithic wins

• hybrid kernels are a compromise

The main advantage of microkernels is their robustness in face of
software bugs. Since the kernel itself is small, chances of a bug in the
kernel proper are much diminished compared to the relatively huge
code base of amonolithic kernel. The impact of bugs outside the kernel
(in servers) is considerably smaller, since those are isolated from the
rest of the system and even if they provide vital services, the system
can often recover from a failure by restarting the failed server.
On the other hand, monolithic kernels offer better performance,
mainly through reduced context switching, which is still fairly ex-
pensive even on modern, virtualisation-capable processors. However,
as monolithic kernels adopt technologies such as kernel page table iso-
lation to improve their security properties, the performance difference
becomes smaller.
Implementation-wise, monolithic kernels offer two advantages: in
many cases, code can be written in direct, synchronous style, and
different parts of the kernel can share data structures without addi-
tional effort. In contrast, a proper multi-server system often has to
use asynchronous communication (message passing) to achieve the
same goals, making the code harder to write and harder to understand.
Long-term, improved modularity and isolation of components could
outweigh the short-term gains in programming efficiency due to more
direct programming style.

PB152 Operating Systems 23/93 July 4, 2020

143Exokernels
• smaller than a microkernel
• much fewer abstractions
∘ applications only get block storage
∘ networking is much reduced

• only research systems exist

Operating systems based on microkernels still provide the full suite of
services to their applications, including file systems, network stacks
and so on. The difference lies in where this functionality is imple-
mented, whether the kernel proper, or in a user-mode server. With
exokernels, this is no longer true: the services provided by the operat-
ing system are severely cut down. The resulting system is somewhere
between a paravirtualized computer (we will discuss this concept in
more detail near the end of the course) and a ‘standard’ operating
system. Unlike virtual machines (and unikernels), process-based ap-
plication isolation is still available, and plays an important role. No
production systems based on this architecture currently exist.

144Type 1 Hypervisors
• also known as bare metal or native hypervisors
• they resemble microkernel operating systems
∘ or exokernels, depending on the viewpoint

• “applications” for a hypervisor are operating systems
∘ hypervisor can use coarser abstractions than an OS
∘ entire storage devices instead of a filesystem

A bare metal hypervisor is similar to an exokernel or a microkernel op-
erating system (depending on a particular hypervisor and on our point
of view). Typically, a hypervisor provides interfaces and resources that
are traditionally implemented in hardware: block devices, network
interfaces, a virtual CPU, including a virtual MMU that allows the
‘applications’ (i.e. the guest operating systems) to take advantage of
paging.

145Unikernels
• kernels for running a single application
∘ makes little sense on real hardware
∘ but can be very useful on a hypervisor

• bundle applications as virtual machines
∘ without the overhead of a general-purpose OS

Unikernels constitute a different strand (compared to exokernels) of
minimalist operating system design. In this case, process-level multi-
tasking and address space isolation are not part of the kernel: instead,
the kernel exists to support a single application by providing (a subset
of) traditional OS abstractions like a networking stack, a hierarchical
file system and so on. When an application is bundled with a compati-
ble unikernel, the result can be executed directly on a hypervisor (or
an exokernel).

146Exo vs Uni
• an exokernel runs multiple applications
∘ includes process-based isolation
∘ but abstractions are very bare-bones

• unikernel only runs a single application
∘ provides more-or-less standard services
∘ e.g. standard hierarchical file system
∘ socket-based network stack / API

Part 3.4: System Calls
In the remainder of this lecture, we will focus on monolithic kernels,
since the more progressive designs do not use the traditional system
call mechanism. In those systems, most ‘system calls’ are implemented
through message passing, and only services provided directly by the
microkernel use a mechanism that resembles system calls as described
in this section.

148Reminder: Kernel Protection
• kernel executes in privileged mode of the CPU
• kernel memory is protected from user code

But: Kernel Services
• user code needs to ask kernel for services
• how do we switch the CPU into privileged mode?
• cannot be done arbitrarily (security)

Themain purpose of the system call interface is to allow secure transfer
of control between a user-space application and the kernel. Recall that
each executes with different level of privileges (at the CPU level). A
viable system call mechanism must allow the application to switch the
CPU into privileged mode (so that the CPU can execute kernel code),
but in a way that does not allow the application to execute its own code
in this mode.

149System Calls
• hand off execution to a kernel routine
• pass arguments into the kernel
• obtain return value from the kernel
• all of this must be done safely

Wewould like system calls to behave more-or-less like standard sub-
routines (e.g. those provided by system libraries): this means that we
want to pass arguments to the subroutine and obtain its return value.
Like with the transfer of control flow, we need the argument passing
to be safe: the user-space side of the call must not be able to read or
modify kernel memory.

150Trapping into the Kernel
• there are a few possible mechanisms
• details are very architecture-specific
• in general, the kernel sets a fixed entry address
∘ an instruction changes the CPU into privileged mode
∘ while at the same time jumping to this address

Security from execution of arbitrary code by the application is achieved

PB152 Operating Systems 24/93 July 4, 2020

by tying the privilege escalation (i.e. the entry into the privileged CPU
mode) to a simultaneous transfer of execution to a fixed address, which
the application is unable to change. The exact mechanism is highly
architecture-dependent, but the principle outlined here is universal.

151Trap Example: x86
• there is an int instruction on those CPUs
• this is called a software interrupt
∘ interrupts are normally a hardware thing
∘ interrupt handlers run in privileged mode

• it is also synchronous
• the handler is set in IDT (interrupt descriptor table)

On traditional (32 bit) x86 CPUs, the preferredmethod of implementing
the system call trap was through software interrupts. In this case, the
application uses an int instruction, which causes the CPU to perform a
process analogous to a hardware interrupt. The two important aspects
are:

1. the CPU switches into privileged mode to execute the interrupt
handler,

2. reads the address to jump to from an interrupt handler table, which
is a data structure stored in RAM, at an address given by a special
register.

The kernel sets up the interrupt handler table in such a way that user-
level code cannot change it (via standard MMU-based memory protec-
tion). The register which holds its address cannot be changed outside
of privileged mode.

152Software Interrupts
• those are available on a range of CPUs
• generally not very efficient for system calls
• extra level of indirection
∘ the handler address is retrieved from memory
∘ a lot of CPU state needs to be saved

A similar mechanism is available on many other processor architec-
tures. There are, however, some downsides to using this approach for
system calls, the main being their poor performance. Since the mech-
anism piggy-backs on the hardware variety of interrupts, the CPU
usually saves a lot more computation state than would be required. As
an additional inconvenience, there are multiple entry-points, which
must therefore be stored in RAM (instead of a register), causing addi-
tional delays when the CPU needs to read the interrupt table. Finally,
arguments must be passed through memory, since registers are reset
by the interrupt, again contributing to increased latency.

153Aside: SW Interrupts on PCs
• those are used even in real mode
∘ legacy 16-bit mode of 80x86 CPUs
∘ BIOS (firmware) routines via int 0x10 & 0x13

∘ MS-DOS API via int 0x21

• and on older CPUs in 32-bit protected mode
∘ Windows NT uses int 0x2e

∘ Linux uses int 0x80

On the ubiquitous x86 architecture, software interrupts were the pre-
ferredmechanism to provide services to application programs until the
end of the 32-bit x86 era. Interestingly, x86 CPUs since 80386 offer a
mechanism that was directly intended to implement operating system

services (i.e. syscalls), but it was rather complex and largely ignored by
operating system programmers.

154Trap Example: amd64 / x86_64
• sysenter and syscall instructions
∘ and corresponding sysexit / sysret

• the entry point is stored in a machine state register
• there is only one entry point
∘ unlike with software interrupts

• quite a bit faster than interrupts

When x86 switched to a 64-bit address space, many new instructions
found their way into the instruction set. Among those was a simple,
single-entrypoint privilege escalation instruction. This mechanism
avoids most of the overhead associated with software interrupts: com-
putation state is managed in software, allowing compilers to only save
and restore a small number of registers across the system call (instead
of having the CPU automatically save its entire state into memory).

155Which System Call?
• often there are many system calls
∘ there are more than 300 on 64-bit Linux
∘ about 400 on 32-bit Windows NT

• but there is only a handful of interrupts
∘ and only one sysenter address

Usually, there is only a single entry point (address) shared by all system
calls. However, the kernel needs to be able to figure out which service
the application program requested.

156Reminder: System Call Numbers
• each system call is assigned a number
• available as SYS_write &c. on POSIX systems
• for the “universal” int syscall(int sys, ...)

• this number is passed in a CPU register

This is achieved by simply sending the syscall number as an argument
in a specific CPU register. The kernel can then decide, based on this
number, which kernel routine to execute on behalf of the program.

157System Call Sequence
• first, libc prepares the system call arguments
• and puts the system call number in the correct register
• then the CPU is switched into privileged mode
• this also transfers control to the syscall handler

The first stage of a system call is executed in user mode, and is usually
implemented in libc.

PB152 Operating Systems 25/93 July 4, 2020

158System Call Handler
• the handler first picks up the system call number
• and decides where to continue
• you can imagine this as a giant switch statement

switch (sysnum)

{

case SYS_write: return syscall_write();

case SYS_read: return syscall_read();

/* many more */

}

After the switch to privileged mode, the kernel needs to make sense of
the arguments that the user program provided, and most importantly,
decide which system call was requested. The code to do this in the
kernel might look like the above switch statement.

159System Call Arguments
• each system call has different arguments
• how they are passed to the kernel is CPU-dependent
• on 32-bit x86, most of them are passed in memory
• on amd64 Linux, all arguments go into registers
∘ 6 registers available for arguments

Since different system calls expect different arguments, the specific ar-
gument processing is done after the system call is dispatched based on
its number. Inmodern systems, arguments are passed in CPU registers,
but this was not possible with protocols based on software interrupts
(instead, arguments would be passed through memory, usually at the
top of the user-space stack).

Part 3.5: Kernel Services
Finally, we will revisit the services offered by monolithic kernels, and
look at how they are realized in microkernel operating systems.

161What Does a Kernel Do?
• memory & process management
• task (thread) scheduling
• device drivers
∘ SSDs, GPUs, USB, bluetooth, HID, audio, ...

• file systems
• networking

The first two points are a core responsibility of the kernel: those are
rarely ‘outsourced’ into external services. The remaining services are
a core part of an operating system, but not necessarily of a kernel.
However, it is hard to imagine a modern, general-purpose operating
system which would omit any of them. In traditional (monolithic)
designs, they are all part of the kernel.

162Additional Services
• inter-process communication
• timers and time keeping
• process tracing, profiling
• security, sandboxing
• cryptography

Amonolithic kernel may provide a number of additional services, with
varying importance. Not all systems provide all the services, and the
implementations can look quite differently across operating systems.
Out of this (incomplete) list, IPC (inter-process communication) is the
only item that is quite universally present, in some form, in micro-
kernels. Moreover, while dedicated IPC mechanisms are common in
monolithic kernels, they are more important in a microkernel.

163Reminder: Microkernel Systems
• the kernel proper is very small
• it is accompanied by servers
• in “true” microkernel systems, there are many servers
∘ each device, filesystem, etc. is separate

• in hybrid systems, there is one, or a few
∘ a “superserver” that resembles a monolithic kernel

Recall that a microkernel is small: it only provides services that cannot
be reasonably implemented outside of it. Of course, since the operating
system as a whole still needs to implement those services. Two basic
strategies are available:

1. a single program, running in a single process, implements all the
missing functionality: this program is called a superserver, and
internally has an architecture that is rather similar to that of a
standard monolithic kernel,

2. each service is provided by a separate, specialized program, run-
ning in its own process (and hence, address space) – this is charac-
teristic of so-called ‘true’ microkernel systems.

There are of course different trade-offs involved in those two basic
designs. A hybrid system (i.e. one with a superserver) is easier to
initially design and implement (for instance, persistent storage dri-
vers, the block layer, and the file system all share the same address
space, simplifying the implementation) and is often considerably faster,
since communication between components does not involve context
switches. On the other hand, a true microkernel system with services
and drivers all strictly separated into individual processes is more ro-
bust, and in theory also easier to scale to large SMP systems.

164Kernel Services
• we usually don’t care which server provides what
∘ each system is different
∘ for services, we take a monolithic view

• the services are used through system librares
∘ they abstract away many of the details
∘ e.g. whether a service is a system call or an IPC call

From a user-space point of view, the specifics of kernel architecture
should not matter. Applications use system libraries to talk to the
kernel in either case: it is up to the libraries in question to implement
the protocol for locating relevant servers and interacting with them.

165User-Space Drivers in Monolithic Systems
• not all device drivers are part of the kernel
• case in point: printer drivers
• also some USB devices (not the USB bus though)
• part of the GPU/graphics stack
∘ memory and output management in kernel
∘ most of OpenGL in user space

While user-space drivers are par for the course inmicrokernel systems,

PB152 Operating Systems 26/93 July 4, 2020

there are also certain cases where drivers in operating systems based
on monolithic kernels have significant user-space components. The
most common example is probably printer drivers: low-level commu-
nication with the printer (at the USB level) is mediated by the kernel,
but for many printers, document processing comprises a large part
of the functionality of the driver. In some cases, this involves format
conversion (e.g. PCL printers) but in others, the input document is
rasterised by the driver on the main CPU: instead of sending text and
layout information to the printer, the driver sends pixel data, or even
a stream of commands for the printing head.
The situation with GPUs is somewhat analogous: low-level access to
the hardware is provided by the kernel, but again, a large part of the
driver is dedicated to data manipulation: dealing with triangle meshes,

textures, lighting and so on. Additionally, modern GPUs are invariably
programmable: a shader compiler is also part of the driver, translat-
ing high-level shader programs into instruction streams that can be
executed by the CPU.
We will deal with device drivers in more detail in lecture 8.

166Review Questions
• What CPU modes are there and how are they used?
• What is the memory management unit?
• What is a microkernel?
• What is a system call?

Part 4: File Systems
File systems are an integral part of general-purpose operating systems.
Besides storing user data, the programs and other components that
make up an operating system also reside in the file system. In this
lecture, we will look at some of the inner workings of a typical POSIX-
compatible file system layer.

168Lecture Overview
1. Filesystem Basics
2. The Block Layer
3. Virtual Filesystem Switch
4. The UNIX Filesystem
5. Advanced Features

Wewill first revisit some of the basic concepts that have been already
introduced in previous lectures. Afterwards, we will look at the block
layer, which exists below the file system and provides a simpler data
storage abstraction. Afterward, we will have a look at VFS, a system
that kernels typically use to allow multiple implementations of the
on-disk structures while providing a uniform system call interface on
the outside.
Afterwards, we will look at both the semantics and the on-disk organi-
zation of a typical UNIX file system. Finally, we will take a quick look
at some of the more advanced features present in modern file systems
(and below, in the block layer).

Part 4.1: Filesystem Basics
In this section, we will consider the basic elements of a file system, as
understood by POSIX – some of the material will also repeat concepts
that we have seen earlier.

170What is a File System?
• a collection of files and directories
• (mostly) hierarchical
• usually exposed to the user
• usually persistent (across reboots)
• file managers, command line, etc.

The first concern is the definition of a file system as a whole. The
most abstract view is that a file system is a collection of files and direc-
tories, where files are essentially byte sequences and directories give
names to files and other directories. Since directories can contain other
directories, the whole structure forms a tree (with some exceptions).

File systems are usually user-visible: the user can directly access the
directory hierarchy and explore both directory and file content, using
tools provided by the operating system. Another typical property of
a file system is that it is persistent: rebooting the computer will not
erase or alter the data stored in the file system. (Note that both these
properties have exceptions: file systems can be stored on virtual de-
vices that use RAM for storage, and those are not persistent; likewise,
some operating systems do not allow the user to directly access the file
system).

171What is a (Regular) File?
• a sequence of bytes
• and some basic metadata
∘ owner, group, timestamp

• the OS does not care about the content
∘ text, images, video, source code are all the same
∘ executables are somewhat special

Since we have defined a file system as a collection of files and directo-
ries, we will need to also give a definition of a file. Again, we can give
a fairly abstract definition that works: a file is an object that consists
of a sequence of bytes (the data) and some additional metadata – infor-
mation about the file. The content (i.e. the byte sequence) is typically
not interpreted by the operating system (apart from special cases, like
executable files). Themetadata contains things like the identifier of the
owner of the file, a few timestamps (e.g. the time of last modification)
and access permissions. Please note that the file metadata does not
include a name: file name is not a property of the file itself in POSIX
systems.

172What is a Directory?
• a list of name→ file mappings
• an associative container if you will
∘ semantically, the value types are not homogeneous
∘ syntactically, they are just i-nodes

• one directory = one component of a path
∘ /usr/local/bin

The last part of the definition of a file system that we did not explain
yet is a directory. Directories aremaps (associative arrays, dictionaries),
where the keys are names and the values are files and other directories.
In fact, both files and directories are represented by the same data
structure in the file system: an i-node.
We also remember that directories form a tree, and we use paths to

PB152 Operating Systems 27/93 July 4, 2020

identify individual files and directories in the file system. Each compo-
nent (a section delimited by / on either side) of such a path is used as a
key in a single directory.

173What is an i-node?
• an anonymous, file-like object
• could be a regular file
∘ or a directory
∘ or a special file
∘ or a symlink

The i-node is how files and directories (and any other file system object)
is represented by the POSIX file system. The i-node stores references
to data blocks (more on that later) and the metadata of the file.

174Files are Anonymous
• this is the case with UNIX
∘ not all file systems work like this

• there are pros and cons to this approach
∘ e.g. open files can be unlinked

• names are assigned via directory entries

As we have already mentioned, files do not carry names – i.e. the i-
node does not have a field which would store the name of the object.
Instead, a name is given to the file by a directory entry, which ties a
string (anything goes as long as there are no / characters) to an i-node.
Among other things, this means that it is possible to unlink files (re-
move their directory entries) without erasing their data: this happens
when the file is currently open. When the last process closes its last
file descriptor tied to that i-node, the data is finally erased from the
disk.

175What Else is a Byte Sequence?
• characters coming from a keyboard
• bytes stored on a magnetic tape
• audio data coming from a microphone
• pixels coming from a webcam
• data coming on a TCP connection

We have previously mentioned that a byte sequence is a broadly ap-
plicable abstraction. There are many things that can be treated (with a
bit of generosity) as byte sequences. Most of those are not persistent in
the way files are, but this is not really a problem as far as programming
interfaces go.

176Writing Byte Sequences
• sending data to a printer
• playing back audio
• writing text to a terminal (emulator)
• sending data over a TCP stream

In addition to reading bytes, files (and many other things) support
writing bytes, i.e. storing or otherwise processing a sequence of bytes
that is sent (written) to the object in question.

177Special Files
• many things look somewhat like files
• let’s exploit that and unify them with files
• recall part 2 on APIs: “everything is a file”
∘ the API is the same for special and regular files
∘ not the implementation though

The generality of the abstraction makes it possible (and desirable) to
represent all such objects uniformly, using the file system API. How-
ever, besides using the sameAPI, many of those objects literally appear
in the file system as i-nodes with special properties. Of course, when
such a file is opened, reads and writes to the file descriptor are not
handled by the same kernel routines that deal with regular files. More
on this in a later section, on VFS.

178File System Types
• fat16, fat32, vfat, exfat (DOS, flash media)
• ISO 9660 (CD-ROMs)
• UDF (DVD-ROM)
• NTFS (Windows NT)
• HFS+ (macOS)
• ext2, ext3, ext4 (Linux)
• ufs, ffs (BSD)

Of course, there are many different implementations of the abstract
idea of a file system. While many have identical or similar semantics
(in most cases those described in this lecture and codified by POSIX),
this is not always the case: file systems in the FAT family, for instance,
do not have the concept of an i-node and file names are an intrinsic
property of the file.
While the semantics are often similar, the underlying disk format can
vary rather widely: while the ext family and ufs family use a fairly
traditional approach, many modern file systems, such as ZFS, btrfs or
hammer are internally built on B-trees, extendible hashing or other
scalable data structures, which can handle much bigger volumes with
many more files than the traditional, rather naive approaches. At
the same time, modern file systems provide better resilience against
corruption of their data structures in the event of errors or unexpected
power loss.

179Multi-User Systems
• file ownership
• file permissions
• disk quotas

Multi-user systems come with an additional set of challenges when it
comes to file system implementation. It is usually desirable that files of
each user are inaccessible to any other user, unless the owner of the
file desires to share that particular file. Likewise, we want to be able
to limit how much space each user can take up, which is usually done
via disk quotas.

PB152 Operating Systems 28/93 July 4, 2020

180Ownership & Permissions
• we assume a discretionary model
• whoever creates a file is its owner
• ownership can be transferred
• the owner decides about permissions
∘ basically read, write, execute

For these reasons, the system must be able to track:

1. file system ownership, i.e. remember which file belongs to which
user,

2. file permissions, i.e. what the owner of the file deems as appropriate
use of their file – whether other users (and which users) can read
the content of the file, or even write new data or replace existing
data in the file.

Under a discretionary access model, the owner can freely decide about
the permissions. There are other models, where this ability is limited
(usually to improve security).

181Disk Quotas
• disks are big but not infinite
• bad things happen when the file system fills up
∘ denial of service
∘ programs may fail and even corrupt data

• quotas limits the amount of space per user

Besides limiting what can be done with files, the system must also
be able to manage free space in the file system: since file systems are
stored on some physical medium, the amount of data that can be stored
is limited. Disk quotas are amechanism bywhich the operating system
ensures fair allocation of the space among users (or at least prevents a
single user to hog all the space in the file system).

Part 4.2: The Block Layer
The block layer (of an operating system) takes care of low-level access
to persistent storage devices, such as hard drives, solid-state drives
and other similar devices. The file system itself then does not need
to understand the details of the underlying device or the protocol by
which to communicate with that device. Instead, it uses a uniform
API which allows the file system to store and retrieve blocks of data.
Or, in other words, a block device is an abstraction which makes file
system implementation both easier (fewer details to take care of) and
more universal (does not depend on the particulars of a given storage
device).

183Disk-Like Devices
• disk drives provide block-level access
• read and write data in 512-byte chunks
∘ or also 4K on big modern drives

• a big numbered array of blocks

Ablock device (i.e. a disk-like device) has the following basic operations:
it can read or write a block, which is a chunk of data of a fixed size. The
specific size depends on the type of device, but the usual block sizes
are either 512 bytes (in older devices) or 4096 bytes in more modern
hardware. The blocks are numbered and the entire device essentially
‘looks’ like a big array of such blocks. Reading andwriting blocksmeans,
in this context, transferring the data stored in that block to or from
main memory (RAM).

184Aside: Disk Addressing Schemes
• CHS: Cylinder, Head, Sector
∘ structured adressing used in (very) old drives
∘ exposes information about relative seek times
∘ useless with variable-length cylinders
∘ 10:4:6 CHS = 1024 cylinders, 16 heads, 63 sectors

• LBA: Logical Block Addessing
∘ linear, unstructured address space
∘ started as 22, later 28, ... now 48 bit

Old rotational drives used an addressing scheme which reflected their
physical geometry. The address consisted of 3 numbers: the cylinder
(distance from the center of the platter), the head (which platter or
rather which side of which platter stores the sector) and the sector
number (the angle at which the sector is stored). This allowed the dri-
ver and operating system to predict operation latency: reading sectors
from the same cylinder would be usually fast, reading sectors from a
different cylinder would require expensive head movements (known
as ‘seeking’).
The CHS scheme was abandoned as disk capacities increased and the
address space began to run out. The replacement, known as LBA or
Logical Block Addressing, uses an unstructured, flat address space (the
same as main memory, but the unit of addressing is a block, not a byte).

185Block-Level Access
• disk drivers only expose linear addressing
• one block (sector) is the minimum read/write size
• many sectors can be written ‘at once’
∘ sequential access is faster than random
∘ maximum throughput vs IOPS

Higher layers of an operating system (starting with the block layer
and file system implementation) do not care about the interface be-
tween the disk driver and the disk drive itself and always use linear
addressing. Within the block layer, transfers are often re-organized to
maximize sequential writes (we will discuss this shortly), because most
disk drives can read or write a contiguous sequence of blocks much
faster than they can read them one at a time.
The sequential access regime is important when we ask about the
throughput of the system (howmany bytes the device can supply or
store per second), while the number of blocks that it can read or write
when they are randomly distributed across the entire device is known
as IOPS – input/output operations per second.

186Aside: Access Times
• block devices are slow (compared to RAM)
∘ RAM is slow (compared to CPU)

• we cannot treat drives as an extension of RAM
∘ not even fastest modern flash storage
∘ latency: HDD 3–12 ms, SSD 0.1 ms, RAM 70 ns

The entire design of the storage stack, starting with hardware buses,
all they way to file systems and even application-level software, most
often database systems, is strongly influenced by the slowness of block
devices. Even the latest flash-based drives are many times slower than
RAM (which is many times slower than CPU caches, which are still
slower than the computational units in the CPU).

PB152 Operating Systems 29/93 July 4, 2020

187Block Access Cache
• caching is used to hide latency
∘ same principle between CPU and RAM

• files recently accessed are kept in RAM
∘ many cache management policies exist

• implemented entirely in the OS
∘ many devices implement their own caching
∘ but the amount of fast memory is usually limited

You already know that CPU relies on cache memory to hide latency
of RAM: data that has been recently used, or that the system suspects
will be required shortly, are stored in, or prefetched into, the much
faster (but much smaller) cache. This means that for data that is most
often used, the CPU does not need to wait out the entire RAM latency
time.
The same principle is used by operating systems to hide the latency of
block devices, but in this case, the ‘fast’ and ‘small’ memory is the main
memory (RAM) while the big and slow memory is the block device.
Unlike CPU cache, this so-called disk cache is implemented entirely in
software.
However, there is usually another layer (or two) of caching, which
is done in hardware or in drive firmware and which uses dedicated
hardware buffers (usually implemented as dynamic RAMor even flash
storage) on the device side of the bus. This is distinct from the OS-level
cache and we will ignore it from now on.

188Write Buffers
• the write equivalent of the block cache
• data is kept in RAM until it can be processed
• must synchronise with caching
∘ other users may be reading the file

There is one major difference between the CPU cache and the block
device cache maintained by the OS: there is a persistence mismatch be-
tween the cache (RAM) and the main storage (disk). When the system
powers down, the content of the RAM is lost and along with it, any
modifications which were not yet replicated from the cache onto the
persistent storage device. This creates a lot of complexity, since applica-
tion software (and users) expect data written to disk to stay there. This
is especially important (and problematic) in systems which need to be
resistant to unexpected power loss, though operating system crashes
can cause the same effect even if the system is hooked up to reliable
power.
For this reason, many operating systems use a split cache design: data
to bewritten is stored inwrite buffers and flushed to disk as bandwidth
and other resources permit. Of course, data stored in write buffers
must be replicated into the read cache (or otherwise shared with it),
since other processes may be reading the same blocks (usually via the
file system) and should see the new content.

189I/O Scheduler (Elevator)
• reads and writes are requested by users
• access ordering is crucial on a mechanical drive
∘ not as important on an SSD
∘ but sequential access is still much preferred

• requests are queued (recall, disks are slow)
∘ but they are not processed in FIFO order

We have already mentioned that sequential access is much faster than

randomly distributed access, and that latency in rotational drives de-
pends on physical distance between the locations where individual
pieces of data are stored. Since there is usually a lot of parallelism
going on in the IO subsystems (different processes reading and writing
different files at the same time), it often pays to re-order the requests
for IO operations.
The desired effect is that a completely random sequence of IO opera-
tions coming in frommultiple processes, say 16 requests where each re-
quest is in a different physical location from the previous, is re-ordered
into 4 sets of 4 operations happening in physical proximity (or even
in a sequence). This reordering can easily improve overall through-
put of the system (in this example situation) 3-4x, since a single batch
of 4 sequential operations takes barely any extra time on top of the
random-access latency incurred on the first operation in that sequence.
The reordering is more easily done with buffered writes: in this case,
the block layer is free to shuffle the write queue (subject to ordering
constraints imposed by the file system or perhaps by the application).
However, reading is more complicated: the OS can certainly speculate
what read operations will be requested next. In systems with true
asynchronous IO (where the application does not block until the IO is
finished), the read queue may be longer, but still more limited than the
write queue.

190RAID
• hard drives are also unreliable
∘ backups help, but take a long time to restore

• RAID = Redundant Array of Inexpensive Disks
∘ live-replicate same data across multiple drives
∘ many different configurations

• the system stays online despite disk failures

While speed of persistent storage is a major problem, its (lack of) relia-
bility is also rather important. While the problem of speed is tackled
with caching, reliability is usually improved through redundancy: in
case a component fails, other components can take over. In case of
storage, that means that the data must be replicated across multiple
devices, in such a way that if one of them fails, the others can still put
together a complete copy of the data.
RAID is a low-level realization of this principle. RAID can be imple-
mented in hardware or in software, the latter being more common in
present-day systems. Software RAID is part of the block layer of an
operating system, and is usually presented to upper layers as a single
virtual device. Reading andwriting to this virtual device will cause the
RAID subsystem of the block layer to distribute the data across mul-
tiple physical devices. Most RAID configurations can then continue
operating without data loss (and without interruption) if one of the
physical devices fails.

191RAID Performance
• RAID affects the performance of the block layer
• often improved reading throughput
∘ data is recombined from multiple channels

• write performance is more mixed
∘ may require a fair amount of computation
∘ more data needs to be written for redundancy

In a fully functioning RAID array, read performance is usually signifi-
cantly enhanced: the data is collected frommultiple devices in parallel,
each contributing part of the overall bandwidth.
Writing is less clear-cut: depending on the RAID configuration, writes
may be faster or slower than a single disk. Writing to a software RAID
array also consumes additional CPU cycles, since the operating system

PB152 Operating Systems 30/93 July 4, 2020

must slice the data (and often also compute checksums).

192Block-Level Encryption
• symmetric & length-preserving
• encryption key is derived from a passphrase
• also known as “full disk encryption”
• incurs a small performance penalty
• very important for security / privacy

Another feature commonly present in modern operating systems is
block-level encryption of data. This hardens the system against of-
fline attacks: e.g. if the computer is stolen, the data remains inac-
cessible without the encryption key (which is usually derived from a
passphrase).
Disk encryption uses symmetric crypto (usually hardware-accelerated
AES) and in most implementations, the encryption is length-
preserving: a single block of data results in a single block of ciphertext
which is then directly stored in the corresponding physical block of
the persistent storage device. For most of the software stack, this
type of encryption is completely transparent. Not even the file system
implementation in the operating system needs to be aware that it is
stored on an encrypted device.

193Storing Data in Blocks
• splitting data into fixed-size chunks is unnatural
• there is no permission system for individual blocks
∘ this is unlike virtual (paged) memory
∘ it’d be really inconvenient for users

• processes are not persistent, but block storage is

We are used to working with arbitrary-sized files, but this expectation
does not map very neatly onto the block device abstraction, where
data is stored in fairly big chunks. Additionally, the block layer does
not offer a permission system or any kind of sharing or multiplexing:
there are just blocks and a process can either read or write any of them,
or none at all.
While main memory is also a rather dumb array of bytes, organized
into pages (which are, in fact, rather block-like), the content of this
main memory is much more dynamic and much less important to the
user. Part of the distinction comes down to persistence, but other than
that, it is really mostly just a historical accident.

194Filesystem as Resource Sharing
• usually only 1 or few disks per computer
• many programs want to store persistent data
• file system allocates space for the data
∘ which blocks belong to which file

• different programs can write to different files
∘ no risk of trying to use the same block

Nonetheless, there needs to be somemechanism for sharing persistent
storage among different processes (and different users). This mech-
anism is, of course, the file system. Among other things, it manages
allocation of free space into files, and maintains persistent identities
of such files.

195Filesystem as Abstraction
• allows the data to be organised into files
• enables the user to manage and review data
• files have arbitrary & dynamic size
∘ blocks are transparently allocated & recycled

• structured data instead of a flat block array

Block storage is not very convenient, and in almost all cases requires
additional abstractions. We can draw an analogy with main memory:
the flat array of bytes exposed by the CPU is not what programmers
directly use: instead, this memory is managed by a memory allocator
like malloc, which slices it up into logical objects of varying size which
can be created and destroyed as needed.
The file system plays the same role for persistent storage. However,
since the file system is shared amongmanyprocesses, and even directly
exposed to users, it needs to be organized more rigidly and intuitively.
Instead of storing numeric pointers at arbitrary locations within files
(as is the case with in-memory data structures), objects within a file sys-
tem are strictly separated into objects which carry pointers (structure),
i.e. directories, and data-carrying objects, i.e. regular files. Since each
pointer in a directory is given a name, this organizational principle
gives rise to the directory hierarchy as was discussed in lecture 2.

