
July 4, 2020

PB152 Operating Systems
Petr Ročkai

PB152 Operating Systems 2/757 July 4, 2020

Part A: Preliminaries

PB152 Operating Systems 3/757 July 4, 2020

Organisation
• lectures, with an optional seminar
• written exam at the end
∘ multiple choice
∘ free-form questions

• 1 online test mid-term, 1 before exam
∘ mainly training for the exam proper

PB152 Operating Systems 4/757 July 4, 2020

Seminars
• a separate, optional course (code PB152cv)
• covers operating systems from a practical perspective
• get your hands on the things we’ll talk about here
• offers additional practice with C programming

PB152 Operating Systems 5/757 July 4, 2020

Mid-Term and End-Term Tests
• 24 hours to complete, 2 attempts possible
• 10 questions, picked from review questions
∘ mid-term→ first 24, end-term second 24

• 8 out of 10 is required on each of them
• preliminary mid-term date: 7.4., 6pm

PB152 Operating Systems 6/757 July 4, 2020

Study Materials
• this course is undergoing a major update
• lecture slides will be in the IS
∘ they will be added as we go

• you can also use slides from previous years
∘ they are already in study materials
∘ but: not everything is covered in those

PB152 Operating Systems 7/757 July 4, 2020

Books
• there are a few good OS books
• you are encouraged to get and read them
• A. Tanenbaum: Modern Operating Systems
• A. Silberschatz et al.: Operating System Concepts
• L. Skočovský: Principy a problémy OS UNIX
• W. Stallings: Operating Systems, Internals and Design
• many others, feel free to explore

PB152 Operating Systems 8/757 July 4, 2020

Topics
1. Anatomy of an OS
2. System Libraries and APIs
3. The Kernel
4. File Systems
5. Basic Resources and Multiplexing
6. Concurrency and Locking

PB152 Operating Systems 9/757 July 4, 2020

Topics (cont’d)
7. Device Drivers
8. Network Stack
9. Command Interpreters & User Interfaces
10.Users and Permissions
11.Virtualisation & Containers
12.Special-Purpose Operating Systems

PB152 Operating Systems 10/757 July 4, 2020

Related Courses
• PB150/PB151 Computer Systems
• PB153 Operating Systems and their Interfaces
• PA150 Advanced OS Concepts
• PV062 File Structures
• PB071 Principles of Low-level programming
• PB173 Domain-specific Development in C/C++

PB152 Operating Systems 11/757 July 4, 2020

Organisation of the Semester
• generally, one lecture = one topic
• there will be most likely 13 lectures
• the 13th lecture will be review
• online mid-term in April

PB152 Operating Systems 12/757 July 4, 2020

Part B: Semester Overview

PB152 Operating Systems 13/757 July 4, 2020

2 System Libraries and APIs
• POSIX: Portable Operating System Interface
• UNIX: (almost) everything is a file
• the least common denominator of programs: C
• user view: objects, archives, shared libraries
• compiler, linker

PB152 Operating Systems 14/757 July 4, 2020

3 The Kernel
• privileged CPU mode
• the boot process
• boundary enforcement
• kernel designs: micro, mono, exo, ...
• system calls

PB152 Operating Systems 15/757 July 4, 2020

4 File Systems
• why and how
• abstraction over shared block storage
• directory hierarchy
• everything is a file revisited
• i-nodes, directories, hard & soft links

PB152 Operating Systems 16/757 July 4, 2020

5 Basic Resources and Multiplexing
• virtual memory, processes
• sharing CPUs & scheduling
• processes vs threads
• interrupts, clocks

PB152 Operating Systems 17/757 July 4, 2020

6 Concurrency and Locking
• inter-process communication
• accessing shared resources
• mutual exclusion
• deadlocks and deadlock prevention

PB152 Operating Systems 18/757 July 4, 2020

7 Device Drivers
• user vs kernel drivers
• interrupts &c.
• GPU
• PCI &c.
• block storage
• network devices, wifi
• USB
• bluetooth

PB152 Operating Systems 19/757 July 4, 2020

8 Network Stack
• TCP/IP
• name resolution
• socket APIs
• firewalls and packet filters
• network file systems

PB152 Operating Systems 20/757 July 4, 2020

9 Command Interpreters & User Interfaces
• interactive systems
• history: consoles and terminals
• text-based terminals, RS-232
• bash and other Bourne-style shells, POSIX
• graphical: X11, Wayland, OS X, Windows, Android, iOS

PB152 Operating Systems 21/757 July 4, 2020

10 Users and Permissions
• multi-user systems
• isolation, ownership
• file system permissions
• capabilities

PB152 Operating Systems 22/757 July 4, 2020

11 Virtualisation & Containers
• resource multiplexing redux
• isolation redux
• multiple kernels on a single system
• type 1 and type 2 hypervisors
• virtio

PB152 Operating Systems 23/757 July 4, 2020

12 Special-Purpose Operating Systems
• general-purpose vs special-purpose
• embedded systems
• real-time systems
• high-assurance systems (seL4)

PB152 Operating Systems 24/757 July 4, 2020

Part 1: Anatomy of an OS

PB152 Operating Systems 25/757 July 4, 2020

Lecture Overview
1. Components
2. Interfaces
3. Classification

PB152 Operating Systems 26/757 July 4, 2020

What is an OS?
• the software that makes the hardware tick
• and makes other software easier to write

Also
• catch-all phrase for low-level software
• an abstraction layer over the machine
• but the boundaries are not always clear

PB152 Operating Systems 27/757 July 4, 2020

What is not (part of) an OS?
• firmware: (very) low level software
∘ much more hardware-specific than an OS
∘ often executes on auxiliary processors

• application software
∘ runs on top of an operating system
∘ this is what you got the computer for
∘ eg. games, spreadsheets, photo editing, ...

PB152 Operating Systems 28/757 July 4, 2020

What does an OS do?
• interact with the user
• manage and multiplex hardware
• manage other software
• organises and manages data
• provides services for other programs
• enforces security

PB152 Operating Systems 29/757 July 4, 2020

Part 1.1: Components

PB152 Operating Systems 30/757 July 4, 2020

What is an OS made of?
• the kernel
• system libraries
• system daemons / services
• user interface
• system utilities

Basically every OS has those.

PB152 Operating Systems 31/757 July 4, 2020

The Kernel
• lowest level of an operating system
• executes in privileged mode
• manages all the other software
∘ including other OS components

• enforces isolation and security
• provides low-level services to programs

PB152 Operating Systems 32/757 July 4, 2020

System Libraries
• form a layer above the OS kernel
• provide higher-level services
∘ use kernel services behind the scenes
∘ easier to use than the kernel interface

• typical example: libc
∘ provides C functions like printf

∘ also known as msvcrt onWindows

PB152 