Part 4.3: Virtual Filesystem Switch
A typical kernel must be able to accommodate a fairly large number
of different file system implementations: the native file system of the
operating system, of course, but at minimum also file systems that are
typically used on portable media, such as USB flash drives (FAT or exFAT)
or optical media (ISO 9660, UDF). It is also often desirable that non-
native file systems can be mounted, such as accessing NTFS volumes
on Unix systems. Finally, there are file systems which are ported to a
particular operating system because of their desirable properties, such
as high performance, reliability or scalability and not for compatibility
reasons alone (e.g. the SGI xfs ported from IRIX to Linux, or Sun/Oracle
ZFS ported from Solaris to FreeBSD).
Additionally, a number of operating systems employ various virtual
file systems (such as proc on many UNIX-like systems, or sys on Linux),
which also present a unified interface with the other file systems.

197Virtual File System Layer
• many different filesystems
• the OS wants to treat them all alike
• VFS provides an internal, in-kernel API
• filesystem syscalls are hooked up to VFS

Since all the different file systems provide essentially the same seman-
tics, and need to be available via a single unified API to the outside
world, the kernel would ideally also treat them all alike. This is the role
of the virtual file system switch or virtual file system layer.

198VFS in OOP terms
• VFS provides an abstract class, filesystem
• each filesystem implementation derives filesystem
∘ e.g. class iso9660 : public filesystem

• each actual file system gets an instance
∘ /home, /usr, /mnt/usbflash each one
∘ the kernel uses the abstract interface to talk to them

PB152 Operating Systems 31/93 July 4, 2020

If you have encountered object-oriented programming, this paradigm
should be quite familiar: there is an interface which describes a file
system, from the point of view of the kernel, in the abstract. Each spe-
cific file system implements this abstract interface, but from the point
of view of the API, it doesn’t really matter which file system it is, since
they all provide a uniform API. Unlike the block layer, this abstraction
is typically not visible from outside of the kernel. Nonetheless, it is still
an important abstraction.

199The filesystem Class

struct handle { /* ... */ };

struct filesystem

{

virtual int open(const char *path) = 0;

virtual int read(handle file, ...) = 0;

/* ... */

}

If we consider the VFS interface as a C++ class, this is approximately
how it would look like. In particular, the handle is a possibly complex
data structure: the file descriptor abstraction exists between the kernel
and the user-space. Within kernel, it is much less useful, since it is,
among other things, process-specific. When a file system implemen-
tation needs to work with a file, what it needs is a reference to the
particular i-node which represents the file (or rather to its in-memory
version), and perhaps an iterator into the file: ideally one that is more
efficient that a mere offset, i.e. a data structure which can, without
scanning through block lists in the i-node, pinpoint specific block (or
blocks) which need to be fetched from disk.

200Filesystem-Specific Operations
• open: look up the file for access
• read, write – self-explanatory
• seek: move the read/write pointer
• sync: flush data to disk
• mmap: memory-mapped IO
• select: IO readiness notification

The VFS operations partially reflect the user-level file access API, with
the above-mentioned caveats. The above list is an abridged version of
the VFS interface as implemented in the Linux kernel. Since VFS is
internal to the kernel, it is not standardized in any way, and different
kernels approach the problem differently.

201Standard IO
• the usual way to use files
• open the file
∘ operations to read and write bytes

• data has to be buffered in user space
∘ and then copied to/from kernel space

• not very efficient

The standard API for input and output is based around the read and
write operations. Unfortunately, these are not always efficient, since
the data must be copied between the file system cache and the (pri-
vate) memory of the process requesting the operation. Efficiency of
read-heavyworkloads can be significantly improved by usingmemory-
mapped IO instead. This is the case whether the program needs ran-
dom access to the content of a file (i.e. seeks from place to place) or
whether it simply wants to process a single byte at a time.

202Memory-mapped IO
• uses virtual memory (cf. last lecture)
• treat a file as if it was swap space
• the file is mapped into process memory
∘ page faults indicate that data needs to be read
∘ dirty pages cause writes

• available as the mmap system call

Memory-mapped IO uses the virtual memory subsystem to reduce the
amount of copying and context switching involved in IO operations.
Under this scheme, file data is (at least initially) shared between the
block access cache and the process.
Modification of data can be handled in two ways:

1. modifications are private, e.g. when the process simply needs to
adjust the data as part of processing, but does not wish to write the
changes into the original file,

2. the changes are shared, i.e. the process intends to make changes
to the data and write that data into the file afterwards.

In the first case, the mapping is done in a copy-on-write regime: the
pages from cache are marked read-only for the process and write at-
tempts cause the operating system to make a new copy of the data in
physical memory. Future reads and writes are then redirected into
this new copy. In the second case, the pages are write-through – modi-
fications by the process affect both the cache and, eventually, also the
on-disk file (when the dirty pages are flushed to disk).

203Sync-ing Data
• recall that the disk is very slow
• waiting for each write to hit disk is inefficient
• but if data is held in RAM, what if power is cut?
∘ the sync operation ensures the data has hit disk
∘ often used in database implementations

A write operation on a file is, usually, asynchronous with regards to
the physical medium. That is, control returns from a write system call
long before the data is durably stored. This means that in case of a
crash or a power loss, an applicationmay be unable to recover data that
it has already written. If it is important that a write is complete before
computation continues, operating systems offer a sync system call (or a
variation, like fsync and fdatasync) which ensures that all outstanding
writes are sent to the device.

204Filesystem-Agnostic Operations
• handling executables
• fcntl handling
• special files
• management of file descriptors
• file locks

Within the kernel, part of file-system-related functionality is inde-
pendent of a particular file system implementation, and is instead
implemented in other kernel modules. One example would be the
code which deals with executable files: let’s assume that the file system
implements memory mapping of files (which itself is partially imple-
mented in the block layer and virtual memory subsystems). When a
program (stored in a regular file on some file system) is executed, the
responsible module of the operating system will request a memory
mapping of the file through VFS, but the remainder of the code deal-
ing with the exec system call does not need any file-system-specific

PB152 Operating Systems 32/93 July 4, 2020

knowledge.

205Executables
• memory mapped (like mmap)
• may be paged in lazily
• executables must be immutable while running
• but can be still unlinked from the directory

There are additional provisions regarding executable files. One of them
is, that they are often „paged in“ lazily: this is a concept that we will
explore in more detail in lecture 5. This is, however, a compromise: it
means that if a given executable is ‘running‘ – that is, if a process exists
which is currently executing the program stored in said executable –
the operating system must disallow any writes to the file. Otherwise,
the image, which may partially reside in memory and partially on disk,
may be corrupted as pages that are already in memory are combined
with pages that are loaded lazily from disk.
However, since the name of the file is external to the file itself, it is
not a problem for running executables to be unlinked. When the last
process which uses the executable terminates, the reference count on
the i-node drops to zero and the i-node is reclaimed (including any
data blocks it was using).

206File Locking
• multiple programs writing the same file is bad
∘ operations will come in randomly
∘ the resulting file will be a mess

• file locks fix this problem
∘ multiple APIs: fcntl vs flock
∘ differences on networked filesystems

The kernel offers a mechanism for locking files, making it possible for
multiple processes to read and write a shared file safely (i.e. without
corrupting it by issuing conflicting write calls concurrently). In POSIX,
there are historically two separate mechanisms for locking files: the
flock call, which locks the entire file at once, and the fcntl call, which
can lock a range of bytes within a file.
There are, unfortunately, subtle problems with these locking APIs
which makes them easy to misuse, related both to the close system
call and to network file systems. We will not go into details, but if you
intend to use file locking, it is a good idea to do some research on this.

207The fcntl Syscall
• mostly operations relating to file descriptors
∘ synchronous vs asynchronous access
∘ blocking vs non-blocking
∘ close on exec: more on this in a later lecture

• one of the several locking APIs

This is another bit of the file system interface that does not normally
need to interact with the VFS or with a specific file system implementa-
tion. In addition to exposing an API for locking files, the fcntl system
call mainly interacts with the file descriptor table and various file de-
scriptor flags: for instance, it can be used to enable synchronous IO,
meaning that every write call will only return to the caller after the
data has been sent to the storage device.
Likewise, fcntl can be used to set blocking (default) or non-blocking
mode on a file descriptor: in non-blocking mode, if a write buffer is
full, the system call will not wait for space to become available: instead,
it will indicate to the program that the operation cannot be completed

and that it should be retried at a later point. Likewise, if there is no
data available (e.g. in a pipe or in a socket), a read operation will return
immediately indicating that this is the case, instead of waiting formore
data to become available (as it would in blocking mode).
The close-on-exec flag instructs the kernel to internally perform a
close operation on this file descriptor in the event that an exec call is
performed while the file descriptor is still open.

208Special Files
• device nodes, pipes, sockets, ...
• only metadata for special files lives on disk
∘ this includes permissions & ownership
∘ type and properties of the special file

• they are just different kind of an i-node
• open, read, write, etc. bypass the filesystem

The special files that we have considered in lecture 2 are, likewise,
mostly independent of the particular file system. The mechanics of
reading and writing such files are not tied to any particular file system.
The variants of those file-like objects which are linked into the file
system hierarchy (named pipes, UNIX domain sockets, devices) are,
for the purpose of the file system, simply a special type of i-node, and
the file system only needs to store their metadata. When such a file is
opened, the file system only obtains the metadata and hands off to a
different part of the kernel.

209Mount Points
• recall that there is only a single directory tree
• but there are multiple disks and filesystems
• file systems can be joined at directories
• root of one becomes a subdirectory of another

Finally, mount points are another VFS-layer feature that does not
extend into individual file system implementations. In fact, arguably,
the main reason for VFS to exist is that multiple different on-disk file
systems can be seamlessly integrated into a single tree. The system
calls which perform the joining (and un-joining, as it were) are mount

and unmount, respectively.

Part 4.4: The UNIX Filesystem
In this section, we will describe, in relatively low-level terms, how
the traditional UNIX file system is organized, including how things
are stored on disk. We will also discuss some of the problems which
are tied to organisation of data on a medium with severe penalties
for non-sequential data access, and with rather inflexible read and
write operations (i.e. the problems that arise because the device only
provides whole-block operations).

211Superblock
• holds toplevel information about the filesystem
• locations of i-node tables
• locations of i-node and free space bitmaps
• block size, filesystem size

There is considerable amount of metadata that the file system must
store on disk. It is usually impractical to allocate fixed-address regions
for all thismetadata, hence the locations of thesemetadata blocksmust
be stored somewhere in the file system itself. Of course, at least some
metadata must have a fixed, well-known location, to bootstrap the in-

PB152 Operating Systems 33/93 July 4, 2020

memory data structures at mount time. This fixed part of the metadata
is known as the superblock. Since it is quite essential, and changes
only rarely, it is usually stored in multiple fixed locations throughout
the disk, in case the primary copy is damaged.

212I-Nodes
• recall that i-node is an anonymous file
∘ or a directory, or a special

• i-nodes only have numbers
• directories tie names to i-nodes

Until now, we have treated i-nodes as an abstract concept: they simply
represent an object in the file system, be it a regular file, a directory, or
some kind of special file. In traditional UNIX file systems, the i-node
is also an actual, physical data structure stored on disk. Since the size
of the i-node is fixed, they can be stored in large arrays and indexed
using numbers: these indices form the basis of the i-node numbering
system.
Since i-node tables need to be consulted quite often, and the latency
of random access to a traditional hard drive depends on the physical
distance of the different pieces of data, the i-node array is often split
into multiple chunks, each stored in a different physical location. The
system then attempts to keep both references to the i-node, and data
that the i-node refers to, close together.

213I-Node Allocation
• often a fixed number of i-nodes
• i-nodes are either used or free
• free i-nodes may be stored in a bitmap
• alternatives: B-trees

In case i-nodes are stored in an array, this array usually has a fixed
size, which means some of the entries are unused. Since creating (and
erasing) files are fairly common operations, the system must be able to
quickly locate an unused i-node, and also quickly mark a previously
used i-node as unused. Scanning the entire table of i-nodes to find
an unused one would be very slow, since only a few i-nodes fit into a
single disk sector.
A common method of speeding this up is through bitmaps: in addition
to i-nodes themselves, the file system stores an array of bits, one bit
per i-node. This way, even though the system still has to do a linear
scan for a free i-node in the bitmap, it will do so at a rate of 512 or 4096
i-nodes per sector.
Consider this example (the sector size is 512 bytes): a file system is
organized into groups, each with around 200MiB of data, and each
equipped with an array of 26000 i-nodes. This works out to around
8KiB of data per i-node, which is the average expected size of a file in
this file system (if it was less than that, the file system might run out
of i-nodes before it runs out of data space). Each i-node is 128 bytes,
hence 4 i-nodes are stored per sector and the entire i-node array thus
takes up 6500 sectors (or 3.25MiB). The i-node bitmap is, on the other
hand, 51 sectors (or about 25KiB).

214I-Node Content
• exact content of an i-node depends on its type
• regular file i-nodes contain a list of data blocks
∘ both direct and indirect (via a data block)

• symbolic links contain the target path
• special devices describe what device they represent

The arguably most important part of an i-node is the data pointers that
it contains: i.e. the addresses of data blocks that hold the actual data
(whether the bytes of a regular file, or the data structure which maps
names to i-node numbers in case of directories).

215Attaching Data to I-Nodes
• a few direct block addresses in the i-node
∘ eg. 10 refs, 4K blocks, max. 40 kilobytes

• indirect data blocks
∘ a block full of addresses of other blocks
∘ one indirect block approx. 2 MiB of data

• extents: a contiguous range of blocks

A traditional approach lists each data block separately. A common
optimizationmakes the observation, thatmost files are stored in a small
number of contiguous spans of blocks. Those spans are called extents,
and more modern file systems store, instead of a simple array of block
addresses, a list of extents (i.e. in addition to a block address, they
also keep a number that tells the file system how many consecutive
blocks are taken up by the file system). This is, essentially, a form of
run-length encoding. The obvious downside is that finding the address
of the block which contains any given offset is now a linear operation
(instead of constant-time), but in a data structure that is usually much
smaller (most files will only have a single-digit number of extents, as
opposed to perhaps hundreds of individual data blocks).

216Fragmentation
• internal – not all blocks are fully used
∘ files are of variable size, blocks are fixed
∘ a 4100 byte file needs 2 blocks of 4 KiB each
∘ this leads to waste of disk space

• external – free space is non-contiguous
∘ happens when many files try to grow at once
∘ this means new files are also fragmented

Every time structured data is stored in an unstructured array of bytes,
certain trade-offs come up. One of them has to do with storage effi-
ciency: packing datamore tightly oftenmakesmany operations slower,
and the required metadata more complicated.
One of the well-known problems of this type is fragmentation, of
which there are two basic types. Internal fragmentation is caused
by alignment: it is much more efficient to start each file at a block
boundary, and hence to allocate a whole number of blocks to each file.
But because files have arbitrary sizes, there is often some unused space
at the end of each file. This space is overhead – it does not store any
useful data. Doing things this way, though, makes file access faster. In
other words, at the end of most files, there is a small fragment of disk
space that cannot be used (because it is smaller than the minimum size
that can be allocated for a file, i.e. one block).

217External Fragmentation Problems
• performance: can’t use fast sequential IO
∘ programs often read files sequentially
∘ fragmention→ random IO on the device

• metadata size: can’t use long extents

External fragmentation, on the other hand, does not directly waste
space. In this case, as files are created and destroyed, the free space is
eventually distributed across the entire file system, instead of being
concentrated in a single contiguous chunk.

PB152 Operating Systems 34/93 July 4, 2020

When creating new files, finding space for them is more work, since
it has to be ‘glued’ from many smaller fragments. Metadata grows
bigger, since average extent length goes down and hence files need
more extents.
Finally, and perhaps most importantly, when free space is fragmented,
so are the files that eventually make use of it. Access to these files is
then less efficient, because every time there is a discontinuity in the
data, the system experiences additional latency, due to non-sequential
access to the underlying hard drive

218Directories
• uses data blocks (like regular files)
• but the blocks hold name→ i-node maps
• modern file systems use hashes or trees
• the format of directory data is filesystem-specific

Like regular files, directories use data blocks to store their content.
However, while the content of regular files is completely arbitrary
(i.e. user- or application-defined), directories are interpreted by the file
system itself. The simplest format one could adopt to store directories
is to simply concatenate all the (null-terminated name, i-node number)
tuples after each other. Of course, this would be very inefficient. Most
file systems use a more sophisticated data structure (an on-disk hash
table, or a balanced tree).

219File Name Lookup
• we often need to find a file based on a path
• each component means a directory search
• directories can have many thousands entries

One of the most common operations in a file system is that of file
name lookup. This operation is performed many times for each path
that needs to be resolved (once for each component of the path). It is
therefore very important that this can be done quickly.
While it is important that the on-disk format allows for fast lookups,
even the fastest on-disk structure would be too slow: almost all operat-
ing systems employ an in-memory cache to speed up ‘common’ lookups
(i.e. they keep a cache of directories or directory entries which have
been recently used in lookups).

220Old-Style Directories
• unsorted sequential list of entries
• new entries are simply appended at the end
• unlinking can create holes
• lookup in large directories is very inefficient

As we have mentioned earlier, the simplest (but very inefficient)
method of storing directories is to simply keep a linear list of direc-
tory entries (i.e. tuples which map a name to an i-node number). This
causes awhole lot of problems and no serious contemporary file system
uses this approach.

221Hash-Based Directories
• only need one block read on average
• often the most efficient option
• extendible hashing
∘ directories can grow over time
∘ gradually allocates more blocks

A common alternative is to use hash tables, which usually make name
lookup very fast: the expected outcome is that, based on the hash of
the name, the first sector that is fetched from the disk will contain the
requested name/i-node pair, even for moderately large directories.
Of course, there are downsides, too: traversing the directory in, say, al-
phabetical order, will cause a random-access pattern in the underlying
disk IO, since the directory is sorted on the hash, which is essentially
random. Additionally, pathological directories can cause very bad be-
haviour, in case all (or most) directory entries hash to the same bucket.

222Tree-Based Directories
• self-balancing search trees
• optimised for block-level access
• B trees, B+ trees, B* trees
• logarithmic number of reads
∘ this is worst case, unlike hashing

Another fairly common strategy is to use balanced trees, which have
slightly worse average performance, but much better worst-case guar-
antees, compared to hash tables. Additionally, the entries are stored
in sorted order, making certain access patterns more efficient.

223Hard Links
• multiple names can refer to the same i-node
∘ names are given by directory entries
∘ we call such multiple-named files hard links
∘ it’s usually forbidden to hard-link directories

• hard links cannot cross device boundaries
∘ i-node numbers are only unique within a filesystem

An immediate consequence of how files and directories are stored in
the file system is the existence of hard links. Please note that those
are not special entities: they are merely a name for a situation where
multiple directory entries refer to the same i-node. In this case, each of
the ‘hard links’ is indistinguishable from all the others, and the same
file simply appears in multiple places in the directory hierarchy.
Since i-nodes keep a reference count, it is usually possible to tell that
the file is available under multiple different paths. Since files are only
destroyed when their reference count drops to zero, removing a file
from a directory (called unlinking) may or may not cause the file to be
actually erased.

224Soft Links (Symlinks)
• they exist to lift the one-device limitation
• soft links to directories are allowed
∘ this can cause loops in the filesystem

• the soft link i-node contains a path
∘ the meaning can change when paths change

• dangling link: points to a non-existent path

PB152 Operating Systems 35/93 July 4, 2020

Sometimes, it is useful to refer to a file not by i-node number, but by
a path. This can be done by employing soft links: unlike hard links,
those are actual objects, stored in the file system as a special type of
i-node. When such a file is opened, the operating system will instead
look up a file by the path stored in the soft link. Of course, this leads to
additional problems: for instance, the target path may not exist (this is
by far the most common failure mode).
If it does, an i-node of the file corresponding to the path is obtained
the usual way. Unlike in standard directory entries, this new i-node
may reside on a different file system.

225Free Space
• similar problem to i-node allocation
∘ but regards data blocks

• goal: quickly locate data blocks to use
∘ also: keep data of a single file close together
∘ also: minimise external fragmentation

• usually bitmaps or B-trees

Like i-nodes, the file system needs to be able to quickly locate an empty
data block, eitherwhen files and directories are created, or whenwhen
existing ones are extended. The task is slightly more complex for data
blocks: for i-nodes, it is sufficient to allocate a single i-node, and place-
ment of i-nodes relative to each other is not very important (though
of course it is useful to keep related i-nodes close together).
However, many files require more than a single data block, and it is
rather important that those blocks reside next to each other, if possible.
Tomakematters worse, it is not always clear how big the file is going to
be, and the file system should probably reserve some additional blocks
on top of those required for the initial set of writes. Armed with a
size estimate, the system then needs to find free space of that size,
ideally without impinging on headroom for existing files, and ideally
as a single contiguous run of blocks. Of course this may not be possible,
in which case it will try to split the file into multiple chunks of free
space.
Compared to the i-node case, the on-disk data structures are, however,
pretty much the same: either free block bitmaps, or balanced search
trees. Most of the difference is in the inputs and algorithms.

226File System Consistency
• what happens if power is cut?
• data buffered in RAM is lost
• the IO scheduler can re-order disk writes
• the file system can become corrupt

File systems, and the data structures they employ, face a somewhat
unique challenge: the changes the file system makes to its metadata
can be cut off at an arbitrary point, even in the middle of an operation,
most often by a power loss. Even worse, the individual writes the
system has issued can be re-ordered (to improve performance), which
means that there isn’t a sharp cut-off point.
As an example, consider creation of a regular file: an i-node must be
allocated (this means a write to the i-node bitmap), filled in (write to
the i-node itself) and linked into a directory (write, or multiple writes,
into the data structure of the directory). If operations are performed
in this sequence and power is cut off, two things could happen:

1. the bitmap is updated, but the remaining operations are lost: in
this case, the i-node is lost, unless a consistency check is performed
and discovers that an unused i-node is marked as allocated in the
bitmap,

2. the bitmap and the i-node itself are updated, but it is not linked to

the directory hierarchy, giving essentially the same outcome, but
in a form that is harder to detect during a consistency check.

In both cases, some resources are lost, which isn’t good, but isn’t terrible
either. However, consider the case when the writes are re-ordered,
and the directory update comes first. In this case, the file system has a
directory entry that points to an uninitialized i-node, making a garbage
file accessible to users. Depending on the content of the uninitialized
i-node, bad things could happen if the file is accessed.
Fortunately, the file system can impose a partial order on the writes
(i.e. guarantee that all outstanding writes are finished before it makes
further changes). Using this mechanism carefully, the amount of dam-
age to data structures can be limited, without significantly impacting
performance.
The last line of defence is a dirty flag in the superblock: when a file
system is mounted, the dirty flag is written to disk, and when it is
unmounted, after all outstanding changes are written, it is cleared.
The file system will refuse to mount if the dirty flag is already set,
enforcing a consistency check.

227Journalling
• also known as an intent log
• write down what was going to happen synchronously
• fix the actual metadata based on the journal
• has a performance penalty at run-time
∘ reduces downtime due to faster consistency checks
∘ may also prevent data loss

A particular technique (that relies on imposing a partial order on
writes) is so-called intent log, perhaps better known from relational
database systems. In this approach, the file system maintains a dedi-
cated area on disk and before commencing any non-atomic data struc-
ture updates, writes the description of the operation (atomically) into
the intent log. In this case, if the composite operation is later inter-
rupted, the log captures the intent and can be used to undo the effects
of the incomplete operation quickly. This means that in most scenar-
ios, a full consistency check (which is usually quite expensive) is not
required.

Part 4.5: Advanced Features
This section briefly introduces some additional concepts that often
appear in the context of file systems. We won’t have time to delve into
too many details in this course, but it is important to be aware of those
features.

229What Else Can Filesystems Do?
• transparent file compression
• file encryption
• block de-duplication
• snapshots
• checksums
• redundant storage

There are three rough categories of features in the above list: storage
efficiency (compression, de-duplication), security (encryption) and reli-
ability (checksums, redundant storage). The ability to make snapshots
falls somewhere between efficiency and reliability, depending on the
use case and implementation.

PB152 Operating Systems 36/93 July 4, 2020

230File Compression
• use one of the standard compression algorithms
∘ must be fairly general-purpose (i.e. not JPEG)
∘ and of course lossless
∘ e.g. LZ77, LZW, Huffman Coding, ...

• quite challenging to implement
∘ the length of the file changes (unpredictably)
∘ efficient random access inside the file

Of course, it’s always possible to compress files at the application level,
by simply using an appropriate compression program. However, the
user then needs to manually decompress the file before using it and
then re-compress it afterwards again. This is quite inconvenient. Of
course, this could be automated, and some programs can do the (de)com-
pression automatically when they open a file, though this is neither
very common, nor very efficient.
An alternative, then, is for the file system to implement transparent file
compression, that is, compress the data when it is stored on disk, but
present user-space programs with uncompressed data when reading,
and transparently compress newly written data before storing it.
This is not without challenges, of course. The biggest problems stem
from the fact that data is never uniformly compressible, and hence,
different sections of a file will compress at different ratios. This means
that seeking to a specific uncompressed offset will be hard to imple-
ment. Likewise, writes in the middle of a file (which normally preserve
file length) will cause the file to shrink or lengthen, making the opera-
tion much more complicated.

231File Encryption
• use symmetric encryption for individual files
∘ must be transparent to upper layers (applications)
∘ symmetric crypto is length-preserving
∘ encrypted directories, inheritance, &c.

• a new set of challenges
∘ key and passphrase management

Unlike compression, most encryption algorithms are length-
preserving, making the whole affair much simpler in some sense.
Nonetheless, there is an important matter of dealing with secrets
which makes the code complicated in a different way. Additionally,
unlike with compression, depending on the use case, the systemmight
have to encrypt metadata as well (i.e. not just file content). This would,
most importantly, cover directories: not only file names, but also the
overall directory structure.
Additionally, a failure to compress a file that the user intended to be
compressed is not a big problem. With encryption, such a mistake
would be quite fatal.
Since block-level encryption is considerably simpler, and hence less
likely to contain fatal flaws, most modern systems use it instead of
file-system-level encryption as described here.

232Block De-duplication
• sometimes the same data block appears many times
∘ virtual machine images are a common example
∘ also containers and so on

• some file systems will identify those cases
∘ internally point many files to the same block
∘ copy on write to preserve illusion of separate files

There are numerous use-cases where either entire files or fragments
of files are stored multiple times on a given file system. In those cases,
locating duplicated blocks can lead to significant space savings. In mod-
ern file systems, it is usually not a problem tomake the same data block
part of multiple files. Like with other copy-on-write implementations,
such shared blocks must be specifically marked as such, so that any
writes that would affect them can un-share them (i.e. make a private
copy).
De-duplication is somewhat expensive, since it is not easy to find iden-
tical blocks: a naive scanning comparison would take O(n²) time to
find duplicated blocks (even though it only uses constant amount of
memory). Of course, that is impractical, considering how 𝑛 = 109 is
only about 4TB of storage and 𝑛2 = 1018 is a very large number. Hash
tables can make the operation essentially linear, though it requires on
the order of 4GiB of RAM per 1TB of storage. Probabilistic algorithms
and data structures can further reduce the constant factors on both
time and memory.
In most cases, de-duplication is an offline process, i.e. one that is sched-
uled to run at some intervals, preferably during light load, since it is
too resource-intensive to be performed continuously with each write
(that is, online).

233Snapshots
• it is convenient to be able to copy entire filesystems
∘ but this is also expensive
∘ snapshots provide an efficient means for this

• snapshot is a frozen image of the filesystem
∘ cheap, because snapshots share storage
∘ easier than de-duplication
∘ again implemented as copy-on-write

If file systemmetadata is organized in a suitable data structure (usually
a variation of B trees), it is possible to implement copy-on-write not
just for data blocks, but also for this metadata. In that case, it is not
very hard to provide efficient snapshots.
Taking a snapshot is, semantically, equivalent to making a copy of the
entire file system while it is not mounted: that is, the copy is made
atomically with regards to any concurrent writes. In yet other words,
if a program overwrite two files, say A to A’ and later it overwrites B to
B’, if a copy was taken the usual (non-atomic) way, in the copy, it could
easily be the case that files A and B’ are present (it is an easy exercise
to work out how this could happen).
The other major advantage of a snapshot is that initially (i.e. when it
does not differ very much from the live file system) it takes up very
little space. Of course, as the live file system begins to diverge, more
and more data blocks need to be copied upon modification, increasing
the storage demands, in the worst case approaching the space require-
ments of a standard, full copy. Nonetheless, the time cost associated
with this are amortized over the life of the snapshot. Finally, in case
(read-only) snapshots are made regularly, there are permanent savings
to be had from copy-on-write, since in those cases, at least some of the
data will be shared between the snapshots themselves.

234Checksums
• hardware is unreliable
∘ individual bytes or sectors may get corrupted
∘ this may happen without the hardware noticing

• checksums may be stored along with metadata
∘ and possibly also file content
∘ this protects the integrity of the filesystem

• beware: not cryptographically secure

PB152 Operating Systems 37/93 July 4, 2020

Unfortunately, storage devices are not 100% reliable, and can some-
times quietly corrupt data. That is, reading a block may yield different
data thanwhat was written to that block previously. A file systemmay
fight this by storing checksums (e.g. CRC) alongwithmetadata (or even
along with data). This will not prevent corruption as such, but at least
allows the file system to detect it early. When detected, the corrupt
objects can be restored from backup: since making a backup involves
reading the file system, under this scheme, such corruption should be
always detected before a good copy of the affected data is lost.

235Redundant Storage
• like filesystem-level RAID
• data and metadata blocks are replicated
∘ may be between multiple local block devices
∘ but also across a cluster / many computers

• drastically improves fault tolerance

Finally, file systems (especially distributed file systems) may employ
redundant storage for both data and metadata. Essentially this means
that each data block and each metadata object is stored in multiple
copies which are all kept synchronized by the file system, each copy
stored on a different physical storage device. In some cases, multiple
computers may be involved, improving resilience in face of failures in
non-disk components (which usually knock out the entire computer).

236Review Questions
• What is a block device?
• What is an IO scheduler?
• What does memory-mapped IO mean?
• What is an i-node?

Part 5: Processes, Threads & Scheduling
In this lecture, we will look at the 2 basic resources that the computer
offers, and which every program needs: CPU and memory. The main
question then will be how the operating system achieves the illusion
that every thread seemingly has its own processor and every process
has its own memory (this is what we mean by multiplexing – turning
a single physical resource into a larger set of virtual instances of the
same).

238Lecture Overview
1. processes and virtual memory
2. thread scheduling
3. interrupts and clocks

There will be 3 parts. Wewill first look at virtual memory, and the unit
of memory isolation in the operating system: a process. We will then
look at CPU (processor) sharing and the unit of CPU allocation, a thread.
Finally, we will look in more detail how CPU sharing is implemented
in terms of hardware.

Part 5.1: Processes and Virtual Memory

240Prehistory: Batch Systems
• first computers ran one program at a time
• programs were scheduled ahead of time
• we are talking punch cards &c.
• and computers that took an entire room

The first generation of computers was strictly sequential: one program
could execute at any given time, and that was that. To execute another
program, the first must have finished first.

241History: Time Sharing
• “mini” computers could run programs interactively
• teletype terminals, screens, keyboards
• multiple users at the same time
• hence, multiple programs at the same time

Computers were quite expensive at the time, and programs started
to offer more interactivity. That is, a program could interact with
the operator by asking questions and then waiting for inputs to be
provided, for instance. Together, those two considerations made the
sequential, one program at a time paradigm quite impractical.
This is the origin of *time sharing* systems, where a computer could
execute multiple programs at seemingly the same time, by quickly
switching from one program to another. As soon as this is possible, it
makes sense to allowmultiple users to interactwith the same computer
(each user through a different program).

242Processes: Early View
• process is an executing program
• there can be multiple processes
• various resources belong to a process
• each process belongs to a particular user

Since traditional programs were internally sequential, the original no-
tion of a process encompassed both types of basic resources: memory
and processor. In normal operation, a process P gets to execute on the
processor for some amount of time, before it is interrupted and the
system switches to executing some other process. At some later point,
process P will be awaken and continue execution where it left off.

PB152 Operating Systems 38/93 July 4, 2020

243Process Resources
• memory (address space)
• processor time
• open files (descriptors)
∘ also working directory
∘ also network connections

The most basic resource associated with a process is memory: this is
where the program itself (the instructions) are stored, and also where
its data (both static and dynamic) resides. This memory is typically
private: one process cannot see the memory of another process.

244Process Memory Segments
• program text: contains instructions
• data: static and dynamic data
∘ with a separate read-only section

• stack memory: execution stack
∘ return addresses
∘ automatic variables

The memory of a program is organized into functionally distinct seg-
ments. Traditionally, those segments were contiguous chunks of ad-
dress space, but in modern operating systems, this is not quite true
(and the whole idea of a segment is losing its appeal). Nonetheless, the
traditional split is into program text, which contains the instructions
of the program (i.e. the executable code, typically produced by a com-
piler), a stack which holds the C stack (i.e. the values of local variables
and return addresses, along with other bookkeeping) and finally a data
segment which holds, unsurprisingly, data.
In a modern system, none of those segments needs to be contiguous:
the text consists of multiple mappings: one for the main program,
and one for each shared library it uses. Those mappings do not need
to be adjacent in the virtual address space (much less so in physical
memory). Likewise, since one process can contain multiple threads
(more on that later), theremay bemultiple stacks, again, not necessarily
allocated next to each other. Finally, static (and especially read-only)
data comes from executable images too, hence there might be one
mapping per executable, just like with text. The dynamic data, then, is
entirely unconstrained in its shape: the implementation of malloc in
libcwill request memory from the operating system as needed, with
virtual addresses often being assigned randomly to each new region
of memory.

245Process Memory
• each process has its own address space
• this means processes are isolated from each other
• requires that the CPU has an MMU
• implemented via paging (page tables)

The defining characteristic of amodern process is its address space: the
virtual addresses allocated to a process is private to that process and as
such invisible to any other process. The data is mostly stored in RAM,
but each process only (typically) sees a small portion of the physical
memory – the majority is simply not visible in its virtual address space.
Behind the scenes, this separation of address spaces is built on paging,
which is, in turn, provided by the MMU (memory management unit)
of the CPU.

246Process Switching
• switching processes means switching page tables
• physical addresses do not change
• but the mapping of virtual addresses does
• large part of physical memory is not mapped
∘ could be completely unallocated (unused)
∘ or belong to other processes

In a typical time-sharing operating system (this covers pretty much
every modern general-purpose OS), an illusion of virtually unlimited
concurrency (the ability to run an arbitrary number of processes at
the same time, regardless of the number of available CPU cores) is
achieved by rapidly switching the execution from one process to the
next. Or, to be more precise, execution is switched from one thread to
another (which we will discuss shortly), but often, the threads will be
part of different processes. In those cases, the operating system must
instruct the processor to switch into the virtual address space of the
new process.
Of course, in this process, the physical memory is not rearranged in
any way – that would be way too expensive. Instead, the MMU is
instructed to start using a different set of mapping rules (page tables)
that map virtual addresses to physical addresses. Usually, the overlap
between physical addresses that have been visible in the old virtual
address space and those visible in the new one is minimal: as outlined
earlier, the virtual address space is almost entirely private to each
process.
Thus, most of the physical memory is, from the point of view of any
given process, inaccessible: it is either unused, or it belongs to a differ-
ent process.

247Paging and TLB
• address translation is slow
• recently-used pages are stored in a TLB
∘ short for Translation Look-aside Buffer
∘ very fast hardware cache

• the TLB needs to be flushed on process switch
∘ this is fairly expensive (microseconds)

An important consideration is the cost associated with switching
processes. On the surface, this involves a thread switch (which, as
we will see later, consists of storing the content of user-accessible reg-
isters in memory and loading a new set of values from a different
location in memory) and an additional register write (to load the new
page table into the MMU).
Unfortunately, under the surface, that single register write causes a
cascade of other effects: in particular, all modern processors use a very
fast cache for storing recent address translations (i.e. which physical
addresses correspond to a small set of recently-used virtual addresses),
known as the TLB (translation look-aside buffer).
The TLB is required because otherwise, translating a virtual address
to a physical one involves multiple round-trips into the main memory,
where page tables are stored. In modern computers, each of those
round-trips will take hundreds or even thousands of processor cycles
– clearly, repeating this process on every address translation would
make computation extremely slow.
Nonetheless, upon a process switch, the mapping of virtual addresses
to physical addresses changes, and the information stored in the TLB
becomes invalid, since it refers to the previous address space. The
simplest remedy is simply erasing everything that is stored in the TLB.
This is, in itself, a quick operation, since the TLB is implemented using
very fast on-diememory. Most of the price comes from the subsequent

PB152 Operating Systems 39/93 July 4, 2020

address translations, which cannot be answered from the (now empty)
TLB and must perform multiple round-trips into main memory (or,
depending on cache pressure, into one of the general-purpose caches –
L1, L2 or L3).
Incidentally, modern processors often use tagged TLBs, which make
the entire process more efficient, but this is well outside of the scope
of this course.

248Threads
• the modern unit of CPU scheduling
• each thread runs sequentially
• one process can have multiple threads
∘ such threads share a single address space

While processes are the basic unit of memory management in the
operating system, computation is captured by threads. Each process
has at least one thread, butmight havemore than one. While processor
time accounting is usually done at process level, execution is tied to
threads, since threads is what the processor ultimately executes.

249What is a Thread?
• thread is a sequence of instructions
∘ instructions depend on results of previous instructions

• different threads run different instructions
∘ as opposed to SIMD or many-core units (GPUs)

• each thread has its own stack

A thread can be thought of as an instruction stream: essentially what
we imagine a traditional, sequential program to be. Within a thread,
an instruction can freely use results of previous instructions (data
dependencies) and make decisions (based on those results) as to which
instruction to execute next (branching, or control flow). This is how
a processor core executes a program (at least from the point of view
of the programmer). Hence at any given time, each processor core
can execute a single thread. The threads running concurrently on
different cores or different CPUs can be completely unrelated (they
don’t even need to belong to the same process: each core has its own
MMU and which can each use a different page table, and hence, each
core can be executing threads in different address spaces).
Of course, this also means that each thread needs its own execution
stack (i.e. the memory that stores local variables in a C program, along
with return addresses and other execution-related book-keeping).

250Processor Time Sharing
• CPU time is sliced into time shares
• time shares (slices) are like memory frames
• process computation is like memory pages
• processes are allocated into time shares

Besides memory, the other main commodity in a computer is compu-
tation time. Like memory, there is a limited amount, and it needs to
be distributed among multiple threads (and processes). Since different
instructions take wildly different amount of time to execute, allocation
of computation is based on time instead of instruction count. As a
bonus, time is easier to measure.

251Multiple CPUs
• execution of a thread is sequential
• one CPU = one instruction sequence at a time
• physical limits on CPU speed→multiple cores
• more CPU cores = more throughput

With time sharing, it is possible to execute any number of threads
on a single CPU core. However, physical limits in CPU design have
made it, in the last decade, much easier to build processors which can
execute twice as many threads (using twice as many processor cores),
instead of making them execute a given number of threads twice as
fast. As long as there are always enough threads ready to execute, the
overall computational throughput of the system is doubled either way.
Of course, this puts strain on software, which needs to be separated
into more and more threads to saturate the computational power of a
modern processor.

252Modern View of a Process
• in a modern view, process is an address space
• threads are the right scheduling abstraction
• process is a unit of memory management
• thread is a unit of computation
• old view: one process = one thread

To recap, there are two main abstractions that center about memory
and computation. While historically, operating systems made the as-
sumption that 1 process = 1 thread (and hence older textbooks about
operating systems might follow the same design), this no longer makes
sense in modern systems.
Instead, threads are the abstraction that covers computation itself
(the sequence of instructions to be executed), while processes cover
memory and most other resources.

253Memory Segment Redux
• one (shared) text segment
• a shared read-write data segment
• a read-only data segment
• one stack for each thread

TODO why is this slide here?

254Fork
• how do we create new processes?
• by fork-ing existing processes
• fork creates an identical copy of a process
• execution continues in both processes
∘ each of them gets a different return value

Let’s now look at processes from the perspective of programs (and
users). The first thing to consider is how processes are created: on
POSIX-like systems, this is almost exclusively through the use of the
fork system call, which simply makes an identical copy of the current
process. The processes are then very slightly tweaked: in one, fork
returns a different value, and in the process tables, one is taken to be a
parent and the other to be a child. The return value of fork tells each
process which of the two it is.

PB152 Operating Systems 40/93 July 4, 2020

255Lazy Fork
• paging can make fork quite efficient
• we start by copying the page tables
• initially, all pages are marked read-only
• the processes start out sharing memory

Making a copy of an entire processwould be a comparatively expensive
exercise. However, likewehave seenwith file systems before, there are
tricks (based on the copy-on-write implementation technique) which
make it possible to make fork itself quite efficient. At the time of fork,
the only thing that needs to be copied is the page table which is much
smaller than the entire address space of the process in question.
At the same time, all pages in both copies of the page table are marked
as read-only, since they are now shared by two processes, which should
not have access to each other’s address space. Of course, as long as
they are only reading frommemory, whether there are two physical
copies or a single shared copy does not make a difference.

256Lazy Fork: Faults
• the shared memory becomes copy on write
• fault when either process tries to write
∘ remember the memory is marked as read-only

• the OS checks if the memory is supposed to be writable
∘ if yes, it makes a copy and allows the write

As soon as either of the processes attempts to issue a memory write,
this will cause a fault: the pages are marked read-only in the page
tables. When this happens, the processor will invoke the fault handler
(which is part of the kernel) to resolve the situation. The fault handler
will then consult its data structures (which may be partially embedded
in the page table itself) to distinguish actual faults (i.e. the process tried
to write into truly read-only memory) from copy-on-write events.
In the latter case, the page is semantically read-write, but is marked
read-only because multiple processes are using a single physical copy.
At this point, the fault handler will split the mapping: it will make a
new physical copy of the data (i.e. it will allocate a new frame for it)
and adjust the page table of the process which attempted to write, so
that the offending virtual address is translated to point into this new
physical copy.
Finally, the CPU is instructed to restart the offending instruction: since
the page table entry is now marked as read-write (pointing to the new
physical location), the instruction will execute without further impedi-
ment.

257Init
• on UNIX, fork is the only way to make a process
• but fork splits existing processes into 2
• the first process is special
• it is directly spawned by the kernel on boot

Earlier, we have claimed that fork is essentially the only way to create
a new process. Of course, this cannot be entirely true, since forkmay
only be executed by an existing process. For this reason, there is one
special process, also called init or pid 1which is directly created by the
kernel upon boot. All other processes in a running system, however,
descend from this original process by a sequence of forks.

258Process Identifier
• processes are assigned numeric identifiers
• also known as PID (Process ID)
• those are used in process management
• used calls like kill or setpriority

To facilitate process management, each process is assigned a numeric
identifier (known as PID, short for process identifier). Process manage-
ment syscalls, then, take this number as an argument.
Traditionally, the ‘namespace’ of processes is global: a PID identifies a
process globally (unlike, for instance, a file descriptor, which is local to
each process). That is, for all users and all processes, the given number
always represents the same process (until it is terminated). Please
note that in container-based virtualisation, this is no longer strictly
true, since different containers will get different PID namespaces even
though they share the same kernel.

259Process vs Executable
• process is a dynamic entity
• executable is a static file
• an executable contains an initial memory image
∘ this sets up memory layout
∘ and content of the text and data segments

In previous lectures, we have touched the subject of executables: those
are files which contain programs. It is very important to understand
the difference between an executable (a program, so to speak, at rest)
and a process (a program in the process of being executed).
An executable contains, essentially, an initial image of process mem-
ory: when a program starts executing, the kernel populates its virtual
address space with data from the executable, most importantly the
text segment which contains instructions, but also the static parts of
the data segment. Additionally, the executable contains the (virtual)
address of the entry point: this is the address of the first instruction
of the program that should be executed.

260Exec
• on UNIX, processes are created via fork

• how do we run programs though?
• exec: load a new executable into a process
∘ this completely overwrites process memory
∘ execution starts from the entry point

• running programs: fork + exec

However, when a process is created, its memory is not populated from
an executable: instead, it is a clone of an existing process. To execute
a new program, an existing process needs to call an exec system call,
which then simply replaces the entire memory of the current process
with the content of the executable. Only environment variables and
command-line arguments (which are both stored in process memory)
are copied over to the new address space.
The common ‘start a new program’ operation (e.g. what happens when
the user runs a command in the shell) is then implemented as a fork

followed by an exec in the child process.

Part 5.2: Thread Scheduling
In this section, we will look in more detail how operating systems
decide which thread to run when and for how long.

PB152 Operating Systems 41/93 July 4, 2020

262What is a Scheduler?
• scheduler has two related tasks
∘ plan when to run which thread
∘ actually switch threads and processes

• usually part of the kernel
∘ even in micro-kernel operating systems

The scheduler is a component of the kernel which fills two basic roles:
planning and thread switching (including preemption).

263Switching Threads
• threads of the same process share an address space
∘ a partial context switch is needed
∘ only register state has to be saved and restored

• no TLB flushing – lower overhead

To switch execution fromone thread to another, within a single process,
it is sufficient to store the current state of user-visible registers into
memory, and load the state which corresponds to the other thread (the
state of which was saved when it was last interrupted and suspended).
Since the address of the (top of the) stack is stored in a register, sim-
ply replacing values in registers from a backup also has the effect of
switching the active stack.
In this case, the TLB does not need to be flushed, making the switch
quite efficient, even if not entirely free (there is still a small penalty
due to branch prediction and speculative execution).

264Fixed vs Dynamic Schedule
• fixed schedule = all processes known in advance
∘ only useful in special / embedded systems
∘ can conserve resources
∘ planning is not part of the OS

• most systems use dynamic scheduling
∘ what to run next is decided periodically

When it comes to the schedule, that is, the plan of which thread to
execute in which time slot(s), there are two basic types:

1. static schedules are computed ahead of time, for a fixed set of
threads with pre-determined priorities and with their relative com-
putational costs also known in advance,

2. dynamic schedules, in which the above information is not known.

Running on a static schedulemakes the runtime scheduler particularly
simple and robust. However, this approach is unsuitable for all but
the simplest use cases, and is usually only found in high-assurance
embedded systems.
A dynamic scheduler, on the other hand, allows threads and processes
to be created in an ad-hoc manner, during execution. Likewise, the
priorities of threads can be determined (and adjusted) at will. The
scheduler periodically evaluates the situation and decides what to run
either now, or in the very near future.

265Preemptive Scheduling
• tasks (threads) just run as if they owned the CPU
• the OS forcibly takes the CPU away from them
∘ this is called preemption

• pro: a faulty program cannot block the system
• somewhat less efficient than cooperative

In most modern operating systems, the scheduler is preemptive, that is,
it can suspend threads at its own discretion, without cooperation from
the threads themselves. In this approach, the user-space software does
not need, in principle, be aware that it is running on a time-sharing
system: when a thread is preempted and later resumed, the execution
continues where it left off, without any immediately detectable effect
on the executing program.
A major advantage of preemptive scheduling is that uncooperative (or
faulty) programs cannot endanger the system as awhole: the operating
system can, at any time, decide to suspend a process, regardless ofwhat
code it executes at the time.

266Cooperative Scheduling
• threads (tasks) cooperate to share the CPU
• each thread has to explicitly yield
• this can be very efficient if designed well
• but a bad program can easily block the system

A different approach is known as cooperative scheduling. In this case,
there is no preemption: the currently running thread has to yield (give
up) the processor voluntarily. This makes it possible to optimize task
switching, but it also means that a program which does not yield the
processor will simply continue to run unimpeded.
While general-purpose operating systems no longer use preemptive
scheduling globally, some programs implement so-called green threads
which are scheduled cooperatively – scheduling of those threads is
implemented entirely in the user-space. Usually, a large number of
such cooperative ‘green’ threads is dispatched onto a small number of
‘real’ OS threads (which are preemptively scheduled by the kernel).

267Scheduling in Practice
• cooperative onWindows 3.x for everything
• cooperative for threads on classic Mac OS
∘ but preemptive for processes

• preemptive on pretty much every modern OS
∘ including real-time and embedded systems

The last mainstream operating system to use cooperative scheduling at
the operating system level was ‘classic’ Mac OS (before OS X), though it
used preemptive scheduling for processes. Thisway, switching threads
within a process could take advantage of the improved efficiency, while
processeswere unable to block each other. The lastmainstream system
with fully cooperative scheduling was MSWindows 3.11, released in
1993.

PB152 Operating Systems 42/93 July 4, 2020

268Waiting and Yielding
• threads often need to wait for resources or events
∘ they could also use software timers

• a waiting thread should not consume CPU time
• such a thread will yield the CPU
• it is put on a list and later woken up by the kernel

In most programs, it is common that a thread cannot continue its exe-
cution until some event takes place, or a resource becomes available. In
this case, it is undesirable that the thread should wait actively, that is,
spin in a loop that checks whether it can continue. Instead, kernels pro-
vide mechanisms which allow threads to be suspended until an event
arrives, or a resource becomes available (at which point it is resumed
by the kernel). This process is not completely free from overhead, but
unless the wait is very short (a few dozen CPU cycles), suspending the
thread will give a much better overall system throughput.

269Run Queues
• runnable (non-waiting) threads are queued
• could be priority, round-robin or other queue types
• scheduler picks threads from the run queue
• preempted threads are put back

There are two reasons while a thread is suspended, that is, it is no
longer running: it’s either waiting for an event (see above) or its time
slot has ended and it was preempted. In the latter case, the thread is
put on a run queue, which is a list of threads that are ready to run,
usually sorted by a dynamic priority, which is a number that indicates
how soon the thread should run, computed by the scheduler.
Whenever a thread is suspended, the scheduler picks the next thread
to execute from a run queue.

270Priorities
• what share of the CPU should a thread get?
• priorities are static and dynamic
• dynamic priority is adjusted as the thread runs
∘ this is done by the system / scheduler

• a static priority is assigned by the user

Not all threads are equally important, and some should take priority
over others whenever they need to run. This is achieved through a
combination of priorities: a static priority is assigned to each thread
by the user. The static priority then feeds into the computation of a
dynamic priority, which governs scheduling: while a thread is run-
ning, its dynamic priority drops and while it is suspended, its dynamic
priority increases.

271Fairness
• equal (or priority-based) share per thread
• what if one process has many more threads?
• what if one user has many more processes?
• what if one user group has many more active users?

In the system that we have outlined above, scheduling is only con-
cerned with individual threads. Such a system is clearly unfair:
processes and users with many threads will get a much higher share
of the CPU than processes and users with fewer threads. To mitigate
this effect, most operating systems implement some form of fair sched-

uling.

272Fair Share Scheduling
• we can use a multi-level scheduling scheme
• CPU is sliced fairly first among user groups
• then among users
• then among processes
• and finally among threads

There are different levels on which a fair scheduler may operate: al-
most all systems will consider processes, while many will also consider
users. In this scheme, the scheduler strives to achieve the following
two goals:

1. as long as the given entity (process, user, group) has enough
runnable threads, those threads get equal time when compared to
any other entity with the same property (i.e. if both process A and
process B have runnable threads, the total time slice of process A
is equal to that of process B, assuming equal priorities),

2. resources are allocated efficiently: if an entity does not have suffi-
cient runnable threads, the resources it cannot use are distributed
among the remaining entities of the same type (i.e. if process A has
1 runnable thread, process B has 3 runnable threads and there are
4 processor cores, process B should not be hampered by process A
only being able to use one of them – the system should use all 4
cores in this scenario).

273Scheduling Strategies
• first in, first served (batch systems)
• earliest deadline first (realtime)
• round robin
• fixed priority preemptive
• fair share scheduling (multi-user)

When it comes to computing a dynamic schedule, there is a number of
approaches. The simplest of all is a batch scheduler, which is basically
no scheduler at all: when a program is executed, it runs until it is done;
afterwards, the next program is executed until termination, and so on.
In real-time systems, a fairly simple scheduler is known as ‘earliest
deadline first’: in such systems, each task comes with a deadline which
tells the system when the task must be done, at the latest. In a preemp-
tive setting, then, it is an optimal strategy to first execute the task with
the earliest deadline.
A naive general-purpose, preemptive scheduler is known as round
robin: it runs all available threads in a fixed order, switching from one
to the next as they run out of their time slice. In this system, the per-
thread throughput can be prioritised (by tweaking the relative sizes of
time slices of different threads), but latency can not.
A preemptive scheduler with priorities fixes the latency problem: if a
high-priority thread wakes up, it will be able to run very soon (with
low latency), since it can ‘jump the queue’, unlike in a round-robin
scheduler.

PB152 Operating Systems 43/93 July 4, 2020

274Interactivity
• throughput vs latency
• latency is more important for interactive workloads
∘ think phone or desktop systems
∘ but also web servers

• throughput is more important for batch systems
∘ think render farms, compute grids, simulation

A scheduler will often need to make a compromise between maximis-
ing total computational throughput andminimising latency. In interac-
tive settings, the dominant concern is latency, while in computational
contexts, it’s the total throughput that is usually a priority.

275Reducing Latency
• shorter time slices
• more willingness to switch tasks (more preemption)
• dynamic priorities
• priority boost for foreground processes

When optimising for low latency, the scheduler should use short time
slices (so that threads that wake up do not need to wait too long for
the processor to free up, even if they are not high-priority threads).
Likewise, the scheduler should be willing to switch to a higher-priority
thread whenever one wakes up, preempting running threads (even if
they did not consume their current time slice yet).
Both decisions of course lead to more context switches, which are ex-
pensive and hence negatively affect total throughput (less total useful
computation is performed in any given time, since more time is spent
on overhead – both in the scheduler, but mainly in switching threads
and processes).

276Maximising Throughput
• longer time slices
• reduce context switches to minimum
• cooperative multitasking

The opposite is true for high-throughput systems: the time slice should
be as long as is practical, to minimize the number of context switches
the CPU needs to do. Likewise, the scheduler should be unwilling to
switch tasks before their current time slice runs out, pushing back
threads that woke up in reaction to an event. Whenever possible,
preemption should be avoided in favour of cooperation (though this is,
nowadays, mainly an application-level concern).

277Multi-Core Schedulers
• traditionally one CPU, many threads
• nowadays: many threads, many CPUs (cores)
• more complicated algorithms
• more complicated & concurrent-safe data structures

In traditional designs, an operating system would only expect a sin-
gle processor to be available, in which case the scheduler would be
comparatively simple. However, essentially all modern computers are
multi-core systems, and schedulers need to take this into account in
two major ways:

1. the algorithm to decide which threads run when and on which
core is much more complicated,

2. the schedulermust be able to run concurrentlywith itself: multiple
cores must be able to decide which thread to run next in parallel,
whichmeans that the data structures used by the scheduler to keep
track of threads must be concurrent-safe.

278Scheduling and Caches
• threads can move between CPU cores
∘ important when a different core is idle
∘ and a runnable thread is waiting for CPU

• but there is a price to pay
∘ thread / process data is extensively cached
∘ caches are typically not shared by all cores

It is entirely possible to suspend a thread on one core, and wake it up
later on another core. Since processor cores are all identical, this does
not make a semantic difference – the thread will not be able to directly
detect that it has moved. However, if some of the data associated with
that thread was still in the per-core part of the cache (typically at least
L1, but also L2 and L3 if the core is part of a different package) this will
cause a performance hit, as the new core has to re-fetch the data that
was already cached by the other core.

279Core Affinity
• modern schedulers try to avoid moving threads
• threads are said to have an affinity to a core
• an extreme case is pinning
∘ this altogether prevents the thread to be migrated

• practically, this practice improves throughput
∘ even if nominal core utilisation may be lower

For the above reason, schedulers will try to avoid moving threads
between cores. Of course, there are competing concerns: if a thread is
runnable and a core other than its preferred core is idle, inefficiency
creeps in: the system keeps a processor core idle while a thread is
waiting to run. A realistic scheduler needs to strike a balance between
those two concerns: if the preferred core is about to be freed up, it will
wait, otherwise it will migrate the thread.
Of course, this will sometimes go wrong: a higher-priority thread with
affinity to the same coremightwake up and the original waiting thread
will have to be migrated anyway. For this reason, stronger affinity will
cause a drop in core utilisation, but in a well-tuned scheduler, this
should not cause a drop in throughput.

280NUMA Systems
• non-uniform memory architecture
∘ different memory is attached to different CPUs
∘ each SMP block within a NUMA is called a node

• migrating a process to a different node is expensive
∘ thread vs node ping-pong can kill performance
∘ threads of one process should live on one node

In a traditional SMP (symmetric multipy-processor) system, each CPU
has equal access to all RAM. However, in large computers with many
CPUs, it is advantageous (from the point of view of hardware design) to
violate this principle, and allow RAM to be attached locally to a single
processor package. Cores from another such node then need to access
this memory indirectly, adding a penalty both in terms of throughput
(how many bytes per unit of time can be transferred from memory to
the CPU cache) and in terms of latency (howmany cycles it takes from

PB152 Operating Systems 44/93 July 4, 2020

the time data is requested to the time it is available to the processor).
A scheduler needs to take this into account: the affinity of threads
(and entire processes) to a particular NUMA node is usually much
stronger than the affinity of threads to individual cores within an SMP
system: unlike with purely cache-related overhead, the performance
hit of running on a different NUMA node is permanent: the data is
not automatically migrated into a ‘closer’ block of memory.

Part 5.3: Interrupts and Clocks
In this section, we will look at how preemptive scheduling is actually
implemented, through periodic hardware interrupts.

282Interrupt
• a way for hardware to request attention
• CPU mechanism to divert execution
• partial (CPU state only) context switch
• switch to privileged (kernel) CPU mode

Interrupts allow peripherals to request the attention of the operating
system. This is a low-level CPU feature, where asserting an interrupt
line (in hardware) causes the processor to stop executing instructions
and execute an interrupt handler.
When an interrupt comes in, the CPU will consult a table of interrupt
handlers, which is set up by the operating system. Additionally, the
CPU will store its state (the values stored in registers) into memory
(usually on the active stack).
Usually, only a partial context switch is done by the CPU (i.e. the page
table is unaffected), but the interrupt routine will execute in privileged
mode (hence it can, if it needs to, adjust page tables). In traditional
designs, the kernel memory is mapped (but inaccessible from user
mode) into all processes, and hence the interrupt handler can directly
and immediately read and write kernel memory.
When the interrupt routine is finished, it uses a special instruction
(iret on x86) which instructs the CPU to restore its state from the stack
(which it stored upon entering the interrupt handler) and drop back
into user (unprivileged) mode.

283Hardware Interrupts
• asynchronous, unlike software interrupts
• triggered via bus signals to the CPU
• IRQ = interrupt request
∘ just a different name for hardware interrupts

• PIC = programmable interrupt controller

We have already talked about software interrupts earlier: interrupt
handlers are quite alike in both cases (that is, for hardware and soft-
ware interrupts), but there are other differences. In particular, a hard-
ware interrupt is asynchronous: the CPU will invoke the handler re-
gardless of the instruction that is currently being executed. Hardware-
wise, interrupts are realized through bus signalling – a peripheral (or
rather an interrupt controller) will send a signal down a wire to the
CPU, which will react by starting its interrupt handling sequence.

284Interrupt Controllers
• PIC: simple circuit, typically with 8 input lines
∘ peripherals connect to the PIC with wires
∘ PIC delivers prioritised signals to the CPU

• APIC: advanced programmable interrupt controller
∘ split into a shared IO APIC and per-core local APIC
∘ typically 24 incoming IRQ lines

• OpenPIC, MPIC: similar to APIC, used by e.g. Freescale

An interrupt controller is essentially a hub which provides a number
of interrupt lines to peripherals, and signals the CPU using a single
interrupt line whenever any of the peripherals raises an interrupt.
The interrupt controller of course informs the CPU which peripheral
is the origin of the interrupt.

285Timekeeping
• PIT: programmable interval timer
∘ crystal oscillator + divider
∘ IRQ line to the CPU

• local APIC timer: built-in, per-core clock
• HPET: high-precision event timer
• RTC: real-time clock

A (programmable) timer is another traditionally discrete component
that has long been integrated into the main CPU die. Its role is to
keep time (historically using a quartz crystal), and raise an interrupt
in regular, configurable intervals.

286Timer Interrupt
• generated by the PIT or the local APIC
• the OS can set the frequency
• a hardware interrupt happens on each tick
• this creates an opportunity for bookkeeping
• and for preemptive scheduling

Every time the configured interval expires, the timer will generate
an interrupt. When this happens, the OS kernel has a chance to run,
regardless of the currently executing process. Among other things, it
is possible to do a context switch by doing an iret (or equivalent) into
a different thread or process from the one that was interrupted. This
is how preemptive scheduling is usually implemented.

287Timer Interrupt and Scheduling
• measure how much time the current thread took
• if it ran out of its slice, preempt it
∘ pick a new thread to execute
∘ perform a context switch

• checks are done on each tick
∘ rescheduling is usually less frequent

The (scheduler part of) the interrupt handler for the timer interrupt
quickly checks whether anything needs to be done: that is, it looks up
how much time has the currently running thread left of its time slice.
If it ran out, then a reschedule is in order: the handler will return into
a different thread (that is, perform a context switch... if needed, this
includes replacing the active page table). The slice check is done on
every tick, since it is cheap. On most ticks, however, no rescheduling

PB152 Operating Systems 45/93 July 4, 2020

will take place, since a typical slice length is many ticks (and is much
more expensive).

288Timer Interrupt Frequency
• typical is 100 Hz
• this means a 10 ms scheduling tick (quantum)
• 1 kHz is also possible
∘ harms throughput but improves latency

The traditional timer frequency on UNIX systems is 100 Hz, or one
tick every 10 milliseconds. This means that time slices available to the
scheduler are multiples of 10milliseconds. For interactive systems, the
frequency can be increased, with 1 kHz being the highest commonly
used setting (yielding a quantum just 1 ms long, cutting down on sched-
uling latency quite a bit). Of course, the CPUwill spend a lot more time
in the timer interrupt handler, reducing the amount of useful work it
can perform, thus harming throughput.

289Tickless Kernels
• the timer interrupt wakes up the CPU
• this can be inefficient if the system is idle
• alternative: use one-off timers
∘ allows the CPU to sleep longer
∘ this improves power efficiency on light loads

Modern processors implement aggressive power management, shut-
ting down parts of the CPU that are not in use. This technique is of
course more efficient, if the idle circuits do not need to be woken up
very often. If nothing at all is going on, then an entire core can be
put to sleep. Unfortunately, the timer interrupt interferes with this
somewhat: while the system is completely idle (no threads are ready
to run), the processor will still need to process the interrupt, 100 times
every second. This has a considerable energy cost, just to figure out
that nothing needs to be done.
Instead of using a periodic timer, it’s possible to configure a one-off, non-
repeating timer, and when it fires, compute when the next scheduling
interrupt is needed. This way, during idle times, the processor can
sleep undisturbed for much longer periods of time.

290Tickless Scheduling
• quantum length becomes part of the planning
• if a core is idle, wake up on next software timer
∘ synchronisation of software timers

• other interrupts are delivered as normal
∘ network or disk activity
∘ keyboard, mice, ...

This is done by simply doing away with the fixed scheduling quantum.
The scheduler can computewhen the next reschedule needs to happen,
and not waste any time in the timer interrupt unless the slice is over.
Sleeping threads may be blocked for any number of reasons, but the
most common are waiting for events or resources – one of the events
that are commonly awaited is a timer: the thread has some periodic
work to do, and may ask the kernel to be woken up in a second, then
do some of its work, and then sleep for another second, and so on.
If, at a given moment, all processes are sleeping, then the next timer
interrupt needs to happen whenever the soonest of the threads sleep-
ing on a timer is due to wake up. Of course, other interrupts are still
delivered as usual, so if a thread is blocked waiting for data to arrive
from disk or network, the respective interrupts can cause that thread

to be woken up and scheduled for execution.

291Other Interrupts
• serial port
∘ data is available on the port

• network hardware
∘ data is available in a packet queue

• keyboards, mice
∘ user pressed a key, moved the mouse

• USB devices in general

Besides the timer interrupt, there are many others that come up, and
many of them indirectly affect scheduling too (usually because one of
the threads was waiting for the event that the interrupt signalled).

292Interrupt Routing
• not all CPU cores need to see all interrupts
• APIC can be told how to deliver IRQs
∘ the OS can route IRQs to CPU cores

• multi-core systems: IRQ load balancing
∘ useful to spread out IRQ overhead
∘ especially useful with high-speed networks

Finally, let us consider systems with multiple cores (probably the ma-
jority of computers nowadays) and how this affects interrupts: clearly,
if a packet comes in from the network, it does not make sense to in-
terrupt all cores: we only need a single core to execute the handler to
fetch the data or otherwise deal with the event.
What more, this does not need to be the same core every time the
interrupt happens: if there are many interrupts, we would like them
spread out somewhat evenly across all the cores. This is what IRQ load
balancing does: it will route interrupts to cores in such a way that each
core has approximately the same amount of work handling them.
Finally, since scheduling is done per-core, it is useful to have a separate
timer interrupt for each core: those interrupts are of course not subject
to load-balancing or other re-routing: the interrupt is, in fact, gener-
ated locally on each core (in the local APIC) and the per-core timer
which generates the interrupt is programmed seprately.

293Review Questions
• What is a thread and a process?
• What is a (thread, process) scheduler?
• What do fork and exec do?
• What is an interrupt?

PB152 Operating Systems 46/93 July 4, 2020

Part 6: Concurrency and Locking
This lecture will deal with the issues that arise from running multiple
threads and processes at the same time, both using time-sharing of a
single processor and by executing on multiple physical CPU cores.

295Lecture Overview
1. Inter-Process Communication
2. Synchronisation
3. Deadlocks

In the first part, we will explore the basic why’s and how’s of inter-
process and inter-thread communication. This will naturally lead to
questions about shared resources, and to the topic of thread synchroni-
sation, mutual exclusion and so on. Finally, we will deal with waiting
and deadlocks, which arise whenever multiple threads can wait for
each other.

296What is Concurrency?
• events that can happen at the same time
• it is not important if it does, only that it can
• events can be given a happens-before partial order
• they are concurrent if unordered by happens-before

Generally speaking, an event happens-before another event when
they are causally connected: the first event makes the other event
possible, or directly causes it. However, just as often, events are not
causally connected: they might happen in any order. We say that such
events are concurrent: they can happen in either order, or they can
happen, figuratively speaking, at the same time.

297Why Concurrency?
• problem decomposition
∘ different tasks can be largely independent

• reflecting external concurrency
∘ serving multiple clients at once

• performance and hardware limitations
∘ higher throughput on multicore computers

Concurrency arises, in software systems, for a number of reasons: first,
and perhaps most important, is problem decomposition: it is much
easier to design a large system without explicitly ordering all possible
events. A complex system will perform a large number of naturally
independent – concurrent – tasks. While it would be certainly possible
to impose an artificial order on such tasks, it is not a very practical
approach.
Another important reason is that the concurrency came from outside:
if there are external events that are concurrent, it is hard to imagine
that the responses of the system would be strictly ordered: normally,
the actual order of concurrent, external events cannot be predicted,
and imposing an order on reactions would mean that at least some of
the reactions would be unacceptably delayed.
Finally, concurrency in software allows the underlying hardware to
perform better: concurrent instructions can be executed in parallel,
without much concern about their relative ordering – which allows
the hardware to use its limited resources more efficiently.

298Parallel Hardware
• hardware is inherently parallel
• software is inherently sequential
• something has to give
∘ hint: it’s not going to be hardware

Unlike software, which usually consists of a sequence of instructions
that are executed in order, hardware consists of spatially organized
circuits. Most of the circuitry can operate independently of other
circuits. For instance, a typical CPUwill contain circuits formultiplying
numbers, and other circuits for adding numbers. Those circuits are
almost entirely independent, and can operate at the same time, on
different pairs of numbers. If the processor is adding numbers, it could
be multiplying some other numbers at the same time, without any
ill effect on the process of addition happening in another part of the
processor.
Of course, multi-core processors are an extreme manifestation of this:
the separate cores are simply (mostly) independent copies of the same
(very complicated) circuit.
Sincewe cannotmake sequential executionmuch faster than it already
is, the best we can hope for is leveraging concurrency to execute as
many things in parallel (on parallel hardware) as we can.

Part 6.1: Inter-Process Communication
Communication is an important part of all but the most trivial soft-
ware. While themechanisms described in this section are traditionally
known as inter-process communication (IPC), we will also consider
cases where threads of a single process use those mechanisms (and
will not use a special name, even though the communication is, in fact,
intra-process in those cases).

300Reminder: What is a Thread
• thread is a sequence of instructions
• each instruction happens-before the next
∘ or: happens-before is a total order on the thread

• basic unit of scheduling

Beforewe go any further, we need to recall, from the last lecture, that a
thread is a sequence of instructions: as such, each instruction happens
before the next instruction (for the more mathematically inclined, this
simply means that on the instructions of a single thread, happens-
before is a linear ordering). Additionally, threads are a basic unit of
scheduling: each processor core is running, at any given time, a single
thread.

301Reminder: What is a Process
• the basic unit of resource ownership
∘ primarily memory, but also open files &c.

• may contain one or more threads
• processes are isolated from each other
∘ IPC creates gaps in that isolation

A process, then, is a unit of resource ownership – processes own mem-
ory (virtual address spaces), open files, network connections and so on.
Each process has at least one (but possibly multiple) threads, which
carry out the computation. Since each process is isolated in its own

PB152 Operating Systems 47/93 July 4, 2020

virtual address space, there is no direct way that threads from different
processes can interact (communicate, synchronize). However, some
degree of communication is desirable, and required: the operating sys-
tem therefore provides a few primitives, which allow processes to talk
to each other, creating controlled gaps in the isolation.

302I/O vs Communication
• take standard input and output
∘ imagine process A writes a file
∘ later, process B reads that file

• communication happens in real time
∘ between two running threads / processes
∘ automatic: without user intervention

Another term that we want to delineate is that of communication: in
particular, we need to differentiate it from ‘offline’ input and output.
Technically speaking, reading a file from disk is communication, be-
cause some program wrote that file earlier. However, this is not the
kind of thing that we are interested in: we are only interested in the
instances that happen in real time. More formally, there should be
alternation of actions from two threads, ordered by happens-before,
i.e. at least one instruction of thread A is happens-before-sandwiched
between instructions of thread B.

303Direction
• bidirectional communication is typical
∘ this is analogous to a conversation

• but unidirectional communication also makes sense
∘ e.g. sending commands to a child process
∘ do acknowledgments count as communication?

Strictly speaking, using the above definition, all communication is bidi-
rectional. However, truly unidirectional communication is quite rare:
even semantically unidirectional communication often includes an ac-
knowledgement or other form of reply, satisfying the definition above.

304Communication Example
• network services are a typical example
• take a web server and a web browser
• the browser sends a request for a web page
• the server responds by sending data

An intuitive, if technically complicated, example of communication
would be the interaction of a web browser with a web server. In this
case, the browser will use a network connection to send a request,
which will be processed by the server. Finally, the server will send
a reply, for which the browser is waiting: it is easy to see the causal
connections: the request happens-before the reply which happens-
before the browser showing the content to the user.

305Files
• it is possible to communicate through files
• multiple processes can open the same file
• one can write data and another can process it
∘ the original program picks up the results
∘ typical when using programs as modules

Multiple programs (processes) can open the same file, and read or write

data into it at the same time. With a little care, this can be done safely.
It is not hard to imagine, then, that the two programs could use this
capability for communication, as defined above: one of the programs
writes somedata on at a particular offset, the other programreads them
and perhaps confirms this, possibly using a different mechanism.

306A File-Based IPC Example
• files are used e.g. when you run cc file.c

∘ it first runs a preprocessor: cpp -o file.i file.c

∘ then the compiler proper: cc1 -o file.o file.i

∘ and finally a linker: ld file.o crt.o -lc

• the intermediate files may be hidden in /tmp

∘ and deleted when the task is completed

As an example, even if a little specific, let’s recall how the compiler
driver communicates with the individual compilation stages (the com-
pilation process has been covered in the second lecture, in case you
need to review it).
Each step looks the same: the driver arranges an intermediate form of
the program to be written to a file, then invokes a subprocess which
reads that file and writes its output into another file. Clearly, the invo-
cation of next stage happens after the output of the previous has been
written.

307Directories
• communication by placing files or links
• typical use: a spool directory
∘ clients drop files into the directory for processing
∘ a server periodically picks up files in there

• used for e.g. printing and email

Another approach for communication through the file system lever-
ages directories: a daemon sets up a directory, into which its clients
can drop files. These files are then picked up and processed by the
daemon, and then unlinked from the directory.
This approach is often seen in print spooling: the client program drops
a file (in suitable format) that it wants printed into a spool directory,
where it is picked up by the printer daemon, which arranges for the
file to be printed and removed from the queue.
Email systems use an analogous process, where mail is either dropped
into spool directories as part of internal processing (most mail servers
are built from multiple services connected by IPC), or for pickup by
individual users.

308Pipes
• a device for moving bytes in a stream
∘ note the difference from messages

• one process writes, the other reads
• the reader blocks if the pipe is empty
• the writer blocks if the pipe buffer is full

Wehave already talked about pipes earlier: recall that pipesmove bytes
from one process to another, using the standard file system API: data
is sent using write and received using read.
An important consideration is that each pipe has a (finite) buffer at-
tached to it: when the buffer is full, a process trying to write data will
be blocked, until the other process issues a read, removing some of the
data from the buffer. Likewise, when the buffer is empty, attempting
to read from the pipe will block, until the other side issues a write that
and hence provides some data for read to return.

PB152 Operating Systems 48/93 July 4, 2020

309UNIX and Pipes
• pipes are used extensively in UNIX
• pipelines built via the shell’s | operator
• e.g. ls | grep hello.c

• most useful for processing data in stages

Especially in the case of user-setup pipes (via shell pipelines), the bound-
ary between IPC and “standard IO” is rather blurry. Programs in UNIX
are often written in a style, where they read input, process it and
write the result as their output. This makes them amenable for use in
pipelines. While pipes are arguably “more automatic” than dropping
the output in a file and running another command to process the file,
there is also a degree of manual intervention. Another way to look
at the difference may be that a pipe is primarily an IPC mechanism,
while a file is primarily a storage mechanism.

310Sockets
• similar to, but more capable than pipes
• allows one server to talk to many clients
• each connection acts like a bidirectional pipe
• could be local but also connected via a network

You might remember that sockets are pipe-like devices, but more pow-
erful (and more complicated). A socket allows a single server to open
communication channels to multiple clients at the same time (possibly
over a network), providing a bidirectional channel between each of
the clients and the server.
Additionally, sockets also come in a ‘datagram’ flavour, in which case
they do not establish connections and do not behave like pipes at all:
instead, in this mode, they can be used to send messages.

311Shared Memory
• memory is shared when multiple threads can access it
∘ happens naturally for threads of a single process
∘ the primary means of inter-thread communication

• many processes can map the same physical location
∘ this is the more traditional setting
∘ hence also allows inter-process communication

Shared memory is, in some sense, the most straightforward commu-
nication mechanism possible: memory access is, after all, a very com-
mon operation in a program. Among threads of the same process, all
memory is ‘shared’ in the sense that all threads can read and write
all memory (since they share the same page table). Of course, in most
programs, only a small, carefully delineated part of thememory is used
for exchanging data between threads.
Additionally, processes can set up a piece of shared memory between
them. However, since there is no shared virtual address space, the
each process may have the shared block of memory mapped at dif-
ferent virtual address (let’s call the relevant virtual addresses A and
B). However, there is only one block of physical memory involved: if
the shared memory resides at the physical address P. Inter-process
shared memory is then set up in such a way, that for the first process,
A translates to P and in the second process, B translates to P.

A B

P

A B

process 1

physical memory

process 2

The address B may or may not be a valid address in the first process,
and the same holds for A in the second process.

312Message Passing
• communication using discrete messages
• we may or may not care about delivery order
• we can decide to tolerate message loss
• often used across a network
• can be implemented on top of sockets

While it is hard to beat the efficiency of shared memory as a commu-
nication mechanism, message passing has other advantages: first of
all, it is much safer (communication through shared memory can be
quite tricky to get right) and, for some use cases, considerably easier
to use. Moreover, message passing can be done over networks, which
makes it especially suitable for distributed systems.

Part 6.2: Synchronisation
In this section, we will deal with a specific form of communication,
where no (application) data is exchanged. The purpose of synchro-
nisation primitives is to ensure that actions of multiple threads or
processes proceed in a correct order (of which, there are usually many).
Our main motivation will be prevention of race conditions, which are,
essentially, the wrong orderings of concurrent actions (for a suitable
value of ‘wrong’).

314Shared Variables
• structured view of shared memory
• typical in multi-threaded programs
• e.g. any global variable in a program
• but may also live in memory from malloc

Before we proceed to talk about synchronisation proper, we will have
a look at a proper communication device, which we will use as an
example: a shared variable is simply a named piece of shared memory,
available in multiple threads under the same name.

315Shared Heap Variable

void *thread(int *x) { *x = 7; }

int main()

{

pthread_t id;

int *x = malloc(sizeof(int));

pthread_create(&id, NULL, thread, x);

}

It is also possible to have anonymous shared variables, allocated dy-
namically on the heap. They are accessed through a pointer.

PB152 Operating Systems 49/93 July 4, 2020

316Race Condition: Example
• consider a shared counter, i
• and the following two threads

int i = 0;

void thread1() { i = i + 1; }

void thread2() { i = i - 1; }

What is the value of i after both finish?

Before we attempt to define a race condition, let’s look at an example.
In the above program, two threads modify the same shared variable:
one adds, and another subtracts, one. Try to think about the possible
outcomes, before you look ahead.

317Race on a Variable
• memory access is not atomic
• take i = i + 1 / i = i - 1

a₀ ← load i | b₀ ← load i

a₁ ← a₀ + 1 | b₁ ← b₀ - 1

store a₁ i | store b₁ i

To understand why the innocent-looking code from the previous slide
fails, we need to look at a low-level description of the program (at the
level of, essentially, machine instructions). Notice that each of the
two statement translates into three separate instructions: load a value
from memory, perform the arithmetic operation, and store the result
back into memory. At this level of detail, it should be easy to see how
the instructions from the two threads can be ordered to give a wrong
(or at least unexpected) result, without violating the happens-before
relation (remember that instructions of each thread separately are
linearly ordered).

318Critical Section
• any section of code that must not be interrupted
• the statement x = x + 1 could be a critical section
• what is a critical section is domain-dependent
∘ another example could be a bank transaction
∘ or an insertion of an element into a linked list

If we want the result of the above program to be always 0, we must
demand that each of the two statements is an instruction sequence
that belongs to a common critical section: that is, a span of code that
must not be interrupted by any other span of code that belongs to the
same critical section. In this case, this means that once either of the
load instructions starts executing, the thread which did so must first
get all the way to the corresponding store before the other thread can
execute its load.
Critical sections do notmodify the happens-before relation: the critical
sections, as units, can happen in either order (they are still concurrent).
However, the entirety of the critical section behaves, with regard to
other instances of the same critical section, as a single atomic instruc-
tion.

319Race Condition: Definition
• (anomalous) behaviour that depends on timing
• typically among multiple threads or processes
• an unexpected sequence of events happens
• recall that ordering is not guaranteed

Wecan now attempt a definition: a race condition is a behaviourwhich

1. depends on timing (in the sense that it depends on a specific order-
ing of concurrent events),

2. was not anticipated by the programmer.

With the above definition, a race condition can be benign, and the term
is often used in this sense. In our study of the phenomenon, however,
it is more useful to also include a third clause:

3. the behaviour is erroneous.

Race conditions often lurk in placeswhere there is a lot of concurrency:
threaded programs are a prime example (almost all instructions are
concurrent with a large number of other instructions coming from
other threads).
However, it is important to keep in mind, that some form of communi-
cation is necessary for a race condition to arise – concurrency alone is
not sufficient. This is because completely concurrent processes cannot
influence each other, and hence their behaviour cannot depend on the
particular ordering of the events that are concurrent among them.

320Races in a Filesystem
• the file system is also a shared resource
• and as such, prone to race conditions
• e.g. two threads both try to create the same file
∘ what happens if they both succeed?
∘ if both write data, the result will be garbled

Since file system is a resource that is shared by otherwise unrelated
processes, it creates an environment prone to race conditions: there is
ample concurrency, but also a lot of (sometimes accidental) communi-
cation.

321Mutual Exclusion
• context: only one thread can access a resource at once
• ensured by a mutual exclusion device (a.k.a mutex)
• a mutex has 2 operations: lock and unlock

• lockmay need to wait until another thread unlocks

Now that we have basic understanding of the problems associated
with concurrency, let’s look at some of the available remedies. The
first, and in some sense simplest synchronisation primitive is a mutual
exclusion device, designed to enforce critical sections.
It is often the case that the critical section is associated with a resource:
that is, all the code between each acquisition and the corresponding
release of the resource is part of a single critical section. This essentially
means that one of the steps of the acquisition process is locking amutex
and, analogously, the mutex is unlocked as part of the release process
associated with the resource.

PB152 Operating Systems 50/93 July 4, 2020

322Semaphore
• somewhat more general than a mutex
• allows multiple interchangeable instances of a resource
∘ consider there are N identical printers
∘ then N processes can be printing at any given time

• basically an atomic counter

Semaphores are, in a sense, a generalisation of amutex – however, they
are only useful when dealing with resources (i.e. it can only be used
to guard a general critical section in the case it is exactly equivalent
to a mutex). The difference between a mutex and a semaphore is that
multiple threads can enter the section of code guarded by a semaphore,
but the number is capped by a constant. If the constant is set to 1, then
the semaphore is the same as a mutex.

323Monitors
• a programming language device (not OS-provided)
• internally uses standard mutual exclusion
• data of the monitor is only accessible to its methods
• only one thread can enter the monitor at once

Essentially, a monitor is a fully encapsulated object (as defined in object
oriented programming), with one additional restriction: each instance
of a monitor has a critical section associated with it, and each of its
method is, in its entirety, part of this critical section.
As long each public method leaves the object in a consistent state
(which is normally required of all objects), a monitor is automatically
thread-safe, that is, multiple threads can call its methods without risk-
ing race conditions.

324Condition Variables
• what if the monitor needs to wait for something?
• imagine a bounded queue implemented as a monitor
∘ what happens if it becomes full?
∘ the writer must be suspended

• condition variables have wait and signal operations

Since critical sections are often associated with communication, it may
happen that code currently in a critical section cannot proceed until
some other thread performs a particular action. This use case is served
by another synchronisation device, known as a condition variable:
the variable can be waited for, which blocks the calling thread, and
signalled, which wakes up the waiting thread and allows it to proceed.

325Spinlocks
• a spinlock is the simplest form of a mutex
• the lockmethod repeatedly tries to acquire the lock
∘ this means it is taking up processor time
∘ also known as busy waiting

• spinlocks contention on the same CPU is very bad
∘ but can be very efficient between CPUs

A spinlock is a particularly simple implementation of the abstract mu-
tex concept. The state of the device is a single bit, the lock operation
uses an atomic compare and swap to change the bit from 0 to 1 atom-
ically (i.e. in such a way that the operation fails in case some other
thread succeeded in changing it to 1 while the operation was running),
looping until it succeeds. The unlock operation simply resets the bit to

0.
There are a few upsides: the implementation is very simple, the state
is very compact and the latency is as good as it gets, assuming that
the contention is against another CPU core. The uncontended case is
pretty much optimal.
There is, however, one serious (and in many scenarios, fatal) drawback:
contention on the same CPU core has the worst possible behaviour
(maximal latency and minimal throughput). Another important prob-
lem, though less severe, is that throughput strongly depends on the
average length of the protected critical section: locks that are only held
for a short time perform well, but longer critical sections will waste
significant resources by holding up a CPU core in the busy-waiting
loop.
Overall, spinlocks are useful for protecting critical sections which are
short and which are guaranteed to be contended by threads running
on different CPU cores. This often happens inside the kernel, but only
rarely in user-space programs.

326Suspending Mutexes
• these need cooperation from the OS scheduler
• when lock acquisition fails, the thread sleeps
∘ it is put on a waiting queue in the scheduler

• unlocking the mutex will wake up the waiting thread
• needs a system call→ slow compared to a spinlock

A different, much more complicated, but also much more versatile,
implementation of amutex is a suspendingmutex. Themain difference
lies in the contended case of the lock operation: whenever there is
an attempt to lock an already-locked mutex, the unlucky thread is
suspended and placed on a wait queue of the scheduler. The unlock
operation, of course, needs to be augmented to check if there are any
threads waiting for the mutex, and if yes, wake up one of them.
The interaction with the scheduler means that both the lock and un-
lock operationsmust perform a system call, at least in some cases. Com-
pared to atomic instructions, system calls are much more expensive,
increasing the overhead of the mutex considerably.
A common implementation technique uses a combination of a spinlock
and a suspending mutex: the lock operation runs a small number of
loops trying to acquire the mutex, and suspends the thread if this fails.
This approach combines the good behaviours of both, but is the most
complicated implementation-wise, and the state of the mutex is also at
least as big as that of a suspending mutex.

327Condition Variables Revisited
• same principle as a suspending mutex
• the waiting thread goes into a wait queue
• signalmoves the thread back to a run queue
• the busy-wait version is known as polling

The usual way to implement a condition variable is to interact with
the scheduler, allowing the waiting thread to free up the CPU core it
was occupying. A busy-waiting, spinlock-like alternative is possible,
though not commonly used.

PB152 Operating Systems 51/93 July 4, 2020

328Barrier
• sometimes, parallel computation proceeds in phases
∘ all threads must finish phase 1
∘ before any can start phase 2

• this is achieved with a barrier
∘ blocks all threads until the last one arrives
∘ waiting threads are usually suspended

Another synchronisation device that we will consider is a barrier.
While the devices that we have described so far can be used in scenar-
ios with more than two threads, their behaviour is always governed
by pairwise interactions.
A barrier is different: it synchronises a number of threads at a single
point. Only when all the participating threads gather at the barrier
are they allowed tho continue.

329Readers andWriters
• imagine a shared database
• many threads can read the database at once
• but if one is writing, no other can read nor write
• what if there are always some readers?

Let us consider another synchronisation problem, again involving
more than two threads: there is a piece of data (a database if you like)
that many threads need to consult, and sometimes update.
The naive solution would be to simply wrap all access to the data struc-
ture in a critical section: this is certainly correct, but wasteful, since
multiple readers do not interact with each other, but still need to queue
up to interact with the data.
The synchronisation device that solves the problem is called an rwlock,
or read-write lock, with 3 operations: lock for reading, lock for writing
and unlock. The invariant is that if the rwlock is locked for writing,
it is locked by exactly one thread. Otherwise, there might be multiple
threads holding a read lock (which of course prevents any write locks
from being taken until the read locks are all released).

330Read-Copy-Update
• the fastest lock is no lock
• RCU allows readers to work while updates are done
∘ make a copy and update the copy
∘ point new readers to the updated copy

• when is it safe to reclaim memory?

In some cases, the readers & writers scenario can be solved without
taking any locks at all (not even a critical section is required). The
way this works is that a writer, instead of modifying the data in place
(and therefore interfering with concurrent reads), makes a copy of the
data (which is a read operation, and hence can be safely performed
concurrently), performs the updates in this new copy of the data, and
then instructs all future readers to use this copy instead, usually by
updating a pointer.

Part 6.3: Deadlocks and Starvation

332Dining Philosophers

Aristotle fork Plato

fork fork

Pythagoras fork Socrates

bowl

In the ‘dining philosophers’ problem, there is a bowl of food in the mid-
dle of a table, a number of philosophers seated around the table, and
between each pair of philosophers, there is a single fork. To eat, each
philosopher needs to use two forks at the same time. The philosophers
sit and think, but when they become hungry, they pick up the forks
and eat.
This scenario is used to illustrate the problem of deadlocks and star-
vation in concurrent systems. Can you come up with instructions for
the philosophers that would ensure that each hungry philosopher gets
to eat (in finite time)? Consider why simple algorithms fail.

333Shared Resources
• hardware comes in a limited number of instances
• many devices can only do one thing at a time
• think printers, DVD writers, tape drives, ...
• we want to use the devices efficiently→ sharing
• resources can be acquired and released

The most natural setting to contemplate deadlocks is one in which
multiple threads (and/or processes) compete for finite resources. In
this case, a resource is an abstract object, which can be acquired, used,
and released. A resource cannot be used before it has been acquired,
and can no longer be used after being released. The thread that has
acquired (but not yet released) a resource is said to own it.

334Network-based Sharing
• sharing is not limited to processes on one computer
• printers and scanners can be network-attached
• the entire network may need to coordinate access
∘ this could lead to multi-computer deadlocks

In practice, some resources are ‘remote’ – made available to processes
on computer A by another computer B attached to the same network.
This does not make any practical difference to our consideration (other
than perhaps realizing, that a single deadlock may span multiple com-
puters).

PB152 Operating Systems 52/93 July 4, 2020

335Locks as Resources
• we explored locks in the previous section
• locks (mutexes) are also a form of resource
∘ a mutex can be acquired (locked) and released
∘ a locked mutex belongs to a particular thread

• locks are proxy (stand-in) resources

In the following, we will consider locks (or even critical sections as
such) to be simply a form of resource: the operations on an abstract
resource neatly map neatly map to operations on an (abstract) lock.

336Preemptable Resources
• sometimes, held resources can be taken away
• this is the case with e.g. physical memory
∘ a process can be swapped to disk if need be

• preemtability may also depend on context
∘ maybe paging is not available

Some resources can be taken away from their owner temporarily, with-
out causing ill effects, or at an acceptable cost (in terms of latency, loss
of throughput, or resource-specific considerations, such as waste of
material). A canonic examplewould be a page ofmemory: even though
it is acquired by a particular process, the system might take it away
without cooperation from the process, and transparently give it back
whenever it is actually used (this technique is known as swapping).

337Non-preemptable Resources
• those resources cannot be (easily) taken away
• think photo printer in the middle of a page
• or a DVD burner in the middle of writing
• non-preemptable resources can cause deadlocks

Many resources are, however, practically non-preemptable; that is,
once acquired by a thread or a process, they cannot be unilaterally
taken away without considerable damage, e.g. killing the owning
process or irreparably damaging its output through the device.

338Resource Acquisition
• a process needs to request access to a resource
• this is called an acquisition
• when the request is granted, it can use the device
• after it is done, it must release the device
∘ this makes it available for other processes

Now that we have discussed resources in a bit more detail, let’s just
quickly revisit the protocol for their acquisition and release. In the
following, we operate on the assumption that only a limited number of
processes can own a particular resource at any given time (most often
just one, in fact).

339Waiting
• what to do if we wish to acquire a busy resource?
• unless we don’t really need it, we have to wait
• this is the same as waiting for a mutex
• the thread is moved to a wait queue

Wewill also assume that acquisition is blocking: if a resource is busy
(owned by another process), the process will wait until it is released
before continuing execution. This does not always need to be the case,
but it is the most common approach.

340Resource Deadlock
• two resources, A and B
• two threads (processes), P and Q
• P acquires A, Q acquires B
• P tries to acquire B but has to wait for Q
• Q tries to acquire A but has to wait for P

Now we are finally equipped to look at (resource) deadlocks. We will
look at the simplest possible case, with two threads and two resources.
After the above sequence of events, there can be no further progress:
without an outside intervention, both P and Q will be blocked forever.
This is what we call a deadlock. Please note that it is usually the case
that both acquisitions in P are concurrent with both acquisitions in Q.
Of course, the above situation can be generalized to any number of
threads and resources (as long as there are at least 2 of each).

341Resource Deadlock Conditions
1. mutual exclusion
2. hold and wait condition
3. non-preemtability
4. circular wait

Deadlock is only possible if all 4 are present.

A number of sound design decisions conspire to create the conditions
for a deadlock to occur. It is certainly natural that a resource should
only be used by a single thread at any given time – that is, after all, the
nature of resources.
The hold and wait condition arises when a single thread can request
multiple resources at once, performing the acquisitions in a sequence.
It is hard to object here too, since it fits the linear nature of most pro-
grams – the program (or rather each thread of a program) is essentially
a sequence of instructions, and each instruction is only performed
after the previous has finished. Resource acquisition cannot finish
while a resource is busy, and the only way to have more than a single
resource is to acquire each in turn.
In some cases, non-preemptability is not even negotiable: it is a prop-
erty of the resource in question. There is some maneuvering space
with critical sections that cause no interactionwith any external entity
(resource, other threads) with the exception of their associated lock.
In this case, it might be possible to roll back the effects of the critical
section and attempt to restart it. This is, however, not easy to achieve.
Let us consider a static resource dependency graph, in which nodes
are resources and edges indicate that a hold-and-wait condition exists
between them, that is, an edge A→ B is present in the graph if there
is a thread which attempts to acquire B while holding A. The circular
wait condition is satisfied whenever there is a cycle in this graph.

342Non-Resource Deadlocks
• not all deadlocks are due to resource contention
• imagine a message-passing system
• process A is waiting for a message
• process B sends a message to A and waits for reply
• the message is lost in transit

Quite importantly, the above four conditions only pertain to resource

PB152 Operating Systems 53/93 July 4, 2020

deadlocks: there are other types of deadlocks with a different set of
conditions. This means that even if we can eliminate one of the 4
conditions, and hence prevent resource deadlocks, this does not mean,
unfortunately, that our system will be deadlock-free.

343Example: Pipe Deadlock
• recall that both the reader and writer can block
• what if we create a pipe in each direction?
• process A writes data and tries to read a reply
∘ it blocks because the opposite pipe is empty

• process B reads the data but waits for more→ deadlock

A typical example of a non-resource deadlock has to do with pipes:
remember that an empty pipe blocks on read, while a full pipe blocks
onwrite. There is a number of ways this can go wrong, if there is more
than one pipe involved. You can probably spot similarities between
this type of deadlock, and the resource deadlock we have discussed at
length.

344Deadlocks: DoWe Care?
• deadlocks can be very hard to debug
• they can also be exceedingly rare
• we may find the risk of a deadlock acceptable
• just reboot everything if we hit a deadlock
∘ also known as the ostrich algorithm

Many (probably most) deadlocks arise from race conditions, and hence
will not happen very often. The so-called ostrich algorithm takes
advantage of this rarity: if a deadlock happens, kill all the involved
processes, or possibly just reboot the entire system. Of course, deciding
that a deadlock has happened can be tricky.

345Deadlock Detection
• we can at least try to detect deadlocks
• usually by checking the circular wait condition
• keep a graph of ownership vs waiting
• if there is a loop in the graph→ deadlock

One way to detect deadlocks is to use a dynamic counterpart of the
static circular wait condition: in this case, the dependency graph has
two types of nodes: threads and resources. Edges are always between
a thread T and a resource R: T→ R exists if thread T currently owns
resource R, and R→ T exists, if thread T is waiting for the acquisition
of R. If a cycle exists in this graph, the system is in a deadlock (and the
threads which lie on the cycle are all blocked). Let’s revisit the example
with two threads, P and Q, and two resources, A and B that we saw
earlier:

1. P successfully acquires A (giving rise to edge A→ P)
2. likewise, Q acquires B, meaning B→ Q
3. P tries to acquire B but has to wait, hence P→ B
4. Q tries to acquire A but has to wait, hence Q→ A

This is the resulting graph, with an obvious cycle in it:

P A

B Q

346Deadlock Recovery
• if a preemptable resource is involved, reassign it
• otherwise, it may be possible to do a rollback
∘ this needs elaborate checkpointing mechanisms

• all else failing, kill some of the processes
∘ the devices may need to be re-initialised

A deadlock involving at least one preemptable resource can still hap-
pen, but unlike in the ‘standard’ case, it is possible to recover and con-
tinue computation without forcibly terminating any of the threads or
processes involved. Instead, one of the resources is preempted, break-
ing the cycle and allowing the system to make progress again.
If the deadlock instead includes a restartable critical section (as outlined
earlier), then this critical section can be rolled back and restarted, again
allowing other threads to make progress.
Finally, if all else fails, the system can pick a victim thread on the cycle
and terminate it, releasing any resources it might have been holding.
Like the other cases, this allows the system to progress again.

347Deadlock Avoidance
• we can possibly deny acquisitions to avoid deadlocks
• must know the maximum resources for each process
• avoidance relies on safe states
∘ worst case: all processes ask for maximum resources
∘ safe means deadlocks are avoided in the worst case

In general, deadlock avoidance is an approach where the system will
deny resource acquisitions if they might later lead to a deadlock. The
best-known instance of deadlock avoidance is Banker’s Algorithm,
invented by E. Dijkstra. This algorithm applies in cases where each
resource has a number of fungible instances greater than any single
threadmight request at once. The input to the algorithm is themaximal
number of instances of a resource that can be requested by each thread.
The safety invariant is this:

1. there is a thread T, such that the available resources are sufficient
to satisfy its maximal resource allocation,

2. when the thread T terminates (returning all its resources currently
allocated resources), the invariant still holds.

Any resource acquisitions which would violate this invariant are de-
nied. The initial conditions imply that, at the outset, we are in a safe
state; thus, we have demonstrated that the algorithm is correct. The al-
gorithm assumes that nothing apart from resource acquisitions might
block any of the threads. The following table illustrates the algorithm
(P, Q and R are threads, the numbers are resources held / maximal
allocation):

step P Q R available action
1 0/3 0/2 0/4 5/5 P acquires 1
2 1/3 0/2 0/4 4/5 R acquires 2
3 1/3 0/2 2/4 2/5 Q acquires 1
4 1/3 1/2 2/4 1/5 P is denied 1
5 1/3 1/2 2/4 1/5 Q acquires 1
6 1/3 2/2 2/4 0/5 Q terminates
7 1/3 – 2/4 2/5 P acquires 1
8 2/3 – 2/4 1/5

Notice that in step 4, the request by P has been denied, because there
would no longer be any thread guaranteed to be able to make sufficient
progress to release resources.

PB152 Operating Systems 54/93 July 4, 2020

348Deadlock Prevention
• deadlock avoidance is typically impractical
• there are 4 conditions for deadlocks to exist
• we can try attacking those conditions
• if we can remove one of them, deadlocks are prevented

Deadlock avoidance is, unfortunately, not very practical in general-
purpose operating systems: it is often the case, that a particular re-
source has exactly 1 instance available, and the above algorithmwould
then force all programs which might use the resource to run one after
another. Moreover, the assumption that there are no other interac-
tions between threads is not very realistic either.

349Prevention via Spooling
• this attacks the mutual exclusion property
• multiple programs could write to a printer
• the data is collected by a spooling daemon
• which then sends the jobs to the printer in sequence

This approach can trade a deadlock on the printer for a deadlock on
disk space. However, disk space is much more likely to be preemptable
in this scenario, since a job blocked by a full disk can be canceled (and
erased from disk) and later retried (unlike a half-printed page).

350Prevention via Reservation
• we can also try removing hold-and-wait
• for instance, we can only allow batch acquisition
∘ the process must request everything at once
∘ this is usually impractical

• alternative: release and re-acquire

It is certainly conceivable that we might require that all resource ac-
quisitions are done in batches, always requesting, as a single atomic
action, all the resources required in a particular section of code. The
resources may be released one at a time. If an additional resource is
required while other resources are already held, the program must
first release everything it holds before requesting the new batch.

351Prevention via Ordering
• this approach eliminates circular waits
• we impose a global order on resources
• a process can only acquire resources in this order
∘ must release + re-acquire if the order is wrong

• it is impossible to form a cycle this way

Finally, the perhaps most practical approach within a single program
(or another closed system, but not so much in an operating system) is
to impose a global order on resource acquisition, which each thread
must observe. This implies that the static resource dependency graph
is acyclic and deadlocks cannot occur.

352Livelock
• in a deadlock, no progress can be made
• but it’s not much better if processes go back and forth
∘ for instance releasing and re-acquiring resources
∘ they make no useful progress
∘ they additionally consume resources

• this is a livelock and is just as bad as a deadlock

In a deadlock, the blocked threads are all usually suspended (not
runnable). If some or all of the threads involved in a deadlock-like
condition are active (busy waiting, polling or otherwise attempting an
action which is bound to fail forever), we talk about a livelock: threads
are executing instructions, but progress is not being made.

353Starvation
• starvation happens when a process can’t make progress
• generalisation of both deadlock and livelock
• for instance, unfair scheduling on a busy system
• also recall the readers and writers problem

Finally, the most general notion is starvation, which is a condition
when a thread cannotmake progress, forwhatever reason: it is blocked
on a resource, it is denied processor time, etc. An example that is
neither a deadlock nor a livelock would arise in a naive solution to the
readers & writers problem from earlier: if there are sufficiently many
readers so that there is always a read lock on the resource, writers will
be blocked indefinitely, and hence starved.

354Review Questions
• What is a mutex?
• What is a deadlock?
• What are the conditions for a deadlock to form?
• What is a race condition?

Part 7: Device Drivers
Abstracting hardware is one of the major roles of an operating system.
While we have already discussed the basic hardware resources (CPU
and memory) in detail in previous lectures, so-called peripherals also
play an important role. In this lecture, we will look at the interface
between the operating system and the peripheral hardware (network
interface cards, persistent storage, removable storage, displays, input
devices and so on).

356Lecture Overview
1. Drivers, IO and Interrupts
2. System and Expansion Busses
3. Graphics
4. Persistent Storage
5. Networking andWireless

PB152 Operating Systems 55/93 July 4, 2020

Part 7.1: Drivers, IO and Interrupts

358Input and Output
• we will mostly think in terms of IO
• peripherals produce and consume data
• input – reading data produced by a device
• output – sending data to a device

359What is a Driver?
• piece of software that talks to a device
• usually quite specific / unportable
∘ tied to the particular device
∘ and also to the operating system

• often part of the kernel

360Kernel-mode Drivers
• they are part of the kernel
• running with full kernel privileges
∘ including unrestricted hardware access

• no or minimal context switching overhead
∘ fast but dangerous

361Microkernels
• drivers are excluded from microkernels
• but the driver still needs hardware access
∘ this could be a special memory region
∘ it may need to react to interrupts

• in principle, everything can be done indirectly
∘ but this may be quite expensive, too

362User-mode Drivers
• many drivers can run completely in user space
• this improves robustness and security
∘ driver bugs can’t bring the entire system down
∘ nor can they compromise system security

• possibly at some cost to performance

363Drivers in Processes
• user-mode drivers typically run in their own process
• this means context switches
∘ every time the device demands attention (interrupt)
∘ every time another process wants to use the device

• the driver needs system calls to talk to the device
∘ this incurs even more overhead

364In-Process Drivers
• what if a (large portion of) a driver could be a library
• best of both worlds
∘ no context switch overhead for requests
∘ bugs and security problems remain isolated

• often used for GPU-accelerated 3D graphics

365Port-Mapped IO
• early CPUs had very limited address space
∘ 16-bit addresses mean 64KB of memory

• peripherals got a separate address space
• special instructions for using those addresses
∘ e.g. in and out on x86 processors

366Memory-mapped IO
• devices share address space with memory
• more common in contemporary systems
• IO uses the same instructions as memory access
∘ load and store on RISC, mov on x86

• allows selective user-level access (via the MMU)

367Programmed IO
• input or output is driven by the CPU
• the CPU must wait until the device is ready
• would usually run at bus speed
∘ 8 MHz for ISA (and hence ATA-1)

• PIO would talk to a buffer on the device

368Interrupt-driven IO
• peripherals are much slower than the CPU
∘ polling the device is expensive

• the peripheral can signal data availability
∘ and also readiness to accept more data

• this frees up CPU to do other work in the meantime

369Interrupt Handlers
• also known as first-level interrupt handler
• they must run in privileged mode
∘ they are part of the kernel by definition

• the low-level interrupt handler must finish quickly
∘ it will mask its own interrupt to avoid re-entering
∘ and schedule any long-running jobs for later (SLIH)

PB152 Operating Systems 56/93 July 4, 2020

370Second-level Handler
• does any expensive interrupt-related processing
• can be executed by a kernel thread
∘ but also by a user-mode driver

• usually not time critical (unlike first-level handler)
∘ can use standard locking mechanisms

371Direct Memory Access
• allows the device to directly read/write memory
• this is a huge improvement over programmed IO
• interrupts only indicate buffer full/empty
• devices can read and write arbitrary physical memory
∘ opens up security / reliability problems

372IO-MMU
• like the MMU, but for DMA transfers
• allows the OS to limit memory access per device
• very useful in virtualisation
• only recently found its way into consumer computers

Part 7.2: System and Expansion Busses

374History: ISA (Industry Standard Architecture)
• 16-bit system expansion bus on IBM PC/AT
• programmed IO and interrupts (but no DMA)
• a fixed number of hardware-configured interrupt lines
∘ likewise for I/O port ranges
∘ the HW settings then need to be typed back for SW

• parallel data and address transmission

375MCA, EISA
• MCA: Micro Channel Architecture
∘ proprietary to IBM, patent-encumbered
∘ 32-bit, software-driven device configuration
∘ expensive and ultimately a market failure

• EISA: Enhanced ISA
∘ a 32-bit extension of ISA
∘ mostly created to avoid MCA licensing costs
∘ short-lived and replaced by PCI

376VESA Local Bus
• memory mapped IO & DMA on otherwise ISA systems
• tied to the 80486 line of Intel CPUs (and AMD clones)
• primarily for graphics cards
∘ but also used with hard drives

• quickly fell out of use with the arrival of PCI

377PCI: Peripheral Component Interconnect
• a 32-bit successor to ISA
∘ 33 MHz (compared to 8 MHz for ISA)
∘ later revisions at 66 MHz, PCI-X at 133 MHz
∘ added support for bus-mastering and DMA

• still a shared, parallel bus
∘ all devices share the same set of wires

378Bus Mastering
• normally, the CPU is the bus master
∘ which means it initiates communication

• it’s possible to have multiple masters
∘ they need to agree on a conflict resolution protocol

• usually used for accessing the memory

379DMA (Direct Memory Access)
• the most common form of bus mastering
• the CPU tells the device what and where to write
• the device then sends data directly to RAM
∘ the CPU can work on other things in the meantime
∘ completion is signaled via an interrupt

380Plug and Play
• the ISA system for IRQ configuration was messy
• MCA pioneered software-configured devices
• PCI further improved on MCA with “Plug and Play”
∘ each PCI device has an ID it can tell the system
∘ enables enumeration and automatic configuration

381PCI IDs and Drivers
• PCI allows for device enumeration
• device identifiers can be paired to device drivers
• this allows the OS to load and configure its drivers
∘ or even download / install drivers from a vendor

382AGP: Accelerated Graphics Port
• PCI eventually became too slow for GPUs
∘ AGP is based on PCI and only improves performance
∘ enumeration and configuration stays the same

• adds a dedicated point-to-point connection
• multiple transfers per clock (up to 8, for 2 GB/s)

383PCI Express
• the current high-speed peripheral bus for PC
• builds on / extends conventional PCI
• point-to-point, serial data interconnect
• much improved throughput (up to ~30GB/s)

PB152 Operating Systems 57/93 July 4, 2020

384USB: Universal Serial Bus
• primarily for external peripherals
∘ keyboards, mice, printers, ...
∘ replaced a host of legacy ports

• later revisions allow high-speed transfers
∘ suitable for storage devices, cameras &c.

• device enumeration, capability negotiation

385USB Classes
• a set of vendor-neutral protocols
• HID = human-interface device
• mass storage = disk-like devices
• audio equipment
• printing

386Other USB Uses
• ethernet adapters
• usb-serial adapters
• wifi adapters (dongles)
∘ there isn’t a universal protocol
∘ each USBWiFi adapter needs a special driver

• bluetooth

387ARM Busses
• ARM is typically used in System-on-a-Chip designs
• those use a proprietary bus to connect peripherals
• there is less need for enumeration
∘ the entire system is baked into a single chip

• the peripherals can be pre-configured

388

USB and PCIe on ARM
• USB nor PCIe are exclusive to the PC platform
• most ARM SoC’s support USB devices
∘ for slow and medium-speed off-SoC devices
∘ e.g. used for ethernet on RPi 1

• some ARM SoC’s support PCI Express
∘ this allows for high-speed off-SoC peripherals

389PCMCIA & PC Card
• People Can’t Memorize Computer Industry Acronyms
∘ PC = Personal Computer, MC = Memory Card
∘ IA = International Association

• hotplug-capable notebook expansion bus
• used for memory cards, network adapters, modems
• comes with its own set of drivers (cardbus)

390ExpressCard
• an expansion card standard like PCMCIA / PC Card
• based on PCIe and USB
∘ can mostly re-use drivers for those standards

• not in wide use anymore
∘ last update was in 2009, introducing USB 3 support
∘ the industry association disbanded the same year

391miniPCIe, mSATA, M.2
• those are physical interfaces, not special busses
• they provide some mix of PCIe, SATA and USB
∘ also other protocols like I²C, SMBus, ...

• used mainly for compact SSDs and wireless
∘ also GPS, NFC, bluetooth, ...

Part 7.3: Graphics and GPUs

393Graphics Cards
• initially just a device to drive displays
• reads pixels from memory and provides display signal
∘ basically a DAC with a clock
∘ the memory can be part of the graphics card

• evolved acceleration capabilities

394Graphics Accelerator
• allows common operations to be done in hardware
• like drawing lines or filled polygons
• the pixels are computed directly in video RAM
• this can save considerable CPU time

3953D Graphics
• rendering 3D scenes is computationally intensive
• CPU-based, software-only rendering is possible
∘ texture-less in early flight simulators
∘ bitmap textures since ’95 / ’96 (Descent, Quake)

• CAD workstations had 3D accelerators (OpenGL ’92)

396GPU (Graphical Processing Unit)
• a term coined by nVidia near the end of ’90s
• originally a purpose-built hardware renderer
∘ based on polygonal meshes and Z buffering

• increasingly more flexible and programmable
• on-board RAM, high-speed connection to system RAM

PB152 Operating Systems 58/93 July 4, 2020

397GPU Drivers
• split into a number of components
• graphics output / frame buffer access
• memory management is often done in kernel
• geometry, textures &c. are prepared in-process
• front end API: OpenGL, Direct3D, Vulkan, ...

398Shaders
• current GPUs are computation devices
• the GPU has its own machine code for shaders
• the GPU driver contains a shader compiler
∘ either all the way from a high level language (HLSL)
∘ or starting with an intermediate code (SPIR)

HLSL = High-Level Shader Language SPIR = Standard Portable Inter-
mediate Representation

399Mode Setting
• deals with screen configuration and resolution
• including support for e.g. multiple displays
• usually also supports primitive (SW-only) framebuffer
• often in-kernel, with minimum user-level support

400Graphics Servers
• multiple apps cannot all drive the graphics card
∘ the graphics hardware needs to be shared
∘ one option is a graphics server

• provides an IPC-based drawing and/or windowing API
• performs painting on behalf of the applications

401Compositors
• a more direct way to share graphics cards
• each application gets its own buffer to paint into
• painting is mostly done by a (context-switched) GPU
• the individual buffers are then composed onto screen
∘ composition is also hardware-accelerated

402GP-GPU
• general-purpose GPU (CUDA, OpenCL, ...)
• used for computation instead of just graphics
• basically a return of vector processors
• close to CPUs but not part of normal OS scheduling

Part 7.4: Persistent Storage

404Drivers
• split into adapter, bus and device drivers
• often a single driver per device type
∘ at least for disk drives and CD-ROMs

• bus enumeration and configuration
• data addressing and data transfers

405IDE / ATA
• Integrated Drive Electronics
∘ disk controller becomes part of the disk
∘ standardised as ATA-1 (AT Attachment ...)

• based on the ISA bus, but with cables
• later adapted for non-disk use via ATAPI

406ATA Enumeration
• each ATA interface can attach only 2 drives
∘ the drives are HW-configured as master/slave
∘ this makes enumeration quite simple

• multiple ATA interfaces were standard
• no need for specific HDD drivers

407PIO vs DMA
• original IDE could only use programmed IO
• this eventually became a serious bottleneck
• later ATA revisions include DMAmodes
∘ up to 160MB/s with highest DMAmodes
∘ compare 1900MB/s for SATA 3.2

408SATA
• serial, point-to-point replacement for ATA
• hardware-level incompatible to (parallel) ATA
∘ but SATA inherited the ATA command set
∘ legacy mode lets PATA drivers talk to SATA drives

• hot-swap capable – replace drives in a running system

PB152 Operating Systems 59/93 July 4, 2020

409AHCI (Advanced Host Controller Interface)
• vendor-neutral interface to SATA controllers
∘ in theory only a single ’AHCI’ driver is needed

• an alternative to ’legacy mode’
• NCQ = Native Command Queuing
∘ allows the drive to re-order requests
∘ another layer of IO scheduling

The PATA-compatible mode hides most features.

410ATA and SATA Drivers
• the host controller (adapter) is mostly vendor-neutral
• the bus driver will expose the ATA command set
∘ including support for command queuing

• device driver uses the bus driver to talk to devices
• partially re-uses SCSI drivers for ATAPI &c.

411SCSI (Small Computer System Interface)
• originated with minicomputers in the 80’s
• more complicated and capable than ATA
∘ ATAPI basically encapsulates SCSI over ATA

• device enumeration, including aggregates
∘ e.g. entire enclosures with many drives

• also allows CD-ROM, tapes, scanners (!)

412SCSI Drivers
• split into: a host bus adapter (HBA) driver
• a generic SCSI bus and command component
∘ often re-used in both ATAPI and USB storage

• and per-device or per-class drivers
∘ optical drives, tapes, CD/DVD-ROM
∘ standard disk and SSD drives

413iSCSI
• basically SCSI over TCP/IP
• entirely software-based
• allows standard computers to serve as block storage
• takes advantage of fast cheap ethernet
• re-uses most of the SCSI driver stack

414NVMe: Non-Volatile Memory Express
• a fairly simple protocol for PCIe-attached storage
• optimised for SSD-based devices
∘ much bigger and more command queues than AHCI
∘ better / faster interrupt handling

• stresses concurrency in the kernel block layer

415

USB Mass Storage
• an USB device class (vendor-neutral protocol)
∘ one driver for the entire class

• typically USB flash drives, but also external disks
• USB 2 is not suitable for high-speed storage
∘ USB 3 introduced UAS = USB-Attached SCSI

416Tape Drives
• unlike disk drives, only allow sequential access
• needs support for media ejection, rewinding
• can be attached with SCSI, SATA, USB
• parts of the driver will be bus-neutral
• mainly for data backup, capacities 6-15TB

417Optical Drives
• mainly used as a read-only distribution medium
• laser-facilitated reading of a rotating disc
• can be again attached to SCSI, SATA or USB
• conceived for audio playback→ very slow seek

418Optical Disk Writers (Burners)
• behaves more like a printer for optical disks
• drivers are often done in user space
• attached by one of the standard disk busses
• special programs required to burn disks
∘ alternative: packet-writing drivers

Part 7.5: Networking andWireless

420Networking
• networks allow multiple computers to exchange data
∘ this could be files, streams or messages

• there are wired and wireless networks
• we will only deal with the lowest layers for now
• NIC = Network Interface Card

421Ethernet
• specifies the physical medium
• on-wire format and collision resolution
• in modern setups, mostly point-to-point links
∘ using active packet switching devices

• transmits data in frames (low-level packets)

PB152 Operating Systems 60/93 July 4, 2020

422Addressing
• at this level, only local addressing
∘ at most a single LAN segment

• uses baked-in MAC addresses
∘ MAC =Media Access Control

• addresses belong to interfaces, not computers

423Transmit Queue
• packets are picked up from memory
• the OS prepares packets into the transmit queue
• the device picks them up asynchronously
• similar to how SATA queues commands and data

424Receive Queue
• data is also queued in the other direction
• the NIC copies packets into a receive queue
• it invokes an interrupt to tell the OS about new items
∘ the NIC may batch multiple packets per interrupt

• if the queue is not cleared quickly→ packet loss

425Multi-Queue Adapters
• fast adapters can saturate a CPU
∘ e.g. 10GbE cards, or multi-port GbE

• these NICs can manage multiple RX and TX queues
∘ each queue gets its own interrupt
∘ different queues→ possibly different CPU cores

426Checksum and TCP Offloading
• more advanced adapters can offload certain features
• e.g. computation of mandatory packet checksums
• but also TCP-related features
• needs both driver support and TCP/IP stack support

427WiFi
• wireless network interface – “wireless ethernet”
• shared medium – electromagnetic waves in air
• (almost) mandatory encryption
∘ otherwise easy to eavesdrop or even actively attack

• a very complex protocol (relative to hardware standards)
∘ assisted by firmware running on the adapter

428Bluetooth
• a wireless alternative to USB
• allows short-distance radio links with peripherals
∘ input (keyboard, mice, game controllers)
∘ audio (headsets, speakers)
∘ data transmission (e.g. smartphone sync)
∘ gadgets (watches, heartrate monitoring, GPS, ...)

429Review Questions
• What is memory-mapped IO and DMA?
• What is a system bus?
• What is a graphics accelerator?
• What is a NIC receive queue?

Part 8: Network Stack
In this lecture, we will look at networking from the point of view of
the operating system. We will mainly focus on the internet stack: that
is TCP/IP and related protocols and host name resolution. We will also
look at network file systems (i.e. file systems which are stored by one
computer on a network, but can be used by multiple other computers
on the same network).

431Lecture Overview
1. Networking Intro
2. The TCP/IP Stack
3. Using Networks
4. Network File Systems

We will first do a quick recap of networking terminology and of the
basic concepts in general terms. Afterwards we will look at the TCP/IP
stack more specifically, and how it matches the more general notions
introduced earlier. The next part of the lecture will focus on network-
related application programming interfaces. Finally, we will look at
file system sharing in a network environment.

Part 8.1: Networking Intro
In this section, we will mostly deal with familiar network-related con-
cepts, so that we have sufficient context down the line, when we delve
into a bit more detail and into OS-level specifics.

433Host and Domain Names
• hostname = human readable computer name
• hierarchical system, little endian: www.fi.muni.cz
• FQDN = fully-qualified domain name
• the local suffix may be omitted (ping aisa)

The first thing we need to understand is how to identify computers
within a network. The primary means to do this is via hostnames:
human-readable names, which come in two flavours: the name of the
computer itself, and a fully-qualified name, which includes the name
of the network to which the computer is connected, so to speak.

PB152 Operating Systems 61/93 July 4, 2020

434Network Addresses
• address = machine-friendly and numeric
• IPv4 address: 4 octets (bytes): 192.168.1.1
∘ the octets are ordered MSB-first (big endian)

• IPv6 address: 16 octets
• Ethernet (MAC): 6 octets, c8:5b:76:bd:6e:0b

While humans prefer to refer to computers using human-readable
names, those are not suitable for actual communication. Instead, when
computers need to refer to other computers, they use numeric ad-
dresses (just like with memory locations or disk sectors). Depending
on the protocol, the size and structure of the address may be different:
traditional IPv4 uses 4 octets, while the addresses in the newer IPv6
use up 16 (128 bits). One other type of address that you can commonly
encounter is MAC (from media access control), which is best known
from the Ethernet protocol.

435Network Types
• LAN = Local Area Network
∘ Ethernet: wired, up to 10Gb/s
∘ WiFi (802.11): wireless, up to 1Gb/s

• WAN =Wide Area Network (the Internet)
∘ PSTN, xDSL, PPPoE
∘ GSM, 2G (GPRS, EDGE), 3G (UMTS), 4G (LTE)
∘ also LAN technologies – Ethernet, WiFi

Networks are broadly categorized into two types: local area, spanning
an office, a household, maybe a building. LAN is usually a single broad-
cast domain, which means, roughly speaking, that each computer can
directly reach any other computer attached to the same LAN. The
most common technologies (layers 1 and 2) used in LANs are the wired
ethernet (themost common variety running at 1Gb/s, less common but
still mainstream at versions at 10Gb/s) and the wirelessWiFi (formally
known as IEEE 802.11).
Wide-area networks, on the other hand, span large distances and con-
nect a large number of computers. The canonicWAN is the internet, or
the network of an ISP (internet service provider). Wide area networks
often use a different set of low-level technologies.

436Networking Layers
1. Link (Ethernet, WiFi)
2. Internet / Network (IP)
3. Transport (TCP, UDP, ...)
4. Application (HTTP, SMTP, ...)

The standard model of networking (known as Open Systems Inter-
connection, or OSI for short) splits the stack into 7 layers, but TCP/IP-
centric view of networking often only distinguishes 4, as outlined
above. The link layer roughly corresponds to OSI layers 1 (physical)
and 2 (data), the internet layer is OSI layer 3, the transport layer is
OSI layer 4 and the rest (OSI layers 5 through 7) is lumped under the
application layer.
We will follow the simplified TCP/IP model, but whenever we refer to
layers by number, those are the OSI numbers, as is customary (specifi-
cally, IP is layer 3 and TCP is layer 4).

437Networking and Operating Systems
• a network stack is a standard part of an OS
• large part of the stack lives in the kernel
∘ although this only applies to monolithic kernels
∘ microkernels use user-space networking

• another chunk is in system libraries & utilities

For the last two decades or so, networking has been a standard service
provided by general-purpose operating systems. In systems with a
monolithic kernel, a significant part of the network stack (everything
up to and including the transport layer) is part of the kernel and is
exposed to user programs via the sockets API.
Additional application-layer functionality is usually available in sys-
tem libraries: most importantly domain name resolution (DNS) and
encryption (TLS, short for transport-layer security, which is confus-
ingly enough an application-layer technology).

438Kernel-Side Networking
• device drivers for networking hardware
• network and transport protocol layers
• routing and packet filtering (firewalls)
• networking-related system calls (sockets)
• network file systems (SMB, NFS)

The link layer is generally covered by device drivers and the client
and server sides of TCP/IP are exposed via the socket API. There are
additional components in TCP/IP networks, though: some of them, like
routing and packet filtering can be often done in software, and if this
is the case, they are usually implemented in the kernel. Bridging and
switching (which belong to the link layer) can be done in software too,
but is rarely practical. However, many operating systems implement
one or both to better support virtualisation.
A few application-layer network services may be implemented in the
kernel too, most notably network file systems, but sometimes also other
protocols (e.g. kernel-level HTTP acceleration).

439System Libraries
• the socket and related APIs
• host name resolution (a DNS client)
• encryption and data authentication (SSL, TLS)
• certificate handling and validation

Strictly speaking, the socket API is the domain of system libraries
(though in most monolithic kernels, the C functions will map 1:1 to
system calls; however, in microkernels, the networking stack is split
differently and system libraries are likely to pick up a bigger share of
the work).
Since nearly all network-related programs need to be able to resolve
hostnames (translate the human-readable name to an IP address), this
service is usually provided by system libraries. Likewise, encryption is
ubiquitous in themodern internet, andmost operating systems provide
an SSL/TLS stack, including certificate management.

PB152 Operating Systems 62/93 July 4, 2020

440System Utilities & Services
• network configuration (ifconfig, dhclient, dhcpd)
• route management (route, bgpd)
• diagnostics (ping, traceroute)
• packet logging and inspection (tcpdump)
• other network services (ntpd, sshd, inetd)

The last component of the network stack is located in system utilities
and services (daemons). Those are concerned with configuration (in-
cluding assigning addresses to interfaces and autoconfiguration, e.g.
DHCP or SLAAC) and route management (especially important for
software-based routers and multi-homed systems).
A suite of diagnostic tools is also usually present, at very least the ping

and traceroute programs which are useful for checking connectivity,
perhaps tools like tcpdumpwhich allow the operator to inspect packets
arriving at an interface.

441Networking Aspects
• packet format
∘ what are the units of communication

• addressing
∘ how are the sender and recipient named

• packet delivery
∘ how a message is delivered

When looking at a network protocol, there are three main aspects to
consider: the first is, what constitutes the unit of communication, i.e.
how the packets look, what information they carry and so on. The
second is addressing: how are target computers and/or programs desig-
nated. Finally, packet delivery is concerned with howmessages are de-
livered from one address to another: this could involve routing and/or
address translation (e.g. between link addresses and IP addresses).

442Protocol Nesting
• protocols run on top of each other
• this is why it is called a network stack
• higher levels make use of the lower levels
∘ HTTP uses abstractions provided by TCP
∘ TCP uses abstractions provided by IP

Since we are talking about a protocol stack, it is important to under-
stand how the individual layers of the stack interact with each other.
Each of the above aspects cuts through the stack slightly differently –
we will discuss each in a bit more detail in the following few slides.

443Packet Nesting
• higher-level packets are just data to the lower level
• an Ethernet frame can carry an IP packet in it
• the IP packet can carry a TCP packet
• the TCP packet can carry (a fragment of) an HTTP request

When we consider packet structure, it is most natural to start with the
bottom layers: the packets of the higher layers are simply data for the
lower layer. The overall packet structure looks like a matryoshka: an
ethernet frame is wrapped around an IP packet is wrapped around an
UDP packet and so on,
From the point of view of the upper layers, packet size is an impor-
tant consideration: when packet-oriented protocols are nested in other

packet-oriented protocols, it is useful if they can match their packet
sizes (most protocols have a limit on packet size). With the size limita-
tions in mind, in the view ‘from top’, a packet is handed down to the
lower layer as data, the upper layer being oblivious to the additional
framing (headers) that the lower layer adds.

444Stacked Delivery
• delivery is, in the abstract, point-to-point
∘ routing is mostly hidden from upper layers
∘ the upper layer requests delivery to an address

• lower-layer protocols are usually packet-oriented
∘ packet size mismatches can cause fragmentation

• a packet can pass through different low-level domains

When it comes to delivery, the relationships between layers are per-
haps the most complicated. In this case, the view from top to bottom is
the most appropriate, since lower layers provide delivery as a service
to the upper layer.
Since the delivery on the internet layer (OSI layers 3 and up) is usually
much wider in scope than that of the link layer, it is quite common
that a single IP packet will traverse a number of link-layer domains.

445Layers vs Addressing
• not as straightforward as packet nesting
∘ address relationships are tricky

• special protocols exist to translate addresses
∘ DNS for hostname vs IP address mapping
∘ ARP for IP vs MAC address mapping

Finally, since (packet, data) delivery is a service provided by the lower
layers to the upper layers, the upper layer must understand and pro-
vide correct lower-level addresses. The easiest way to look at this
aspect is pairwise: the link layer and the internet layer obviously need
to interact, usually through a special protocol which executes on the
link layer, but logically belongs to the internet layer, since it deals with
IP addresses.
Situation between the internet and transport layers is much simpler:
the address at the transport layer simply contains the internet layer
address as a field (e.g. a TCP address is an IP address + a port number).
Finally, the relationship between the application layer and the trans-
port layer is analogous (but not entirely the same) to the internet/link
situation. The application layer primarily uses host names to identify
computers, and uses a special protocol, known as DNS, which operates
using transport-layer addresses, but otherwise belongs to the applica-
tion layer.

446ARP (Address Resolution Protocol)
• finds the MAC that corresponds to an IP
• required to allow packet delivery
∘ IP uses the link layer to deliver its packets
∘ the link layer must be given a MAC address

• the OS builds a map of IP $→$ MAC translations

The address resolution protocol, which straddles the link/internet
boundary, enables the internet layer to deliver its packets using the
services of the link layer. Of course, to request link-layer delivery of a
packet, a link address is required, but the IP packet only contains an
IP address. The ARP protocol is used to find link addresses of IP nodes
which exist in the local network (this includes routers, which operate
on the internet layer – in other words, packets destined to leave the

PB152 Operating Systems 63/93 July 4, 2020

local network are sent to a router, using the router’s IP address, which
is translated into a link-layer address using ARP as usual).

447Ethernet
• link-level communication protocol
• largely implemented in hardware
• the OS uses a well-defined interface
∘ packet receive and submit
∘ using MAC addresses (ARP is part of the OS)

Perhaps the most common link layer protocol is ethernet. Most of the
protocol is implemented directly in hardware and the operating system
simply uses an unified interface exposed by device drivers to send and
receive ethernet frames.

448Packet Switching
• shared media are inefficient due to collisions
• ethernet is typically packet switched
∘ a switch is usually a hardware device
∘ but also in software (usually for virtualisation)
∘ physical connections form a star topology

High-speed networks are almost exclusively packet switched, that is, a
node sends packets (frames) to a switch, which has a number of phys-
ical ports and keeps track of which MAC addresses are reachable on
which physical ports. When a frame arrives to a switch, the recipient
MAC address is extracted, and the packet is forwarded to the physical
port(s) which are associated to that MAC address.

449Bridging
• bridges operate at the link layer (layer 2)
• a bridge is a two-port device
∘ each port is connected to a different LAN
∘ the bridge joins the LANs by forwarding frames

• can be done in hardware or software
∘ brctl on Linux, ifconfig on OpenBSD

Bridges are analogous to switches, with one major difference: while
the expectation for a switch is that there are many physical ports,
but each has only one MAC address attached to it (with perhaps the
exception of a special ‘uplink’ port). A bridge, on the other hand, is
optimized for the case of two physical ports, but each side will have
many MAC addresses associated with it.

450Tunneling
• tunnels are virtual layer 2 or 3 devices
• they encapsulate traffic using a higher-level protocol
• tunneling can implement Virtual Private Networks
∘ a software bridge can operate over an UDP tunnel
∘ the tunnel is usually encrypted

Tunnelling is a technique which allows lower-layer traffic to be nested
in the application layer of an existing network. The typical use case is
to tie physically distant computers into a single broadcast (link layer)
or routing (internet layer) domain.
In this case, there are two instances of the network stack: the VPN soft-
ware implements an application layer protocol running in the outer
stack, while also acting as a link-layer interface (or an internet-layer

subnet) that is bridged (routed) as if it was just another physical inter-
face.

451PPP (Point-to-Point Protocol)
• a link-layer protocol for 2-node networks
• available over many physical connections
∘ phone lines, cellular connections, DSL, Ethernet
∘ often used to connect endpoints to the ISP

• supported by most operating systems
∘ split between the kernel and system utilities

The point-to-point protocol is another somewhat important and ubiq-
uitous example of a link-layer protocol and is usually found on connec-
tions between LANs, or between a LAN and aWAN.

452Wireless
• WiFi is mostly like (slow, unreliable) Ethernet
• needs encryption since anyone can listen
• also authentication to prevent rogue connections
∘ PSK (pre-shared key), EAP / 802.11x

• encryption needs key management

Finally, WiFi is, from the point of view of the rest of the stack, es-
sentially a slow, unreliable version of ethernet, though internally, the
protocol is much more complicated.

Part 8.2: The TCP/IP Stack
In this section, we will look at the TCP/IP stack proper, and we will also
discuss DNS in a bit more detail.

454IP (Internet Protocol)
• uses 4 byte (v4) or 16 byte (v6) addresses
∘ split into network and host parts

• it is a packet-based protocol
• is a best-effort protocol
∘ packets may get lost, reordered or corrupted

IP is a low-overhead, packet-oriented protocol in wide use across the
internet and most local area networks (whether they are attached
to the internet or not). Quite importantly, its low-overhead nature
means that it does not guarantee delivery, nor the integrity of the data
it transports.

455IP Networks
• IP networks roughly correspond to LANs
∘ hosts on the same network are located with ARP
∘ remote networks are reached via routers

• a netmask splits the address into network/host parts
• IP typically runs on top of Ethernet or PPP

Within a single IP network, delivery is handled by the link layer – the
local network being identified by a common address prefix (the length
of this prefix is part of the network configuration, and is known as the
netmask).

PB152 Operating Systems 64/93 July 4, 2020

456Routing
• routers forward packets between networks
• somewhat like bridges but layer 3
• routers act as normal LAN endpoints
∘ but represent entire remote IP networks
∘ or even the entire Internet

Packets for recipients outside the local network (i.e. those which do not
share the network part of the address with the local host) are routed: a
layer 3 device, analogous to a layer 2 switch, forwards the packet to one
of its interfaces (into another link-layer domain). The routing tables
are, however, much more complex than the information maintained
by a switch, and their maintenance across the internet is outside the
scope of this subject.

457ICMP: Internet Control Message Protocol
• control messages (packets)
∘ destination host/network unreachable
∘ time to live exceeded
∘ fragmentation required

• diagnostic packets, e.g. the ping command
∘ echo request and echo reply

∘ combine with TTL for traceroute

ICMP is the ‘service protocol’ used for diagnostics, error reporting and
network management. The role of ICMP was substantially extended
with the introduction of IPv6 (e.g. to include automatic network config-
uration, via router advertisements and router solicitation packet types).
ICMP does not directly provide any services to the application layer.

458Services and TCP/UDP Port Numbers
• networks are generally used to provide services
∘ each computer can host multiple

• different services can run on different ports
• port is a 16-bit number and some are given names
∘ port 25 is SMTP, port 80 is HTTP, ...

As we have briefly mentioned earlier, transport-layer addresses have
two components: the IP address of the destination computer and a port
number, which designates a particular service or application running
on the destination node.

459TCP: Transmission Control Protocol
• a stream-oriented protocol on top of IP
• works like a pipe (transfers a byte sequence)
∘ must respect delivery order
∘ and also re-transmit lost packets

• must establish connections

The twomain transport protocols in the TCP/IP protocol family are TCP
and UDP, with the former being more common and also considerably
more complicated. Since TCP is stream-oriented and reliable, it needs
to implement the logic to slice a byte stream into individual packets (for
delivery using IP, which is packet-oriented), consistency checks (packet
checksums) and retransmission logic (in case IP packets carrying TCP
data are lost).

460TCP Connections
• the endpoints must establish a connection first
• each connection serves as a separate data stream
• a connection is bidirectional
• TCP uses a 3-way handshake: SYN, SYN/ACK, ACK

To provide stream semantics to the user, TCP must implement a mech-
anism which creates the illusion of a byte stream on top of a packet-
based foundation. This mechanism is known as a connection, and
essentially consists of some state shared by the two endpoints. To
establish this shared state, TCP uses a 3-way handshake.

461Sequence Numbers
• TCP packets carry sequence numbers
• these numbers are used to re-assemble the stream
∘ IP packets can arrive out of order

• they are also used to acknowledge reception
∘ and subsequently to manage re-transmission

Sequence numbers are part of the connection state, and allow the
byte stream to be reassembled in the correct order, even if IP packets
carrying the stream get reordered during delivery.

462Packet Loss and Re-transmission
• packets can get lost for a variety of reasons
∘ a link goes down for an extended period of time
∘ buffer overruns on routing equipment

• TCP sends acknowledgments for received packets
∘ the ACKs use sequence numbers to identify packets

Besides packet reordering, TCP also needs to deal with packet loss:
an event where an IP packet is sent, but vanishes without trace en-
route to its destination. A lost packet is detected as a gap in sequence
numbers. However, it is the sender which must learn about a lost
packet, so that it can be retransmitted: for this reason, the recipient of
the packet must acknowledge its receipt, by sending a packet back (or
more often, by piggybacking the acknowledgement on a data packet
that it would send anyway), carrying the sequence numbers of packets
that have been received.
If an acknowledgement is not received within certain time (dynami-
cally adjusted) of the sending of the original packet, the packet is sent
again (retransmitted).

463UDP: User (Unreliable) Datagram Protocol
• TCP comes with non-trivial overhead
∘ and its guarantees are not always required

• UDP is a much simpler protocol
∘ a very thin wrapper around IP
∘ with minimal overhead on top of IP

Not all applications need the comparatively strong guarantees that
TCP provides, or conversely, cannot tolerate the additional latency
introduced by the algorithms that TCP employs to ensure reliable, in-
order delivery. For those cases, UDP presents a very light-weight layer
on top of IP, essentially only adding the port number to the addresses,
and a 16-bit checksum to the packet header (which is, in its entirety,
only 64 bits long).

PB152 Operating Systems 65/93 July 4, 2020

464Firewalls
• the name comes from building construction
∘ a fire-proof barrier between parts of a building

• the idea is to separate networks from each other
∘ making attacks harder from the outside
∘ limiting damage in case of compromise

Firewall is a devicewhich separates two networks from each other, typ-
ically by acting as the (only) router between them, but also examining
the packets and dropping or rejecting them if they appear malicious, or
attempt to use services that are not supposed to be visible externally.
Often, one of these networks is the internet. Sometimes, the other
network is just a single computer.

465Packet Filtering
• packet filtering is an implementation of a firewall
• can be done on a router or at an endpoint
• dedicated routers + packet filters are more secure
∘ a single such firewall protects the entire network
∘ less opportunity for mis-configuration

Likewith other services, it usually pays off to centralize (within a single
network) the responsibility for packet filtering, reducing the admin-
istrative burden and the space for misconfigured nodes to endanger
the entire network. Of course, it is reasonable to run local firewalls on
each node, as a second line of defence.

466Packet Filter Operation
• packet filters operate on a set of rules
∘ the rules are generally operator-provided

• each incoming packet is classified using the rules
• and then dispatched accordingly
∘ may be forwarded, dropped, rejected or edited

A packet filter is, essentially, a finite state machine (perhaps with a bit
of memory for connection tracking, in which case it is a stateful packet
filter) which examines each packet and decides what action to take on
it. The specific classification rules are usually provided by the network
administrator; in simple cases, they match on source and destination
IP addresses and port numbers, and on the connection status (which
is remembered by the packet filter), for TCP packets.
After they are classified, the packets can be forwarded to their destina-
tion (as a standard router would), quietly dropped, rejected (sending an
ICMP notification to the sender) or adjusted before being sent along
(most commonly for network address translation, or NAT, the details
of which are out of scope of this subject).

467Packet Filter Examples
• packet filters are often part of the kernel
• the rule parser is a system utility
∘ it loads rules from a configuration file
∘ and sets up the kernel-side filter

• there are multiple implementations
∘ iptables, nftables in Linux
∘ pf in OpenBSD, ipfw in FreeBSD

There are usually two components to a packet filter: one is a system
utility which reads a human-readable description of the rules, and

based on those, compiles an efficient matcher for use in the kernel
component which does the actual classification.

468Name Resolution
• users do not want to remember numeric addresses
∘ phone numbers are bad enough

• host names are used instead
• can be stored in a file, e.g. /etc/hosts
∘ not very practical for more than 3 computers
∘ but there are millions of computers on the Internet

In the last part of this section, let’s have a look at hostname resolution
and the DNS protocol. What we need is a directory (a yellow pages
sort of thing), but one that can be efficiently updated (many updates
are done every hour) and also efficiently queried by computers on the
network. The systemmust be scalable enough to handlemanymillions
of names.

469DNS: Domain Name System
• hierarchical protocol for name resolution
∘ runs on top of TCP or UDP

• domain names are split into parts using dots
∘ each domain knows whom to ask for the next bit
∘ the name database is effectively distributed

Essentially, at the internet scale, we need some sort of a distributed
system (i.e. a distributed database). Unlike relational databases though,
delays in update propagation are acceptable, making the design simpler.
The name space of host names is organized hierarchically, and the
structure of DNS follows this organisation: going from right to left,
starting with the top-level domain (a single dot, often left out), one of
the DNS servers for that domain is consulted about the name immedi-
ately to the left, usually resulting in the address of another DNS server
which can get us more information. The process is repeated until the
entire name is resolved, usually resulting in an IP address of the host.

470DNS Recursion
• take www.fi.muni.cz. as an example domain
• resolution starts from the right at root servers
∘ the root servers refer us to the cz. servers
∘ the cz. servers refer us to muni.cz

∘ finally muni.cz. tells us about fi.muni.cz

The process described above is called recursion and is usually per-
formed by a special type of DNS server, which performs the recursion
on behalf of its clients and caches the results for subsequent queries.
This also means that it can, most of the time, start from the middle,
since the name servers of the one or two topmost domains are most
likely in the cache

471DNS Recursion Example

$ dig www.fi.muni.cz. A +trace

. IN NS j.root-servers.net.

cz. IN NS b.ns.nic.cz.

muni.cz. IN NS ns.muni.cz.

fi.muni.cz. IN NS aisa.fi.muni.cz.

www.fi.muni.cz. IN A 147.251.48.1

PB152 Operating Systems 66/93 July 4, 2020

To observe recursion in practice (and perform other diagnostics on
DNS), we can use the dig tool, which is part of the ISC (Internet Soft-
ware Consortium) suite of DNS-related tools.

472DNS Record Types
• A is for (IP) Address
• AAAA is for an IPv6 Address
• CNAME is for an alias
• MX is for mail servers
• and many more

Besides NS records, which tell the system whom to ask for further
information, there are many types of DNS records, each carrying dif-
ferent type of information about the name in question. Besides IPv4
and IPv6 addresses, there are free-form TXT records (which are used,
for instance, by spam filtering systems to learn about authorized mail
servers for a domain), SRV records for service discovery in local net-
works, and so on.

Part 8.3: Using Networks
In this section, we will briefly look at the socket API which allows
applications to use and provide network services (on POSIX operating
systems, that is) and at a couple examples of application-level network
services.

474Sockets Reminder
• the socket API comes from early BSD Unix
• socket represents a (possible) network connection
• you get a file descriptor for an open socket
• you can read() and write() to sockets
∘ but also sendmsg() and recvmsg()

∘ and sendto() and recvfrom()

Remember that socket is a file-like object, accessible through a file
descriptor. On connected stream sockets, programs can use the usual
read and write system calls, with semantics akin to pipes. While these
are also possible on datagram sockets, a different API is often preferred,
one of the reasons being that with read, it is impossible to distinguish
datagrams coming from different sources.
The system calls sendto, recvfrom allow the program to specify (or learn,
in case of recvfrom) the address of the recipient (sender) of the packet.

475Socket Types
• sockets can be internet or unix domain
∘ internet sockets work across networks

• stream sockets are like files
∘ you can write a continuous stream of data
∘ usually implemented using TCP

• datagram sockets send individual messages
∘ usually implemented using UDP

Communication on IP networks is done using internet sockets (with
domain set to AF_INET or AF_INET6). If the socket is a stream socket (it’s
type is SOCK_DGRAM) the communication is executed using TCP (stream-
type sockets must be explicitly connected by a call to the connect or
accept system call, which in case of internet sockets perform the TCP
handshake).
Datagram sockets (type set to SOCK_DGRAM) may be optionally ‘connected’,
though this only sets up a default destination for datagrams to be sent

to. Communication is performed using UDP.

476Creating Sockets
• a socket is created using the socket() function
• it can be turned into a server using listen()

∘ individual connections are established with accept()

• or into a client using connect()

All types of sockets are created using the socket system call, and spe-
cialize into server and client sockets based on the subsequent API calls
performed on them. A server socket is obtained through listen and
bind, while a client socket is obtained using connect. The server then
repeatedly calls acceptwhich returns a new file descriptor which then
represents the TCP connection.

477Resolver API
• libc contains a resolver
∘ available as gethostbyname (and getaddrinfo)
∘ also gethostbyaddr for reverse lookups

• can look in many different places
∘ most systems support at least /etc/hosts
∘ and DNS-based lookups

The socket API only deals with numeric IP addresses. If an application
needs to be able to connect to computers using their host names, it
needs to use the resolver API which, behind the scenes, uses the appro-
priate database or protocol to find the corresponding IP addresses. The
exact sequence of steps depends on system configuration, but usually
the resolver consults the /etc/hosts file and a recursive DNS server
(the IP address of which is again part of system configuration).

478Network Services
• servers listen on a socket for incoming connections
∘ a client actively establishes a connection to a server

• the network simply transfers data between them
• interpretation of the data is a layer 7 issue
∘ could be commands, file transfers, ...

Most network services operate in a client-server regime, on top of TCP:
a server passively awaits connections on a particular transport-layer
address (i.e. an IP address coupled with a port number). The client, on
the other hand, actively connects to a listening server, establishing a
bidirectional channel (the TCP connection) between them. From that
point on, the network stack simply transfers data across that channel.
The data usually conforms to some application-level protocol (SMTP,
HTTP, ...) though it does not need to be standardized or well-known.

479Network Service Examples
• (secure) remote shell – sshd

• the internet email suite
∘ MTA =Mail Transfer Agent, speaks SMTP
∘ SMTP = Simple Mail-Transfer Protocol

• the world wide web
∘ web servers provide content (files)
∘ clients and servers speak HTTP and HTTPS

PB152 Operating Systems 67/93 July 4, 2020

480Client Software
• the ssh command uses the SSH protocol
∘ a very useful system utility on virtually all UNIXes

• web browser is the client for world wide web
∘ browsers are complex application programs
∘ some of them bigger than even operating systems

• email client is also known as a MUA (Mail User Agent)

Part 8.4: Network File Systems
We have learned earlier that file systems are an important, ubiquitous
abstraction. It is only natural to allow a file system to be accessed
remotely (from another computer) using the API that is used for local
access, making the ‘network’ part almost entirely transparent to the
program.

482Why Network Filesystems?
• copying files back and forth is impractical
∘ and also error-prone (which is the latest version?)

• how about storing data in a central location
• and sharing it with all the computers on the LAN

Perhaps the most compelling case for network file systems arises from
the need to make workstations (desktop computers) at an institution
fungible: that is, allow any user to log in onto any of the available
workstations and immediately have all their data and settings at hand.

483NAS (Network-Attached Storage)
• a (small) computer dedicated to storing files
• usually running a cut down operating system
∘ often based on Linux or FreeBSD

• provides file access to the network
• sometimes additional app-level services
∘ e.g. photo management, media streaming, ...

Another use case comes from the desire to store data which is shared
by multiple users on a central device, where it is easy to back up and
accessible from all computers (and hence by all users, even when some
of the other computers are powered down).

484NFS (Network File System)
• the traditional UNIX networked filesystem
• hooked quite deep into the kernel
∘ assumes generally reliable network (LAN)

• filesystems are exported for use over NFS
• the client side mounts the NFS-exported volume

NFS is one of the first implementations of a network file system. It is
based, essentially, on hooking up the VFS interface and exporting it
over a remote procedure call interface to other kernels on the network.
To create an NFS share, the local file system must be exported on the
would-be NFS server; afterwards, it can bemounted by clients, making
the share part of their local file system hierarchy.

485NFS History
• originated in Sun Microsystems in the 80s
• v2 implemented in System V, DOS, ...
• v3 appeared in ’95 and is still in use
• v4 arrives in 2000, improving security

Network file system is a rather old technology (nearly 40 years old),
but it has seen significant evolution over the first 20 or so years, with
version 4 mainly addressing security concerns.

486VFS Reminder
• implementation mechanism for multiple FS types
• an object-oriented approach
∘ open: look up the file for access
∘ read, write – self-explanatory
∘ rename: rename a file or directory

Recall, from lecture 4, that VFS (virtual file system switch) is a mecha-
nism inside the kernel that allowsmultiple file system implementations
to present a unified interface to the rest of the kernel. NFS takes advan-
tage of this existing interface and makes it available over the network.
Of course, unlike VFS itself, the semantics of the NFS functions is stan-
dardized across implementations (NFS clients and servers are mostly
compatible across different UNIX-like operating systems).

487RPC (Remote Procedure Call)
• any protocol for calling functions on remote hosts
∘ ONC-RPC = Open Network Computing RPC
∘ NFS is based on ONC-RPC (also known as Sun RPC)

• NFS basically runs VFS operations using RPC
∘ easy to implement on UNIX-like systems

The way the NFS interface is exposed to the network is via a remote
procedure call mechanism, which essentially takes a procedure call
(the name of the function, along with the arguments that it should
be called with), packs them into a byte string and sends it over the
network to another computer, which then actually performs the call
and sends the result back. The protocol has a mechanism to send data
buffers, in addition to primitive values (integers).

488Port Mapper
• ONC-RPC is executed over TCP or UDP
∘ but it is more dynamic wrt. available services

• TCP/UDP port numbers are assigned on demand
• portmap translates from RPC services to port numbers
∘ the port mapper itself listens on port 111

In modern systems, ONC-RPC is implemented exclusively on top of
the TCP/IP stack. Since the protocol can expose multiple services on
each machine, the need arises to translate between those RPC services
and TCP/UDP port numbers. In most cases, an RPC service called
‘portmapper’ takes care of this need, itself running on a fixed port
(number 111).

PB152 Operating Systems 68/93 July 4, 2020

489The NFS Daemon
• also known as nfsd
• provides NFS access to a local file system
• can run as a system service
• or it can be part of the kernel
∘ this is more typical for performance reasons

Given an RPC stack, NFS is provided by an nfsd, which registers itself
as a service with the RPC stack. The daemon can be a proper, user-
space daemon, but it can also be part of the kernel (running as a kernel
thread).

490SMB (Server Message Block)
• a network file system fromMicrosoft
• available in Windows since version 3.1 (1992)
∘ originally ran on top of NetBIOS
∘ later versions used TCP/IP

• SMB1 accumulated a lot of cruft and complexity

SMB is a completely different implementation of a network trans-
parency layer for file systems. Like NFS, it is not tied to a particular
on-disk format. SMB sawmany incremental changes with each new
Microsoft operating system that came along, while at the same time it

was kept backward compatible, so that older operating systems could
interoperate, both as clients and as servers. This made the protocol
extremely complicated, making further extensions impractical.

491SMB 2.0
• simpler than SMB1 due to fewer retrofits and compat
• better performance and security
• support for symbolic links
• available since Windows Vista (2006)

Microsoft designed a new protocol for networked filesystems in their
Windows Vista operating system, under the name SMB 2.0. Like
NFSv4 a few years earlier, SMB 2 addressed many of the security
weaknesses of its predecessor, while also improving performance and
extending the protocol to support new file system features, such as
symlinks.

492Review Questions
• What is ARP (Address Resolution Protocol)?
• What is IP (Internet Protocol)?
• What is TCP (Transmission Control Protocol)?
• What is DNS (Domain Name Service)?

Part 9: Shells & User Interfaces
This lecture will focus on human-computer interaction and the role
of an operating system in this area. We will look at both text-based
interaction modes (mainly command-line interfaces, i.e. shells) and at
graphical interfaces, driven by a pointing device (mouse, trackpad) or
a touch screen.

494Lecture Overview
1. Command Interpreters
2. The Command Line
3. Graphical Interfaces

The first part will focus on shell as a simple programming language,
while in the secondwewill briefly look at terminals (or rather terminal
emulators), interactive use of shell and at other text-mode programs.
Finally, the third part will be about graphical interfaces and how they
are built.

Part 9.1: Command Interpreters

496Shell
• programming language centered on OS interaction
• rudimentary control flow
• untyped, text-centered variables
• dubious error handling

497Interactive Shells
• almost all shells have an interactive mode
• the user inputs a single statement on keyboard
• when confirmed, it is immediately executed
• this forms the basis of command-line interfaces

498Shell Scripts
• a shell script is an (executable) file
• in simplest form, it is a sequence of commands
∘ each command goes on a separate line
∘ executing a script is about the same as typing it

• but can use structured programming constructs

499Shell Upsides
• very easy to write simple scripts
• first choice for simple automation
• often useful to save repetitive typing
• definitely not good for big programs

PB152 Operating Systems 69/93 July 4, 2020

500Bourne Shell
• a specific language in the “shell” family
• the first shell with consistent programming support
∘ available since 1976

• still widely used today
∘ best known implementation is bash
∘ /bin/sh is mandated by POSIX

The name bash stands for Bourne Again Shell (bad puns should be a
human right).

501C Shell
• also known as csh, first released in 1978
• more C-like syntax than sh (Bourne Shell)
∘ but not really very C-like at all

• improved interactive mode (over sh from ’76)
• also still used today (tcsh)

502Korn Shell
• also known as ksh, released in 1983
• middle ground between sh and csh

• basis of the POSIX.2 requirements
• a number of implementations exist

503Commands
• typically a name of an executable
∘ may also be control flow or a built-in

• the executable is looked up in the filesystem
• the shell does a fork + exec

∘ this means new process for each command
∘ process creation is fairly expensive

504Built-in Commands
• cd change the working directory
• export for setting up environment
• echo print a message
• exec replace the shell process (no fork)

505Variables
• variable names are made of letters and digits
• using variables is indicated with $

• setting variables does not use the $

• all variables are global (except subshells)

VARIABLE="some text"

echo $VARIABLE

506Variable Substitution
• variables are substituted as text
• $foo is simply replaced with the content of foo
• arithmetic is not well supported in most shells
∘ or any expression syntax, e.g. relational operators
∘ consider z=$(($x + $y)) for addition in bash

507Command Substitution
• basically like variable substitution
• written as `command` or $(command)
∘ first executes the command
∘ and captures its standard output
∘ then replaces $(command)with the output

508Quoting
• whitespace is an argument separator in shell
• multi-word arguments must be quoted
• quotes can be double quotes "x" or single 'x'

∘ double quotes allow variable substitution

509Quoting and Substitution
• whitespace from variable substitution must be quoted
∘ foo="hello world"

∘ ls $foo is different than ls "$foo"

• bad quoting is a very common source of bugs
• consider also filenames with spaces in them

The first command, ls $foo will expand into ls hello world and exe-
cute with argv[1] = "hello" and argv[2] = "world", in effect looking
for two separate files. The latter, ls "$foo", will be executed with
argv[1] = "hello world"’.

510Special Variables
• $? is the result of last command
• $$ is the PID of the current shell
• $1 through $9 are positional parameters
∘ $# is the number of parameters

• $0 is the name of the shell – argv[0]

511Environment
• is like shell variables but not the same
• the environment is passed to all executed programs
∘ a child cannot modify environment of its parent

• variables are moved into the environment by export

• environment variables often act as settings

PB152 Operating Systems 70/93 July 4, 2020

512Important Environment Variables
• $PATH tells the system where to find programs
• $HOME is the home directory of the current user
• $EDITOR and $VISUAL set which text editor to use
• $EMAIL is the email address of the current user
• $PWD is the current working directory

513Globbing
• patterns for quickly listing multiple files
• e.g. ls *.c shows all files ending in .c

• *matches any number of characters
• ? matches one arbitrary character
• works on entire paths – ls src/*/*.c

514Conditionals
• allows conditional execution of commands
• if cond; then cmd1; else cmd2; fi

• also elif cond2; then cmd3; fi

• cond is also a command (the exit code is used)

515
test (evaluating boolean expressions)

• originally an external program, also known as [
∘ nowadays built-in in most shells
∘ works around lack of expressions in shell

• evaluates its arguments and returns true or false
∘ can be used with if and while constructs

516
test Examples

• test file1 -nt file2→ ’nt’ = newer than
• test 32 -gt 14→ ’gt’ = greater than
• test foo = bar→ string equality
• combines with variable substitution (test $y = x)

517Loops
• while cond; do cmd; done

∘ cond is a command, like in if

• for i in 1 2 3 4; do cmd; done

∘ allows globs: for f in *.c; do cmd; done

∘ also command substitution
∘ for f in `seq 1 10`; do cmd; done

518Case Analysis
• selects a command based on pattern matching
• case $x in *.c) cc $x;; *) ls $x;; esac

∘ yes, case really uses unbalanced parens
∘ the ;; indicates end of a case

519Command Chaining
• ; (semicolon): run two commands in sequence
• && run the second command if the first succeeded
• || run the second command if the first failed
• e.g. compile and run: cc file.c && ./a.out

520Pipes
• shells can run pipelines of commands
• cmd1 | cmd2 | cmd3

∘ all commands are run in parallel
∘ output of cmd1 becomes input of cmd2
∘ output of cmd2 is processed by cmd3

echo hello world | sed -e s,hello,goodbye,

521Functions
• you can also define functions in shell
• mostly a light-weight alternative to scripts
∘ no need to export variables
∘ but cannot be invoked by non-shell programs

• functions can also set variables

Recall that the environment is only passed down, never back up. This
means that a shell script setting a variable will not affect the parent
shell. In functions (and when scripts are invoked using .), variables
can be set as normal.

Part 9.2: The Command Line

523Interactive Shell
• the shell displays a prompt and waits
• the user types in a command and hits enter
• the command is executed immediately
• output is printed to the terminal

524Command Completion
• most shells let you use TAB to auto-complete
∘ works at least for command names and file names
∘ but “smart completion” is common

• interactive history: hit “up” to recall a command
∘ also interactive history search, e.g. C-r in bash

525Prompt
• the string printed when shell expects a command
• controlled by the PS1 environment variable
• usually shows your username and the hostname
• or working directory, battery status, time, weather, ...

PB152 Operating Systems 71/93 July 4, 2020

526Job Control
• only one program can run in the foreground (terminal)
• but a running program can be suspended (C-z)
• and resumed in background (bg) or in foreground (fg)
• use & to run a command in background: ./spambot &

527Terminal
• can print text and read text from a keyboard
• normally everything is printed on the last line
• the text could contain escape (control) sequences
∘ for printing colourful text or clearing the screen
∘ also for printing text at a specific coordinate

Older text scrolls upwards: this is the mode used in normal shell usage.
This scrollback behaviour is automatic in the terminal. Full-screen
terminal applications (which use coordinate-based printing) will not
use the capability.
Terminal (emulator) is typically a program these days, but used to be a
dedicated piece of hardware.

528Full-Screen Terminal Apps
• applications can use the entire terminal screen
• a library abstracts away the low-level control sequences
∘ the library is called ncurses for new curses

∘ different terminals use different control sequences
• special characters exist to draw frames and separators

529UNIX Text Editors
• sed – stream editor, non-interactive
• ed – line oriented, interactive
• vi – visual, screen oriented
• ex – line-oriented mode of vi

530TUI: Text User Interface
• the program draws a 2D interface on a terminal
• these types of interfaces can be quite comfortable
• they are often easier to program than GUIs
• very low bandwidth requirements for remote use

Part 9.3: Graphical Interfaces

532Windowing Systems
• each application runs in its own window
∘ or possibly multiple windows

• multiple applications can be shown on screen
• windows can be moved around, resized &c.
∘ facilitated by frames around window content
∘ generally known as window management

533Window-less Systems
• especially popular on smaller screens
• applications take the entire screen
∘ give or take status or control widgets

• task switching via a dedicated screen

534A GUI Stack
• graphics card driver, mode setting
• drawing/painting (usually hardware-accelerated)
• multiplexing (e.g. using windows)
• widgets: buttons, labels, lists, ...
• layout: what goes where on the screen

535Well-known GUI Stacks
• Windows
• macOS, iOS
• X11
• Wayland
• Android

536Portability
• GUI “toolkits” make portability easy
∘ Qt, GTK, Swing, HTML5+CSS, ...
∘ many of them run on all major platforms

• code portability is not the only issue
∘ GUIs come with look and feel guidelines
∘ portable applications may fail to fit

537Text Rendering
• a surprisingly complex task
• unlike terminals, GUIs use variable pitch fonts
∘ brings up issues like kerning
∘ hard to predict pixel width of a line

• bad interaction with printing (cf. WYSIWIG)

538Bitmap Fonts
• characters are represented as pixel arrays
∘ usually just black and white

• traditionally pixel-drawn by hand
∘ very time consuming (many letters, sizes, variants)

• the result is sharp but jagged (not smooth)

539Outline Fonts
• Type1, TrueType – based on splines
• they can be scaled to arbitrary pixel sizes
• same font can be used for screen and for print
• rasterisation is usually done in software

PB152 Operating Systems 72/93 July 4, 2020

540Hinting, Anti-Aliasing
• screens are low resolution devices
∘ typical HD displays have DPI around 100
∘ laser printers have DPI of 300 or more

• hinting: deform outlines to better fit a pixel grid
• anti-aliasing: smooth outlines using grayscale

541X11 (XWindow System)
• a traditional UNIX windowing system
• provides a C API (xlib)
• built-in network transparency (socket-based)
• core protocol version 11 from 1987

542X11 Architecture
• X server provides graphics and input
• X client is an application that uses X
• a window manager is a (special) client
• a compositor is another special client

543Remote Displays
• application is running on computer A
• the display is not the console of A
∘ could be a dedicated graphical terminal
∘ could be another computer on a LAN
∘ or even across the internet

544Remote Display Protocols
• one approach is pushing pixels
∘ VNC (Virtual Network Computing)

• X11 uses a custom drawing protocol
• others use high-level abstractions
∘ NeWS (PostScript-based)
∘ HTML5 + JavaScript

545VNC (Virtual Network Computing)
• sends compressed pixel data over the wire
∘ can leverage regularities in pixel data
∘ can send incremental updates

• and input events in the other direction
• no support for peripherals or file sync

Basically the only virtue of VNC is simplicity. Security is an after-
thought and not super-compatible across implementations. It is mainly
designed for low-bandwidth, high-latency networks (i.e. the Internet).

546RDP (Remote Desktop Protocol)
• more sophisticated than VNC (but proprietary)
• can also send drawing commands over the wire
∘ like X11, but using DirectX drawing
∘ also allows remote OpenGL

• support for audio, remote USB &c.

RDP is primarily based on the pixel-pushing paradigm, but there is a
number of extensions that allow sending high-level rendering com-
mands for local, hardware-accelerated processing. In some setups, this
includes remote accelerated OpenGL and/or Direct3D.

547SPICE
• Simple Protocol for Independent Computing Env.
• open protocol somewhere between VNC and RDP
• can send OpenGL (but only over a local socket)
• two-way audio, USB, clipboard integration
• still mainly based on pushing (compressed) pixels

548Remote Desktop Security
• the user needs to be authenticated over network
∘ passwords are easy, biometric data less so

• the data stream should be encrypted
∘ not part of the X11 or NeWS protocols
∘ or even HTTP by default (used for HTML5/JS)

For instance, RDP inWindows 10 does not support fingerprint logins
(it was supported on earlier versions, but was disabled due to security
flaws).

549Review Questions
• What is a shell?
• What does variable substitution mean?
• What is an environment variable?
• What belongs into the GUI stack?

Part 10: Access Control
This lecture will focus on basic security considerations in an operating
system, with focus on file systems, which are typically the most visible
instance of access control in an OS.

551Lecture Overview
1. Multi-User Systems
2. File Systems
3. Sub-user Granularity

PB152 Operating Systems 73/93 July 4, 2020

Wewill first look at the motivation and implementation of users, the
basic unit of ownership and access control in an operating system. We
will also look at some consequences and some applications of multi-
user computing, and discuss how access control is implemented and
enforced. In the second part, we will focus on the canonical case study
in access control: file systems. Finally, the last part will explore what
happens when per-user access control is not sufficient and we need a
more granular permission system.

Part 10.1: Multi-User Systems
Multi-user systems had been the norm until the rise of personal com-
puters circa mid-80s: earlier computers were too expensive and too
bulky to be allocated to a single person. Instead, earlier systems used
some form of multi-tenancy, whether implemented administratively
(batch systems) or by the operating system (interactive, terminal-based
computers).

553Users
• originally a proxy for people
• currently a more general abstraction
• user is the unit of ownership
• many permissions are user-centered

The concept of a user has evolved from the need to keep separate ac-
counts for distinct people (the eponymous users of the system). In
modern systems, a user continues to be an abstraction that includes ac-
counts for individual humans, but also covers other needs. Essentially,
user is a unit of ownership, and of access control.

554Computer Sharing
• computer is a (often costly) resource
• efficiency of use is a concern
∘ a single user rarely exploits a computer fully

• data sharing makes access control a necessity

While efficient resource usage is what drove multi-tenancy of com-
puter systems, it is the global shared file system that drove the require-
ment for access control: users do not necessarily wish to trust all other
users of the system with access to their files.

555Ownership
• various objects in an OS can be owned
∘ primarily files and processes

• the owner is typically whoever created the object
∘ though ownership can be transferred
∘ restrictions usually apply

The standard model of access control in operating systems revolves
around ownership of objects. Generally speaking, ownership of an
object confers both rights (to manipulate the object) and obligations
(owned objects count towards quotas). Depending on circumstances,
object ownership may be transferred, either by the original owner, or
by system administrators.

556Process Ownership
• each process belongs to some user
• the process acts on behalf of the user
∘ the process gets the same privilege as its owner
∘ this both constrains and empowers the process

• processes are active participants

The perhaps most important ownership relationship is between users
and their processes. This is because processes execute code on behalf
of the user, and all actions a user takes on a system are mediated by
some process or another. In this sense, processes act on behalf of their
owner and the actions they perform are subject to any restrictions
which apply to the user in question.

557File Ownership
• each file also belongs to some user
• this gives rights to the user (or rather their processes)
∘ they can read and write the file
∘ they can change permissions or ownership

• files are passive participants

Like processes, files are objects which are subject to ownership. How-
ever, unlike processes, files are passive: they do not perform any ac-
tions. Hence in this case, ownership simply gives the owner certain
rights to perform actions on the file (most importantly change access
control rights pertaining to to that file).

558Access Control Models
• owners usually decide who can access their objects
∘ this is known as discretionary access control

• in high-security environments, this is not allowed
∘ known as mandatory access control
∘ a central authority decides the policy

There are two main approaches to access control: the common discre-
tionary model, where owners decide who can interact with their files
(or other objects, as applicable) and mandatory, in which users are not
trusted with matters of security, and decisions about access control
are placed in the hands of a central authority.
In both cases, the operating system grants (or denies) access to object
based on an access control policy: however, only in the latter case this
policy can be thought of as a coherent, self-contained document (as
opposed to a collection of rules decided by a number of uncoordinated
users).

559(Virtual) System Users
• users are an useful ownership abstraction
• various system services get their own ‘fake’ users
• this allows them to own files and processes
• and also limit their access to the rest of the OS

Users have turned out to be a really useful abstraction. It is common
practice that services (whether system- or application-level) run under
special users of their own. This means that these service can own
files and other resources, and run processes under their own identity.
Additionally, it means that those services can be restricted using the
same mechanisms that apply to ‘normal’ users.

PB152 Operating Systems 74/93 July 4, 2020

560Principle of Least Privilege
• entities should have minimum privilege required
∘ applies to software components
∘ but also to human users of the system

• this limits the scope of mistakes
∘ and also of security compromises

The principle of least privilege is an important maxim for designing
secure systems: it tells us that, regardless of the subject and object com-
bination, permissions should only be granted where there is genuine
need for the subject to manipulate the particular object. The rationale
is that mistakes happen, andwhen they do, wewould rather limit their
scope (and hence damage): mistakes cannot endanger objects which
are inaccessible to the culprit.

561Privilege Separation
• different parts of a system need different privilege
• least privilege dictates splitting the system
∘ components are isolated from each other
∘ they are given only the rights they need

• components communicate using very simple IPC

An important corollary of the principle of least privilege is the design
pattern known as privilege separation. Systems which follow it are
split into a number of independent components, each serving a small,
well-defined and security-wise self-contained function. Each of these
modules can be then isolated in their own little sandbox and communi-
cate with the rest of the system through narrowly defined interfaces
(usually built on some for of inter-process communication).

562Process Separation
• recall that each process runs in its own address space
∘ shared memory must be explicitly requested

• each user has a view of the filesystem
∘ a lot more is shared by default in the filesystem
∘ especially the namespace (directory hierarchy)

There is not much need for access control of memory: each process
has their own and cannot see the memory of any other process (with
small, controlled exceptions created through mutual consent of the
two processes).
The file system is, however, very different: there is a global, shared
namespace that is visible to all users and all processes. Moreover, many
of the objects (files) are meant to be shared, in a rather ad-hoc fash-
ion, either through ‘well-known’ paths (this being the case with many
system files) or through passing paths around. Importantly, paths are
not any sort of access token and in almost all circumstances, withhold-
ing a path does not prevent access to the object (paths can be easily
discovered).

563Access Control Policy
• there are 3 pieces of information
∘ the subject (user)
∘ the action/verb (what is to be done)
∘ the object (the file or other resource)

• there are many ways to encode this information

We have mentioned earlier, that the totality of the rules that decide

which actions are allowed, andwhich disallowed, is known as an access
control policy. In the abstract, it is a rulebookwhich answers questions
of the form ‘Is (subject) allowed to perform (action) on (object)?’ There
are clearlymany differentways inwhich this rulebook can be encoded:
we will look at some of the most common strategies later.

564Access Rights Subjects
• in a typical OS those are (possibly virtual) users
∘ sub-user units are possible (e.g. programs)
∘ roles and groups could also be subjects

• the subject must be named (names, identifiers)
∘ easy on a single system, hard in a network

The most common access control subject (at least when it comes to ac-
cess policy specification), are, as was already hinted at, users, whether
‘real’ (those that stand in for people) or virtual (which stand for ser-
vices).
In most circumstances, it must be possible to name the subjects, so that
it’s possible to refer to them in rules. Sometimes, however, rules can be
directly attached to subjects, in which case there is no need for these
subjects to have stable identifiers attached.

565Access Rights Actions (Verbs)
• the available ‘verbs’ (actions) depend on object type
• a typical object would be a file
∘ files can be read, written, executed
∘ directories can be searched or listed or changed

• network connections can be established &c.

The particular choice of actions depends on the object type: each such
type has a fixed list of actions, which correspond to operations, or
variants of operations, that the operating system offers through its
interfaces.
The actions may be affected the policy directly or indirectly – for in-
stance, the read permission on a file is not enforced at the time a read

call is performed: instead, it is checked at the time of open, with the
provision that read can be only used on file descriptors that are open
for reading. That is, the program is required to indicate, at the time of
open, whether it wishes to read from the file.

566Access Rights Objects
• anything that can be manipulated by programs
∘ although not everything is subject to access control

• could be files, directories, sockets, shared memory, ...
• object names depend on their type
∘ file paths, i-node numbers, IP addresses, ...

Like subjects, objects need to have names unless the pieces of policy
relevant to them are directly attached to the objects themselves. How-
ever, in case of objects, this direct attachment is much more common:
it is rather typical that an i-node embeds permission information.

567Subjects in POSIX
• there are 2 types of subjects: users and groups
• each user can belong to multiple groups
• users are split into normal users and root

∘ root is also known as the super-user

PB152 Operating Systems 75/93 July 4, 2020

In POSIX systems, there are two basic types of subjects that can appear
in the access control policy: users and groups. Since POSIX only covers
access control for the file system, objects do not need to be named:
their permissions are attached to the i-node.
A special user, known as root, represents the system administrator
(also known as the super-user). This account is not subject to permis-
sion checking. Additionally, there is a number of actions (usually not
attached to particular objects) which only the root user can perform
(e.g. reboot the computer).

568User and Group Identifiers
• users and groups are represented as numbers
∘ this improves efficiency of many operations
∘ the numbers are called uid and gid

• those numbers are valid on a single computer
∘ or at most, a local network

In the access control policy, users and groups are identified by numbers
(each user and each group getting a small, locally unique integer). Since
these identifiers have a fixed size, they can be stored very compactly
in i-nodes, and can be also very efficiently compared, both of which
have been historically important considerations. Besides efficiency,
the numeric identifiers also make the layout of data structures which
carry them simpler, reducing scope for bugs.

569User Management
• the system needs a database of users
• in a network, user identities often need to be shared
• could be as simple as a text file
∘ /etc/passwd and /etc/group on UNIX systems

• or as complex as a distributed database

The user database serves two basic roles: it tells the systemwhich users
are authorized to access the system (more on this later), and it maps
between human-readable user names and the numeric identifiers that
the system uses internally,
In local networks, it is often desirable that all computers have the same
idea about who the users are, and that they use the same mapping
between their names and id’s. LDAP and Active Directory are popular
choices for centralised network-level user databases.

570Changing Identities
• each process belongs to a particular user
• ownership is inherited across fork()
• super-user processes can use setuid()

• exec() can sometimes change a process owner

Recall that all processes are created using the fork system call, with
the exception of init. When a process forks, the child process inherits
the ownership of the parent, that is, it belongs to the same user as the
parent does (whose ownership is not affected by fork).
However, if a process is owned by the super-user, it can change its
owner by using the setuid system call. Additionally, exec can some-
times change the owner of the process, via the so-called setuid bit
(not to be confused with the system call of the same name). The init

process is owned by the super-user.

571Login
• a super-user process manages user logins
• the user types in their name and password
∘ the login program authenticates the user
∘ then calls setuid() to change the process owner
∘ and uses exec() to start a shell for the user

You may recall that at the end of the boot process, a login process is
executed to allow users to authenticate themselves and start a session.
The traditional implementation of loginfirst asks the user for their user
name and password, which it checks against the user database. If the
credentials match, the login program sets up the basic environment,
changes the owner of the process to the user who just authenticated
themselves and executes their preferred shell (as configured in the
user database).

572User Authentication
• the user needs to authenticate themselves
• passwords are the most commonly used method
∘ the system needs to recognize the right password
∘ user should be able to change their password

• biometric methods are also quite popular

By far, themost commonmethod of authenticating users (that is, ascer-
taining that they are who they claim they are) is by asking for a secret –
a password or a passphrase. The idea is that only the legitimate owner
of the account in question knows this secret.
In an ideal case, the system does not store the password itself (in case
the password database is compromised), but stores instead information
that can be used to check that a password that the user typed in is
correct. The usual way this is done is via (salted) cryptographic hash
functions.
Besides passwords, other authentication methods exist, most notably
cryptographic tokens and biometrics.

573Remote Login
• authentication over network is more complicated
• passwords are easiest, but not easy
∘ encryption is needed to safely transmit passwords
∘ along with computer authentication

• 2-factor authentication is a popular improvement

While password is simply short string that can be quite easily sent
across a network, there are caveats. First, the network itself is often in-
secure, and the password could be snooped by an attacker. This means
we need to use cryptography to transmit the password, or otherwise
prove its knowledge.
The other problem is, in case we send an encrypted password, that the
computer at the other end may not be the one we expect (i.e. it could
belong to an attacker).
Since the user is not required to by physically present to attempt au-
thenticating, this significantly increases the risk of attacks, making
strong passwords much more important. Besides strong passwords,
security can be improved by 2-factor authentication (more on this
shortly).

PB152 Operating Systems 76/93 July 4, 2020

574Computer Authentication
• how to ensure we send the password to the right party?
∘ an attacker could impersonate our remote computer

• usually via asymmetric cryptography
∘ a private key can be used to sign messages
∘ the server signs a challenge to establish its identity

When interacting with a remote computer (via a network), it is rather
important to ensure that we communicate with the computer that we
intended to. While the most immediate concern is sending passwords,
of course this is not the only concern: accidentally uploading secret
data to the wrong computer would be as bad, if not worse.
A common approach, then, is that each computer gets a unique private
key, while its public counterpart (or at least its fingerprint) is distrib-
uted to other computers. When connecting, the client can generate a
random challenge, and ask the remote computer to sign in using the
secret key associated to the computer that we intended to contact, in
order to prove its identity. Unless the target computer itself has been
compromised, an attacker will be unable to produce a valid signature
and will be foiled.

5752-factor Authentication
• 2 different types of authentication
∘ harder to spoof both at the same time

• there are a few factors to pick from
∘ something the user knows (password)
∘ something the user has (keys, tokens)
∘ what the user is (biometric)

Two-factor (or multi-factor) authentication is popular for remote au-
thentication (as outlined earlier), since networks make attacks much
cheaper and more frequent. In this case, the first factor is usually a
password, and the second factor is a cryptographic token – a small
device (often in the form of a keychain) which generates a unique
sequence of codes, one of which the user transcribes to prove owner-
ship of the token. Remote biometric authentication is somewhat less
practical (though not impossible).
Of course, two-factor authentication can be used locally too, in which
case biometrics become considerably more attractive. Cryptographic
tokens or smart cards are also common, though in the local case, they
usually communicate with the computer directly, instead of relying
on the user to copy a code.

576Enforcement: Hardware
• all enforcement begins with the hardware
∘ the CPU provides a privileged mode for the kernel
∘ DMAmemory and IO instructions are protected

• the MMU allows the kernel to isolate processes
∘ and protect its own integrity

Now that we have an access control policy andwe have established the
identity of the user, there is one last thing that needs to be addressed,
and that is enforcement of the policy. Of course, an access control
policy is useless if it can be circumvented.
The ability of an operating system to enforce security stems from hard-
ware facilities: software alone cannot sufficiently constrain other soft-
ware running on the same computer. The main tool that allows the
kernel to enforce its security policy is the MMU (and the fact that only
the kernel can program it) and its control over interrupt handlers.

577Enforcement: Kernel
• kernel uses hardware facilities to implement security
∘ it stands between resources and processes
∘ access is mediated through system calls

• file systems are part of the kernel
• user and group abstractions are part of the kernel

Hardware resources are controlled by the kernel: memory via the
MMU, processors via the timer interrupt, memory-mapped peripher-
als again through the MMU and through the interrupt handler table.
Since user programs cannot directly access physical resources, any
interaction with them must go through the kernel (via system calls),
presenting an opportunity for the kernel to check the requested actions
against the policy.

578Enforcement: System Calls
• the kernel acts as an arbitrator
• a process is trapped in its own address space
• processes use system calls to access resources
∘ kernel can decide what to allow
∘ based on its access control model and policy

When a system call is executed, the kernel knows the owner of that
process, and also any objects involved in the system call. Armed with
this knowledge, it can easily consult the access control policy to decide
whether the requested action is allowed, and if it is not, return an error
to the process, instead of performing the action.

579Enforcement: Service APIs
• userland processes can enforce access control
∘ usually system services which provide IPC API

• e.g. via the getpeereid() system call
∘ tells the caller which user is connected to a socket
∘ user-level access control relies on kernel facilities

Just as the kernel sits on resources that user programs cannot directly
access, the same can principle can be applied in userspace programs,
especially services.
Probably the most illustrative example is a relational database: the
database engine runs under a dedicated (virtual) user and stores its
data in a collection of files. The permissions on those files are set such
that only the owner can read or write them – hence, the kernel will
disallow any other process from interacting with those files directly.
Nonetheless, the database system can selectively allow other programs
to interact with the data it stores: the programs connect to a database
server using a UNIX socket. At this point, the database can ask the
operating system to provide the user identifier under which the client
is running (using getpeereid).
Since the server can directly access the files which store the data, and
hence can, on the behalf of the client, execute queries and return the
results. It can, however, also disallow certain queries based on its own
access control policy and the user id of the client.

PB152 Operating Systems 77/93 July 4, 2020

Part 10.2: File Systems

581File Access Rights
• file systems are a case study in access control
• all modern file systems maintain permissions
∘ the only extant exception is FAT (USB sticks)

• different systems adopt different representation

582Representation
• file systems are usually object-centric
∘ permissions are attached to individual objects
∘ easily answers “who can access this file”?

• there is a fixed set of verbs
∘ those may be different for files and directories
∘ different systems allow different verbs

583The UNIX Model
• each file and directory has a single owner
• plus a single owning group
∘ not limited to those the owner belongs to

• ownership and permissions are attached to i-nodes

584Access vs Ownership
• POSIX ties ownership and access rights
• only 3 subjects can be named on a file
∘ the owner (user)
∘ the owning group
∘ anyone else

585Access Verbs in POSIX File Systems
• read: read a file, list a directory
• write: write a file, link/unlink i-nodes to a directory
• execute: exec a program, enter the directory
• execute as owner (group): setuid/setgid

586Permission Bits
• basic UNIX permissions can be encoded in 9 bits
• 3 bits per 3 subject designations
∘ first comes the owner, then group, then others
∘ written as e.g. rwxr-x--- or 0750

• plus two numbers for the owner/group identifiers

587Changing File Ownership
• the owner and root can change file owners
• chown and chgrp system utilities
• or via the C API
∘ chown(), fchown(), fchownat(), lchown()
∘ same set for chgrp

588Changing File Permissions
• again available to the owner and to root

• chmod is the user space utility
∘ either numeric argument: chmod 644 file.txt

∘ or symbolic: chmod +x script.sh

• and the corresponding system call (numeric-only)

589
setuid and setgid

• special permissions on executable files
• they allow exec to also change the process owner
• often used for granting extra privileges
∘ e.g. the mount command runs as the super-user

590Sticky Directories
• file creation and deletion is a directory permission
∘ this is problematic for shared directories
∘ in particular the system /tmp directory

• in a sticky directory, different rules apply
∘ new files can be created as usual
∘ only the owner can unlink a file from the directory

591

Access Control Lists
• ACL is a list of ACE’s (access control elements)
∘ each ACE is a subject + verb pair
∘ it can name an arbitrary user

• ACL is attached to an object (file, directory)
• more flexible than the traditional UNIX system

592ACLs and POSIX
• part of POSIX.1e (security extensions)
• most POSIX systems implement ACLs
∘ this does not supersede UNIX permission bits
∘ instead, they are interpreted as part of the ACL

• file system support is not universal (but widespread)

PB152 Operating Systems 78/93 July 4, 2020

593Device Files
• UNIX represents devices as special i-nodes
∘ this makes them subject to normal access control

• the particular device is described in the i-node
∘ only a super-user can create device nodes
∘ users could otherwise gain access to any device

594Sockets and Pipes
• named sockets and pipes are just i-nodes
∘ also subject to standard file permissions

• especially useful with sockets
∘ a service sets up a named socket in the file system
∘ file permissions decide who can talk to the service

595Special Attributes
• flags that allow additional restrictions on file use
∘ e.g. immutable files (cannot be changed by anyone)
∘ append-only files (for logfile integrity protection)
∘ compression, copy-on-write controls

• non-standard (Linux chattr, BSD chflags)

596Network File System
• NFS 3.0 simply transmits numeric uid and gid

∘ the numbering needs to be synchronised
∘ can be done via a central user database

• NFS 4.0 uses per-user authentication
∘ the user authenticates to the server directly
∘ filesystem uid and gid values are mapped

597File System Quotas
• storage space is limited, shared by users
∘ files take up storage space
∘ file ownership is also a liability

• quotas set up limits space use by users
∘ exhausted quota can lead to denial of access

598Removable Media
• access control at file system level makes no sense
∘ other computers may choose to ignore permissions
∘ user names or id’s would not make sense anyway

• option 1: encryption (for denying reads)
• option 2: hardware-level controls
∘ usually read-only vs read-write on the entire medium

599The chroot System Call
• each process in UNIX has its own root directory
∘ for most, this coincides with the system root

• the root directory can be changed using chroot()

• can be useful to limit file system access
∘ e.g. in privilege separation scenarios

600Uses of chroot
• chroot alone is not a security mechanism
∘ a super-user process can get out easily
∘ but not easy for a normal user process

• also useful for diagnostic purposes
• and as lightweight alternative to virtualisation

Part 10.3: Sub-User Granularity
In this section, wewill explore a few cases where amore precise notion
of an access control subject is required or useful.

602Users are Not Enough
• users are not always the right abstraction
∘ creating users is relatively expensive
∘ only a super-user can create new users

• you may want to include programs as subjects
∘ or rather, the combination user + program

One of the main drawbacks of the user-centric security paradigm is
heavyweight and requires super-user privileges. Moreover, normal
users cannot easily constrain processes under auxiliary users (only via
a setuid helper, which must again be configured by the root user).
A natural extension of the concept of an access control subject is to
include the currently running program in the description – allowing
the policy to say things like /home/xuser/mail can be accessed by thun-
derbird (a mail client) running under the account of xuser, but not by
firefox (a web browser) running under the same account.

603Naming Programs
• users have user names, but how about programs?
• option 1: cryptographic signatures
∘ portable across computers but complex
∘ establishes identity based on the program itself

• option 2: i-node of the executable
∘ simple, local, identity based on location

Unfortunately, attaching policy rules to programs is much harder than
it is for files or users, since their identity is rather elusive. There might
be any number of programs called thunderbird, some of which may
be different versions or builds of the same software, but some might
just claim to be thunderbird to get to one’s email.
A fairly good, if complicated, solution is to embed a cryptographic sig-
nature into executables, stating the rough equivalent of ‘this program
is Firefox, signed by Mozilla‘. Assuming we trust Mozilla (we probably
do since we run their software), we can refer to ‘Firefox by Mozilla’
in our access control policy. A variation of this approach is used by
mobile operating systems, like Android and iOS.
The other option, much simpler, is to add a note like ‘this program

PB152 Operating Systems 79/93 July 4, 2020

is Firefox‘ to the i-node of the executable. This approach is used by
systems like SELinux (where the note is realized as a security label).

604Program as a Subject
• program: passive (file) vs active (processes)
∘ only a process can be a subject
∘ but program identity is attached to the file

• rights of a process depend on its program
∘ exec()will change privileges

Now that we have managed to delineate what is a program and how
to identify it, a new problem pops up: in both cases, we have attached
the identity to a file, but it actually belongs to a process. However,
processes being much more dynamic than files, assigning identifiers
to them is even less practical. In this case, we can use the same trick
that was used for setuid programs: the exec system call can examine
the binary and adjust the privileges of the process accordingly.

605Mandatory Access Control
• delegates permission control to a central authority
• often coupled with security labels
∘ classifies subjects (users, processes)
∘ and also objects (files, sockets, programs)

• the owner cannot change object permissions

Security labels are, in some sense, a generalisation of user groups. They
can be attached to both objects and subjects, and can execwill update
the labels attached to a process based on the labels attached to the
executable (file).
Under mandatory access control, the users are not allowed to change
permissions on objects. However, in practical systems, both modes are
usually combined: discretionary permissions are attached to files as
usual, and applied to an action whenever the mandatory rules alone
would have allowed it.

606Capabilities
• not all verbs (actions) need to take objects
• e.g. shutting down the computer (there is only one)
• mounting file systems (they can’t be always named)
• listening on ports with number less than 1024

The term ‘capabilities’ is often used to mean one of two forms of access
control policy rules:

1. where the object is a singleton, i.e. there is only a single object for
the given action, or

2. where it is impractical to name the objects or to attach permission
information to them.

607Dismantling the root User
• the traditional root user is all-powerful
∘ “all or nothing” is often unsatisfactory
∘ violates the principle of least privilege

• many special properties of root are capabilities
∘ root then becomes the user with all capabilities
∘ other users can get selective privileges

In many cases, the simple split between root and normal users (which,
incidentally, mirrors the split between the kernel and user programs)
is inadequate. There are three principal ways to address this:

1. setuid programs can extend some of the special root-only privileges
to normal users (e.g. mount, passwd),

2. the system of capabilities adds the option of allowing certain users
to perform some of the restricted operations,

3. the user-level approach mentioned at the end of section 1, where
the service runs under root (e.g. PolicyKit).

608Security and Execution
• security hinges on what is allowed to execute
• arbitrary code execution are the worst exploits
∘ this allows unauthorized execution of code
∘ same effect as impersonating the user
∘ almost as bad as stolen credentials

Control over which code can execute (and with what privileges) is at
the center of all access control restrictions. If a program can be tricked
into executing code supplied by an attacker, all the privileges that the
program had are automatically available to the attacker as well.

609Untrusted Input
• programs often process data from dubious sources
∘ think image viewers, audio & video players
∘ archive extraction, font rendering, ...

• bugs in programs can be exploited
∘ the program can be tricked into executing data

The most common way programs can be hijacked in this manner is
through improper processing of untrusted inputs, that is, content com-
ing from untrustworthy sources. If unexpected input data can derail
program execution, this opens the door for an attacker to take control
of the program.
The payload (the code that the attacker wants executed) is usually
supplied as part of the input, and hence is normally treated as data by
the program. However, in presence of certain bug, the program can be
tricked into executing (or interpreting) this data as code.

610Process as a Subject
• some privileges can be tied to a particular process
∘ those only apply during the lifetime of the process
∘ often restrictions rather than privileges
∘ this is how privilege dropping is done

• restrictions are inherited across fork()

Programs (or parts of programs running in a separate process) can ask
the operating system to remove some of their privileges (like file system
access, network access, and so on). There are many ways to do this,
though they are not very portable (i.e. they depend on non-POSIX
features of particular operating systems, e.g. Linux user namespaces,
seccomp, FreeBSD Capsicum, OpenBSD pledge and unveil and so on).
One of the few portable approaches, known as privilege drop, is essen-
tially a subset of privilege separation: a special user is created for the
particular process and the process, after having done any privileged
initialization operations that it needed to do, uses setuid and perhaps
chroot to lock itself down.

PB152 Operating Systems 80/93 July 4, 2020

611Sandboxing
• tries to limit damage from code execution exploits
• the program drops all privileges it can
∘ this is done before it touches any of the input
∘ the attacker is stuck with the reduced privileges
∘ this can often prevent a successful attack

Sandboxing is a collection of techniques (including some of the above)
that tries to minimize the impact of a successful exploit against a pro-
gram. Sandboxing can be voluntary (the program sets up its own sand-
box) and involuntary (see also next slide).

612Untrusted Code
• traditionally, you would only execute trusted code
∘ often based on reputation or other external factors
∘ this does not scale to a large number of vendors

• it is common to execute untrusted, even dubious code
∘ this can be okay with sufficient sandboxing

Running code from questionable sources is always risky, but is essen-
tially guaranteed to result in a compromise unless precautions are
taken. However, since the modern web is full of executable code, we
simply resort to locking it down as much as we can and hope for the
best.

613API-Level Access Control
• capability system for user-level resources
∘ things like contact lists, calendars, bookmarks
∘ objects not provided directly by the kernel

• enforcement e.g. via a virtual machine
∘ not applicable to execution of native code
∘ alternative: an IPC-based API

Selectively granting permissions to programs through user-level per-
mission systems is also possible for non-root users. There are two
commonly employed methods:

1. a (program-level) virtual machine, like the JVM or the javascript
virtual machines built into web browsers, which enforce that the
program only talks to the system through restricted APIs,

2. a strict sandbox with the only access to the system provided by
a daemon running on the outside of the sandbox (e.g. snap and
flatpak, to a degree).

Both approaches can be combined, with a common technique locking
a VM using OS-level sandboxing to defend against security bugs in the
VM itself.

614Android/iOS Permissions
• applications from a store are semi-trusted
• typically single-user computers/devices
• permissions are attached to apps instead of users
• partially virtual users, partially API-level

On Android, for instance, each application gets its own virtual user
with very limited permissions and interaction with the system is done
almost exclusively through high-level APIs. These APIs then perform
permission checks, possibly prompting the user for confirmation as
needed.

615Review Questions
• What is a user?
• What is the principle of least privilege?
• What is an access control object?
• What is a sandbox?

Part 11: Virtualisation & Containers
This lecture will focus on running multiple operating systems on the
same physical computer. Until now, we have always assumed that
the operating system (in particular the kernel) has direct control over
physical resources. This week, we will see that this does not always
need to be the case (in fact, it is increasingly rare in production systems).
Instead, we will see that multiple operating systems may share a single
computer in a manner similar to how multiple applications (processes)
co-exist within an operating system.
We will also explore a compromise approach, known as containers,
where only the user-space parts of the operating system are duplicated
and isolated from each other, while the kernel remains shared and
retains direct control of the underlying machine.

617Lecture Overview
1. Hypervisors
2. Containers
3. Management

The lecture is split into 3 parts: first part will introduce full-blown
virtualisation and the concept of a hypervisor, while the second part

will discuss containers. Finally, we will look at a few topics which are
common to both systems, and in some sense are also relevant when
managing networks of physical computers.

Part 11.1: Hypervisors
In the domain of hardware-accelerated virtualisation, a hypervisor is
the part of the VM software that is roughly equivalent to an operating
system kernel.

619What is a Hypervisor
• also known as a Virtual Machine Monitor
• allows execution of multiple operating systems
• like a kernel that runs kernels
• improves hardware utilisation

While hypervisor itself behaves a bit like a kernel, standing as it does
between the hardware and the virtualised operating systems, the virtu-
alised operating systems running on top are, in a sense, like processes
(including their kernels). In particular, they are isolated in physical

PB152 Operating Systems 81/93 July 4, 2020

memory (by using either regular MMU and a bit of software magic,
or using an MMU capable of second-level translation) and they time-
share on the available processors.

620Motivation
• OS-level sharing is tricky
∘ user isolation is often insufficient
∘ only root can install software

• the hypervisor/OS interface is simple
∘ compared to OS-application interfaces

Virtualised operating systems allow a degree of autonomy that is not
usually possible when multiple users share a single operating system.
This is partially due to the simplicity of the interface between the hy-
pervisor and the operating system: there are no file systems, in fact no
communication between the operating systems (other than through
standard networking), no user management and so on. Virtual ma-
chines simply bundle up some resources and make them available to
the operating system.

621Virtualisation in General
• many resources are “virtualised”
∘ physical memory by the MMU
∘ peripherals by the OS

• makes resource management easier
• enables isolation of components

Operating systems (or computers, if you prefer) are of course not the
only thing that can be (or is) virtualised. If you think about it, a lot
of operating system itself is built around some sort of virtualisation:
virtual memory, file systems, network stack, device drivers – they
all, in some sense, virtualise hardware resources. This in turn makes
it possible for multiple programs, and multiple users, to share those
resources safely and fairly.

622Hypervisor Types
• type 1: bare metal
∘ standalone, microkernel-like

• type 2: hosted
∘ runs on top of normal OS
∘ usually need kernel support

There are two basic types of hypervisors, based on how the overall
system is layered. In type 1, the hypervisor is at the bottom of the
stack (just above hardware), and is responsible for management of the
basic resources (a bit like a simple microkernel): processor and RAM
(scheduling and memory management, respectively).
On the other hand, type 2 hypervisors run on top of an operating
system and reuse its scheduler and memory management: the virtual
machines appear as actual processes of the host system.

623Type 1 (Bare Metal)
• IBM z/VM
• (Citrix) Xen
• Microsoft Hyper-V
• VMWare ESX

624

Type 2 (Hosted)
• VMWare (Workstation, Player)
• Oracle VirtualBox
• Linux KVM
• FreeBSD bhyve
• OpenBSD vmm

625History
• started with mainframe computers
• IBM CP/CMS: 1968
• IBM VM/370: 1972
• IBM z/VM: 2000

The first foray into running multiple operating systems on the same
hardware was made by IBM in the late 60s and was made, on big iron,
a rather standard feature soon after.

626Desktop Virtualisation
• x86 hardware lacks virtual supervisor mode
• software-only solutions viable since late 90s
∘ Bochs: 1994
∘ VMWareWorkstation: 1999
∘ QEMU: 2003

Small (personal) computers, for a long time, did not offer any OS virtu-
alisation capabilities. Performance of PC processors became sufficient
to do PC-on-PC emulation in mid-90s, but the performance penalty
was initially huge and was only suitable to run legacy software (which
was designed for much slower hardware).

627Paravirtualisation
• introduced as VMI in 2005 by VMWare
• alternative approach in Xen in 2006
• relies on modification of the guest OS
• near-native speed without HW support

A decade later, VMWare has made a breakthrough in software-based
virtualisation technology, by inventing paravirtualisation: this re-
quired modifications to the guest operating system, but by the time,
open-source operating systems were gaining a foothold – and porting
open-source systems to a paravirtualising hypervisor was not too hard.

628The Virtual x86 Revolution
• 2005: virtualisation extensions on x86

• 2008: MMU virtualisation
• unmodified guest at near-native speed
• most software-only solutions became obsolete

Around the same time, vendors of desktop CPUs started to incorporate
virtualization extensions, which in turnmade it unnecessary tomodify
the guest operating system (at least in principle). By 2008, mainstream
desktop processors offered MMU virtualisation, further simplifying
x86 hypervisor design (and making it more efficient at the same time).

PB152 Operating Systems 82/93 July 4, 2020

629Paravirtual Devices
• special drivers for virtualised devices
∘ block storage, network, console
∘ random number generator

• faster and simpler than emulation
∘ orthogonal to CPU/MMU virtualisation

However, paravirtualisation made a quick and dramatic comeback:
while virtualisation of CPU and memory was, for the most part, han-
dled by the hardware itself, a hardware-based approach is not econom-
ical for virtualisation of peripherals.
Additionally, paravirtualised peripherals do not need changes in the
guest operating system: all that is required is a quite regular device dri-
ver that targets the respective protocol. The virtual peripherals offered
by the host system then simply appear as regular devices through an
appropriate device driver running in the guest.

630Virtual Computers
• usually known as Virtual Machines
• everything in the computer is virtual
∘ either via hardware (VT-x, EPT)
∘ or software (QEMU, virtio, ...)

• much easier to manage than actual hardware

The entire system running under a virtualised operating system is
known as a virtual machine (or, sometimes, a virtual computer), not to
be confused with program-level VMs like the Java Virtual Machine.

631Essential Resources
• the CPU and RAM
• persistent (block) storage
• network connection
• a console device

A typical virtual machine will offer at least a processor, memory, block
storage (on which the operating system will store a file system), a net-
work connection and a console for management. While other periph-
erals are possible, they are not very common, at least not on servers.

632CPU Sharing
• same principle as normal processes
• there is a scheduler in the hypervisor
∘ simpler, with different trade-offs

• privileged instructions are trapped

Most instructions (specifically those available to user-space programs)
are simply executed without additional overhead by the host CPU,
without direct involvement of the hypervisor. However, the hypervi-
sor does manage the virtualised MMU. However, just as importantly,
when the CPU encounters certain types of privileged instructions, it
will invoke the hypervisor to perform the required actions in software.

633RAM Sharing
• very similar to standard paging
• software (shadow paging)
• or hardware (second-level translation)
• fixed amount of RAM for each VM

Like CPU virtualisation, memory sharing is built on the same basic
principles that standard operating systems use to isolate processes
from each other. Memory is sliced into pages and the MMU does the
heavy lifting of address translation.

634Shadow Page Tables
• the guest system cannot access the MMU
• set up shadow table, invisible to the guest
• guest page tables are sync’d to the sPT by VMM
• the gPT can be made read-only to cause traps

The trap can then synchronise the gPT with the sPT, which are trans-
lated versions of each other. The ’physical’ addresses stored in the gPT
are virtual addresses of the hypervisor. The sPT stores real physical
addresses, since it is used by the real MMU.

635Second-Level Translation
• hardware-assisted MMU virtualisation
• adds guest-physical to host-physical layer
• greatly simplifies the VMM
• also much faster than shadow page tables

Shadow page tables cause a lot of overhead, trapping every change of
the guest page table into the hypervisor. Unfortunately, page tables
are rearranged by the guest operating system rather often (on real
hardware, this is comparatively cheap).
However, modern processors offer another level of translation, which
is inaccessible to the guest operating system. Since the MMU is aware
of virtualisation, the guest can directly modify its page tables, with-
out compromising isolation of VMs from each other (and from the
hypervisor).

636Network Sharing
• usually a paravirtualised NIC
∘ transports frames between guest and host
∘ usually connected to a SW bridge in the host
∘ alternatives: routing, NAT

• a single physical NIC is used by everyone

In contemporary virtualisation solutions, networking uses a paravir-
tual NIC (network interface card) which is connected to an Ethernet
tunnel pseudo-device in the host system (essentially a virtual network
interface card that handles Ethernet frames). The frames sent on the
paravirtual device appears on the virtual NIC in the host and vice versa.
The pseudo-device is then either software-bridged to the hardware
NIC (and hence to the outside ethernet), or alternatively, routing (layer
3) is set up between the pseudo-device and the hardware NIC.

PB152 Operating Systems 83/93 July 4, 2020

637Virtual Block Devices
• usually also paravirtualised
• often backed by normal files
∘ maybe in a special format
∘ e.g. based on copy-on-write

• but can be a real block device

Like networking, block storage is typically based on paravirtualisation.
In this case, the host side of the device is either backed by a regular file
in the file system of the host, or sometimes it is backed by a block device
on the same (often virtualised, e.g. through LVM/device-mapper or
similar technology, but sometimes backed directly by a hardware block
device).

638Special Resources
• mainly useful in desktop systems
• GPU / graphics hardware
• audio equipment
• printers, scanners, ...

Now that we have covered the essentials, let’s briefly look at other
classes of hardware. However, with the possible exception of compute
GPUs, peripherals are only useful on desktop systems, which are a tiny
market compared to server virtualisation.

639PCI Passthrough
• an anti-virtualisation technology
• based on an IO-MMU (VT-d, AMD-Vi)
• a virtual OS can touch real hardware
∘ only one OS at a time, of course

Let’s first mention a very generic, but very un-virtualisation method
of giving hardware access to a virtual machine, that is, exposing a PCI
device to the guest operating system directly, via IO-MMU-mapped
memory. An IO-MMUmust be involved, because otherwise the guest
OS could direct the hardware to overwrite physical memory that be-
longs to the host, or to another VM running on the same system. With
that covered, though, there is nothing that stops the host system from
handing over control of specific PCI endpoints to a guest (of course,
the host system must not attempt to communicate with those devices
though its own drivers, else chaos would ensue).

640GPUs and Virtualisation
• can be assigned (via VT-d) to a single OS
• or time-shared using native drivers (GVT-g)
• paravirtualised
• shared by other means (X11, SPICE, RDP)

Of course, since a GPU is attached through PCI, it can be shared us-
ing the IO-MMU (VT-d) approach described above. However, modern
GPUs all support time-sharing (i.e. they allow contexts to be suspended
and resumed, just like threads and processes on aCPU). For this towork,
the hypervisor (or the host OS) must provide drivers for the GPU in
question, so that it can mediate access to individual VMs.
Another solution, is paravirtualisation: the guest uses a vendor-neutral
protocol to send a command stream to the driver running in the hy-
pervisor, which in turn does the multiplexing. The guest system still
needs the userspace part of the GPU driver to generate the command

stream and to compile shaders.
Finally, existing network graphics protocols can be, of course, used
between a guest and the host, though they are never quite as efficient
as one of the specialised options.

641Peripherals
• useful either via passthrough
∘ audio, webcams, ...

• or standard sharing technology
∘ network printers & scanners
∘ networked audio servers

Finally, there is a wide array of peripherals that can be attached to a
PC. Some of them, like printers and scanners, and in some cases (or
rather, in some operating systems) audio hardware, can be shared over
standard networks, and hence also between guests and the host over a
virtual network. For this type of peripherals, there is either no loss in
performance (printers, scanners) or possibly a small increase in latency
(this mainly affects audio devices).

642Peripheral Passthrough
• virtual PCI, USB or SATA bus
• forwarding to a real device
∘ e.g. a single USB stick
∘ or a single SATA drive

Of course, network-based sharing is not always practical. Fortunately,
most peripherals attach to the host system through a handful of stan-
dard buses, which are not hard to either pass through, or paravirtualise.
The devices then appear as endpoints on the virtual bus of the requisite
type exposed to the guest operating system.

643Suspend & Resume
• the VM can be quite easily stopped
• the RAM of a stopped VM can be copied
∘ e.g. to a file in the host filesystem
∘ along with registers and other state

• and also later loaded and resumed

An important feature available in most virtualisation solutions is the
ability to suspend the execution of a VM and store its state in a file
(i.e. create an image of the running virtualised OS). Of course this is
only useful if the image can later be loaded and resumed ‘as if nothing
happened’.
On the outside, this looks rather like what happens when a laptop’s lid
is closed: the computer stops (in this case to save energy) andwhen it is
opened again, continueswhere it left off. An important difference here
is that in a VM, the guest operating system does not need to cooperate,
or even be aware of the suspend/resume operation.

644Migration Basics
• the stored state can be sent over network
• and resumed on a different host
• as long as the virtual environment is same
• this is known as paused migration

Of course, if an image can be stored in a file, it can just as well be
sent over a network. Resuming an image on a different host is called

PB152 Operating Systems 84/93 July 4, 2020

a ‘paused’ migration, since the VM is paused for the duration of the
network transfer: depending on the size of the image, this can be long
enough to time out TCP connections or application-level protocols. Of
course, even if this does not happen, there will be a noticeable lag for
any interactive use of such a system.
Of course, the operation is predicated on the requirement that the
supporting environment on the outside of the VM is sufficiently com-
patible between the hosts: in particular, the backing storage for virtu-
alised block storage, and the virtual networking infrastructure need
to match.

645Live Migration
• uses asynchronous memory snapshots
• host copies pages and marks them read-only
• the snapshot is sent as it is constructed
• changed pages are sent at the end

Live migration is an improvement over paused migration above in that
it does not cause noticeable lag and does not endanger TCP or other
stateful connections that use timeouts to detect broken connections.
The main idea that enables live migration is that the VM can continue
to run as normal while its memory is being copied, with the provision
that any subsequent writes must be tracked by the hypervisor: this
is achieved through the standard ‘copy-on-write’ trick, where pages
are marked read-only right before they are copied, and the hypervisor
traps faults. As appropriate, it allows the write to proceed, but also
marks the page as dirty. When the initial sweep is finished, another
pass is made but this time only through dirty pages, marking them as
clean.

646Live Migration Handoff
• the VM is then paused
• registers and last few pages are sent
• the VM is resumed at the remote end
• usually within a few milliseconds

When the number of dirty pages is sufficiently small at the end of an
iteration, the VM is paused, the remaining dirty pages and the CPU
contexts are copied over and theVM is immediately resumed. Since the
last transfer is only a few hundred kilobytes, the switchover latency
is almost negligible.

647Memory Ballooning
• how to deallocate “physical” memory?
∘ i.e. return it to the hypervisor

• this is often desirable in virtualisation
• needs a special host/guest interface

One final consideration is that the hypervisor allocates memory to the
guest VMs on demand, but normally, operating systems don’t have a
concept of ‘deallocating’ physical memory that they are not actively
using. In these circumstances, if the VM sees a spike in memory use,
this memory will be indefinitely locked by that VM, even though it
has no use for it.
A commonly employed solution is a so-called ‘memory ballooning dri-
ver’ which runs on the guest side and returns unmapped ‘physical’
(from the point of view of the guest) memory to the host operating
system. The memory is unmapped on the host side (i.e. the content of
the memory is lost to the guest) and later mapped again if the demand
arises.

Part 11.2: Containers
While hardware-accelerated virtualisation is rather efficient when
it comes to CPU overhead, there are other costs associated. Some of
them can be mitigated by clever tricks (like memory ballooning, TRIM,
copy-on-write disk images, etc.) but others are harder to eliminate.
When maximal resource utilization is a requirement, containers can
often outperform full virtualisation, without significantly compromis-
ing other aspects, like maintainability, isolation, or security.

649What are Containers?
• OS-level virtualisation
∘ e.g. virtualised network stack
∘ or restricted file system access

• not a complete virtual computer
• turbocharged processes

Containers use virtualisation (in the broad sense of the word) already
built into the operating system, mainly based on processes. This is
augmented with additional separation, where groups of processes can
share, for instance, a network stack which is separate from the net-
work stack available to a different set of processes. While both stacks
use the same hardware, they have separate IP addresses, separate rout-
ing tables, and so on. Likewise, access to the file system is partitioned
(e.g. with chroot), the user mapping is separated, as are process tables.

650Why Containers
• virtual machines take a while to boot
• each VM needs its own kernel
∘ this adds up if you need many VMs

• easier to share memory efficiently
• easier to cut down the OS image

There are two main selling points of containers:

1. so-called ‘provisioning speed’ – the time it takes from ‘I want a fresh
system’ to having one booted,

2. more efficient resource use.

Both are in large part enabled by sharing a kernel between the contain-
ers: in the first case, there is no need to initialize (boot) a new kernel,
which saves non-negligible amount of time. For the second point, this
is even more important: within a single kernel, containers can share
files (e.g. through common mounts) and processes across containers
can still share memory – especially executable images and shared li-
braries that are backed by common files. Achieving the same effect
with virtual machines is quite impossible.

651Kernel Sharing
• multiple containers share a single kernel
• but not user tables, process tables, ...
• the kernel must explicitly support this
• another level of isolation (process, user, container)

Of course, since a single kernel servesmultiple containers, the kernel in
question must support an additional isolation level (on top of processes
and users), where separate containers have also separate process tables
and so on.

PB152 Operating Systems 85/93 July 4, 2020

652Boot Time
• a light virtual machine takes a second or two
• a container can take under 50ms
• but VMs can be suspended and resumed
• but dormant VMs take up a lot more space

Even discounting issues like preparation of disk images, on boot time
alone, a container can be 20 times faster than a conventional virtual
machine (discounting exokernels and similar tiny operating systems).

653
chroot

• the mother of all container systems
• not very sophisticated or secure
• but allows multiple OS images under 1 kernel
• everything else is shared

The chroot system call can be (ab)used to run multiple OS images (the
user-space parts thereof, to be more specific) under a single kernel.
However, since everything besides the file system is fully shared, we
cannot really speak about containers yet.

654
chroot-based ‘Containers’

• process tables, network, etc. are shared
• the superuser must also be shared
• containers have their own view of the filesystem
∘ including system libraries and utilities

Since the process tables, networking and other important services are
shared across the images, there is a lot of interference. For instance, it
is impossible to run two independent web servers from two different
chroot pseudo-containers, since only one can bind to the (shared) port
80 (or 443 if you are feeling modern).
Another implication is that the role of the super-user in the container
is not contained: the root on the inside can easily become root on the
outside.

655BSD Jails
• an evolution of the chroot container
• adds user and process table separation
• and a virtualised network stack
∘ each jail can get its own IP address

• root in the jail has limited power

The jail mechanism on FreeBSD is an evolution of chroot that adds
what is missing: separation users, process tables and network stacks.
The jail also limits what the ‘inside’ root can do (and prevents them
from gaining privileges outside the jail). It is one of the oldest open-
source containerisation solutions.

656Linux VServer
• like BSD jails but on Linux
∘ FreeBSD jail 2000, VServer 2001

• not part of the mainline kernel
• jailed root user is partially isolated

Similar work was done on the Linux kernel a year later, but was not

accepted into the official version of the kernel andwas long distributed
as a set of third-party patches.

657Namespaces
• visibility compartments in the Linux kernel
• virtualizes common OS resources
∘ the filesystem hierarchy (including mounts)
∘ process tables
∘ networking (IP address)

The solution that was eventually added to official Linux kernels is
based around namespaces which handle each aspect of containerisa-
tion separately: when a new process is created (with a fork-like system
call, called clone), the parent can specify which aspects are to be shared
with the parent, and which are to be separated.

658
cgroups

• controls HW resource allocation in Linux
• a CPU group is a fair scheduling unit
• a memory group sets limits on memory use
• mostly orthogonal to namespaces

The other important component in Linux containers are ‘control
groups‘ which limit resource usage of a process sub-tree (which can
coincide with the process sub-tree that belongs to a single container).
This allows containers to be isolated not only with respect to their ac-
cess to OS-level objects, but also with respect to resource consumption.

659LXC
• mainline Linux way to do containers
• based on namespaces and cgroups

• relative newcomer (2008, 7 years after vserver)
• feature set similar to VServer, OpenVZ &c.

LXC is a suite of user-space tools for management of containers based
on Linux namespaces and control groups. Since version 1.0 (circa 2014),
LXC also offers separation of the in-container super user, and also
unprivileged containers which can be created andmanaged by regular
users (limitations apply).

660User-Mode Linux
• halfway between a container and a virtual machine
• an early fully paravirtualised system
• a Linux kernel runs as a process on another Linux
• integrated in Linux 2.6 in 2003

Ports of kernels ‘to themselves’ so to speak: a regime where the kernel
runs as an ordinary user-space process on top of a different configu-
ration the same kernel, are somewhere between containers and full
virtual machines. They rely quite heavily on paravirtualisation tech-
niques, although in a rather unusual fashion: since the kernel is a
standard process, it can directly access the POSIX API of the host oper-
ating system, for instance directly sharing the host file system.

PB152 Operating Systems 86/93 July 4, 2020

661DragonFlyBSD Virtual Kernels
• very similar to User-Mode Linux
• part of DFlyBSD since 2007
• uses standard libc, unlike UML
• paravirtual ethernet, storage and console

Another example of the same approach is known as ‘virtual kernels’ in
DragonFlyBSD. In this case, the user-mode port of kernel even uses the
standard libc, just like any other program. Unfortunately, no direct
access to the host file system is possible, making this approach closer
to standard VMs.

662User Mode Kernels
• easier to retrofit securely
∘ uses existing security mechanisms
∘ for the host, mostly a standard process

• the kernel needs to be ported though
∘ analogous to a new hardware platform

When it comes to implementation effort, user-mode kernels are sim-
pler than containers, and offer better host-side security, since they
appear as regular processes, without special status.

663Migration
• not widely supported, unlike in hypervisors
• process state is much harder to serialise
∘ file descriptors, network connections &c.

• somewhat mitigated by fast shutdown/boot time

One major drawback of both containers and user-mode kernels is lack
of support for suspend and resume, and hence for migration. In both
cases, this comes down to themuchmore complex state of a process, as
opposed to a virtual machine, though the issue is considerably more se-
rious for containers (the user-mode kernel is often just a single process
on the host, whereas processes in containers are, in fact, real host-side
processes).

Part 11.3: Management

665Disk Images
• disk image is the embodiment of the VM
• the virtual OS needs to be installed
• the image can be a simple file
• or a dedicated block device on the host

666Snapshots
• making a copy of the image = snapshot
• can be done more efficiently: copy on write
• alternative to OS installation
∘ make copies of the freshly installed image
∘ and run updates after cloning the image

667Duplication
• each image will have a copy of the system
• copy-on-write snapshots can help
∘ most of the base system will not change
∘ regression as images are updated separately

• block-level de-duplication is expensive

668File Systems
• disk images contain entire file systems
• the virtual disk is of (apparently) fixed size
• sparse images: unwritten area is not stored
• initially only filesystem metadata is allocated

669Overcommit
• the host can allocate more resources than it has
• this works as long as not many VMs reach limits
• enabled by sparse images and CoW snapshots
• also applies to available RAM

670Thin Provisioning
• the act of obtaining resources on demand
• the host system can be extended as needed
∘ to keep pace with growing guest demands

• alternatively, VMs can be migrated out
• improves resource utilisation

671Configuration
• each OS has its own configuration files
• same methods apply as for physical networks
∘ software configuration management

• bundled services are deployed to VMs

672Bundling vs Sharing
• bundling makes deployment easier
• the bundled components have known behaviour
• but updates are much trickier
• this also prevents resource sharing

673Security
• hypervisors have a decent track record
∘ security here means protection of host from guest
∘ breaking out is still possible sometimes

• containers are more of a mixed bag
∘ many hooks are needed into the kernel

PB152 Operating Systems 87/93 July 4, 2020

674Updates
• each system needs to be updated separately
∘ this also applies to containers

• blocks coming from a common ancestor are shared
∘ but updating images means loss of sharing

675Container vs VM Updates
• de-duplication may be easier in containers
∘ shared file system – e.g. link farming

• kernel updates: containers and type 2 hypervisors
∘ can be mitigated by live migration

• type 1 hypervisors need less downtime

676Docker
• automated container image management
• mainly a service deployment tool
• containers share a single Linux kernel
∘ the kernel itself can run in a VM

• rides on a wave of bundling resurgence

677The Cloud
• public virtualisation infrastructure
• “someone else’s computer”
• the guests are not secure against the host
∘ entire memory is exposed, including secret keys
∘ host compromise is fatal

• the host is mostly secure from the guests

678Review Questions
• What is a hypervisor?
• What is paravirtualisation?
• How are VMs suspended and migrated?
• What is a container?

Part 12: Special-Purpose Operating Systems
In this lecture, we will take a look at special-purpose operating system
(as opposed to general-purpose systems, which were the focus of much
of the course). Those systems will lack some (and sometimes many) of
the characteristics that we took for granted until now.
TBD.

680Review Questions
• Question 1
• Question 2
• Question 3
• Question 4

Part 13: Review

682What is an OS made of?
• the kernel
• system libraries
• system daemons / services
• user interface
• system utilities

Basically every OS has those.

683The Kernel
• lowest level of an operating system
• executes in privileged mode
• manages all the other software
∘ including other OS components

• enforces isolation and security
• provides low-level services to programs

684System Libraries
• form a layer above the OS kernel
• provide higher-level services
∘ use kernel services behind the scenes
∘ easier to use than the kernel interface

• typical example: libc
∘ provides C functions like printf

∘ also known as msvcrt onWindows

685Programming Interfaces
• kernel system call interface
• → system libraries / APIs←
• inter-process protocols
• command-line utilities (scripting)

PB152 Operating Systems 88/93 July 4, 2020

686(System) Libraries
• mainly C functions and data types
• interfaces defined in header files
• definitions provided in libraries
∘ static libraries (archives): libc.a
∘ shared (dynamic) libraries: libc.so

• onWindows: msvcrt.lib and msvcrt.dll

• there are (many) more besides libc / msvcrt

687Shared (Dynamic) Libraries
• required for running programs
• linking is done at execution time
• less code duplication
• can be upgraded separately
• but: dependency problems

688Why is Everything a File
• re-use the comprehensive file system API
• re-use existing file-based command-line tools
• bugs are bad→ simplicity is good
• want to print? cat file.txt > /dev/ulpt0

∘ (reality is a little more complex)

689What is a Filesystem?
• a set of files and directories
• usually lives on a single block device
∘ but may also be virtual

• directories and files form a tree
∘ directories are internal nodes
∘ files are leaf nodes

690File Descriptors
• the kernel keeps a table of open files
• the file descriptor is an index into this table
• you do everything using file descriptors
• non-Unix systems have similar concepts

691Regular files
• these contain sequential data (bytes)
• may have inner structure but the OS does not care
• there is metadata attached to files
∘ like when were they last modified
∘ who can and who cannot access the file

• you read() and write() files

692Privileged CPUMode
• many operations are restricted in user mode
∘ this is how user programs are executed
∘ also most of the operating system

• software running in privileged mode can do ~anything
∘ most importantly it can program the MMU
∘ the kernel runs in this mode

693Memory Management Unit
• is a subsystem of the processor
• takes care of address translation
∘ user software uses virtual addresses
∘ the MMU translates them to physical addresses

• the mappings can be managed by the OS kernel

694What does a Kernel Do?
• memory & process management
• task (thread) scheduling
• device drivers
∘ SSDs, GPUs, USB, bluetooth, HID, audio, ...

• file systems
• networking

695Kernel Architecture Types
• monolithic kernels (Linux, *BSD)
• microkernels (Mach, L4, QNX, NT, ...)
• hybrid kernels (macOS)
• type 1 hypervisors (Xen)
• exokernels, rump kernels

696System Call Sequence
• first, libc prepares the system call arguments
• and puts the system call number in the correct register
• then the CPU is switched into privileged mode
• this also transfers control to the syscall handler

697What is an i-node?
• an anonymous, file-like object
• could be a regular file
∘ or a directory
∘ or a special file
∘ or a symlink

PB152 Operating Systems 89/93 July 4, 2020

698Disk-Like Devices
• disk drives provide block-level access
• read and write data in 512-byte chunks
∘ or also 4K on big modern drives

• a big numbered array of blocks

699

I/O Scheduler (Elevator)
• reads and writes are requested by users
• access ordering is crucial on a mechanical drive
∘ not as important on an SSD
∘ but sequential access is still much preferred

• requests are queued (recall, disks are slow)
∘ but they are not processed in FIFO order

700Filesystem as Resource Sharing
• usually only 1 or few disks per computer
• many programs want to store persistent data
• file system allocates space for the data
∘ which blocks belong to which file

• different programs can write to different files
∘ no risk of trying to use the same block

701Filesystem as Abstraction
• allows the data to be organised into files
• enables the user to manage and review data
• files have arbitrary & dynamic size
∘ blocks are transparently allocated & recycled

• structured data instead of a flat block array

702Memory-mapped IO
• uses virtual memory
• treat a file as if it was swap space
• the file is mapped into process memory
∘ page faults indicate that data needs to be read
∘ dirty pages cause writes

• available as the mmap system call

703Fragmentation
• internal – not all blocks are fully used
∘ files are of variable size, blocks are fixed
∘ a 4100 byte file needs 2 4 KiB blocks

• external – free space is non-contiguous
∘ happens when many files try to grow at once
∘ this means new files are also fragmented

704Hard Links
• multiple names can refer to the same i-node
∘ names are given by directory entries
∘ we call such multiple-named files hard links
∘ it’s usually forbidden to hard-link directories

• hard links cannot cross device boundaries
∘ i-node numbers are only unique within a filesystem

705Process Resources
• memory (address space)
• processor time
• open files (descriptors)
∘ also working directory
∘ also network connections

706Process Memory
• each process has its own address space
• this means processes are isolated from each other
• requires that the CPU has an MMU
• implemented via paging (page tables)

707Process Switching
• switching processes means switching page tables
• physical addresses do not change
• but the mapping of virtual addresses does
• large part of physical memory is not mapped
∘ could be completely unallocated (unused)
∘ or belong to other processes

708What is a Thread?
• thread is a sequence of instructions
• different threads run different instructions
∘ as opposed to SIMD or many-core units (GPUs)

• each thread has its own stack
• multiple threads can share an address space

709Fork
• how do we create new processes?
• by fork-ing existing processes
• fork creates an identical copy of a process
• execution continues in both processes
∘ each of them gets a different return value

PB152 Operating Systems 90/93 July 4, 2020

710Process vs Executable
• process is a dynamic entity
• executable is a static file
• an executable contains an initial memory image
∘ this sets up memory layout
∘ and content of the text and data segments

711Exec
• on UNIX, processes are created via fork

• how do we run programs though?
• exec: load a new executable into a process
∘ this completely overwrites process memory
∘ execution starts from the entry point

• running programs: fork + exec

712What is a Scheduler?
• scheduler has two related tasks
∘ plan when to run which thread
∘ actually switch threads and processes

• usually part of the kernel
∘ even in micro-kernel operating systems

713Interrupt
• a way for hardware to request attention
• CPU mechanism to divert execution
• partial (CPU state only) context switch
• switch to privileged (kernel) CPU mode

714Timer Interrupt
• generated by the PIT or the local APIC
• the OS can set the frequency
• a hardware interrupt happens on each tick
• this creates an opportunity for bookkeeping
• and for preemptive scheduling

715What is Concurrency?
• events that can happen at the same time
• it is not important if it does, only that it can
• events can be given a happens-before partial order
• they are concurrent if unordered by happens-before

716Why Concurrency?
• problem decomposition
∘ different tasks can be largely independent

• reflecting external concurrency
∘ serving multiple clients at once

• performance and hardware limitations
∘ higher throughput on multicore computers

717Critical Section
• any section of code that must not be interrupted
• the statement x = x + 1 could be a critical section
• what is a critical section is domain-dependent
∘ another example could be a bank transaction
∘ or an insertion of an element into a linked list

718Race Condition: Definition
• (anomalous) behaviour that depends on timing
• typically among multiple threads or processes
• an unexpected sequence of events happens
• recall that ordering is not guaranteed

719Mutual Exclusion
• only one thread can access a resource at once
• ensured by a mutual exclusion device (a.k.a mutex)
• a mutex has 2 operations: lock and unlock

• lockmay need to wait until another thread unlocks

720Deadlock Conditions
1. mutual exclusion
2. hold and wait condition
3. non-preemtability
4. circular wait
Deadlock is only possible if all 4 are present.

721Starvation
• starvation happens when a process can’t make progress
• generalisation of both deadlock and livelock
• for instance, unfair scheduling on a busy system
• also recall the readers and writers problem

722What is a Driver?
• piece of software that talks to a device
• usually quite specific / unportable
∘ tied to the particular device
∘ and also to the operating system

• often part of the kernel

PB152 Operating Systems 91/93 July 4, 2020

723Drivers and Microkernels
• drivers are excluded from microkernels
• but the driver still needs hardware access
∘ this could be a special memory region
∘ it may need to react to interrupts

• in principle, everything can be done indirectly
∘ but this may be quite expensive, too

724Interrupt-driven IO
• peripherals are much slower than the CPU
∘ polling the device is expensive

• the peripheral can signal data availability
∘ and also readiness to accept more data

• this frees up CPU to do other work in the meantime

725Memory-mapped IO
• devices share address space with memory
• more common in contemporary systems
• IO uses the same instructions as memory access
∘ load and store on RISC, mov on x86

• allows selective user-level access (via the MMU)

726Direct Memory Access
• allows the device to directly read/write memory
• this is a huge improvement over programmed IO
• interrupts only indicate buffer full/empty
• devices can read and write arbitrary physical memory
∘ opens up security / reliability problems

727GPU Drivers
• split into a number of components
• graphics output / frame buffer access
• memory management is often done in kernel
• geometry, textures &c. are prepared in-process
• front end API: OpenGL, Direct3D, Vulkan, ...

728Storage Drivers
• split into adapter, bus and device drivers
• often a single driver per device type
∘ at least for disk drives and CD-ROMs

• bus enumeration and configuration
• data addressing and data transfers

729Networking Layers
1. Link (Ethernet, WiFi)
2. Network (IP)
3. Transport (TCP, UDP, ...)
4. Application (HTTP, SMTP, ...)

730Networking and Operating Systems
• a network stack is a standard part of an OS
• large part of the stack lives in the kernel
∘ although this only applies to monolithic kernels
∘ microkernels use user-space networking

• another chunk is in system libraries & utilities

731Kernel-Side Networking
• device drivers for networking hardware
• network and transport protocol layers
• routing and packet filtering (firewalls)
• networking-related system calls (sockets)
• network file systems (SMB, NFS)

732IP (Internet Protocol)
• uses 4 byte (v4) or 16 byte (v6) addresses
∘ split into network and host parts

• it is a packet-based protocol
• is a best-effort protocol
∘ packets may get lost, reordered or corrupted

733TCP: Transmission Control Protocol
• a stream-oriented protocol on top of IP
• works like a pipe (transfers a byte sequence)
∘ must respect delivery order
∘ and also re-transmit lost packets

• must establish connections

734UDP: User (Unreliable) Datagram Protocol
• TCP comes with non-trivial overhead
∘ and its guarantees are not always required

• UDP is a much simpler protocol
∘ a very thin wrapper around IP
∘ with minimal overhead on top of IP

735DNS: Domain Name Service
• hierarchical protocol for name resolution
∘ runs on top of TCP or UDP

• domain names are split into parts using dots
∘ each domain knows whom to ask for the next bit
∘ the name database is effectively distributed

PB152 Operating Systems 92/93 July 4, 2020

736NFS (Network File System)
• the traditional UNIX networked filesystem
• hooked quite deep into the kernel
∘ assumes generally reliable network (LAN)

• filesystems are exported for use over NFS
• the client side mounts the NFS-exported volume

737Shell
• programming language centered on OS interaction
• rudimentary control flow
• untyped, text-centered variables
• dubious error handling

738Interactive Shells
• almost all shells have an interactive mode
• the user inputs a single statement on keyboard
• when confirmed, it is immediately executed
• this forms the basis of command-line interfaces

739Shell Scripts
• a shell script is an (executable) file
• in simplest form, it is a sequence of commands
∘ each command goes on a separate line
∘ executing a script is about the same as typing it

• but can use structured programming constructs

740Terminal
• can print text and read text from a keyboard
• normally everything is printed on the last line
• the text could contain escape (control) sequences
∘ for printing colourful text or clearing the screen
∘ also for printing text at a specific coordinate

741A GUI Stack
• graphics card driver, mode setting
• drawing/painting (usually hardware-accelerated)
• multiplexing (e.g. using windows)
• widgets: buttons, labels, lists, ...
• layout: what goes where on the screen

742X11 (XWindow System)
• a traditional UNIX windowing system
• provides a C API (xlib)
• built-in network transparency (socket-based)
• core protocol version 11 from 1987

743Users
• originally a proxy for people
• currently a more general abstraction
• user is the unit of ownership
• many permissions are user-centered

744User Management
• the system needs a database of users
• in a network, user identities often need to be shared
• could be as simple as a text file
∘ /etc/passwd and /etc/group on UNIX systems

• or as complex as a distributed database

745User Authentication
• the user needs to authenticate themselves
• passwords are the most commonly used method
∘ the system needs to know the right password
∘ user should be able to change their password

• biometric methods are also quite popular

746Ownership
• various objects in an OS can be owned
∘ primarily files and processes

• the owner is typically whoever created the object
∘ ownership can be transferred
∘ usually at the impetus of the original owner

747Access Control Policy
• there are 3 pieces of information
∘ the subject (user)
∘ the verb (what is to be done)
∘ the object (the file or other resource)

• there are many ways to encode this information

748Sandboxing
• tries to limit damage from code execution exploits
• the program drops all privileges it can
∘ this is done before it touches any of the input
∘ the attacker is stuck with the reduced privileges
∘ this can often prevent a successful attack

749What is a Hypervisor
• also known as a Virtual Machine Monitor
• allows execution of multiple operating systems
• like a kernel that runs kernels
• isolation and resource sharing

PB152 Operating Systems 93/93 July 4, 2020

750Hypervisor Types
• type 1: bare metal
∘ standalone, microkernel-like

• type 2: hosted
∘ runs on top of normal OS
∘ usually need kernel support

751Paravirtual Devices
• special drivers for virtualised devices
∘ block storage, network, console
∘ random number generator

• faster than software emulation
∘ orthogonal to CPU/MMU virtualisation

752VM Suspend & Resume
• the VM can be quite easily stopped
• the RAM of a stopped VM can be copied
∘ e.g. to a file in the host filesystem
∘ along with registers and other state

• and also later loaded and resumed

753What are Containers?
• OS-level virtualisation
∘ e.g. virtualised network stack
∘ or restricted file system access

• not a complete virtual computer
• turbocharged processes

754Bundling vs Sharing
• bundling makes deployment easier
• the bundled components have known behaviour
• but updates are much trickier
• this also prevents resource sharing

755Review Questions
• What does portability mean?
• What is a socket?
• What is a device driver?
• What is a directory?

1 The End

756Actually...
• a 2-part, written final exam
• test: 9/10 required
∘ pool of 52 questions (in the slides)

• free-form text
∘ one of the 11 lecture topics
∘ 1 page A4: be concise but comprehensive

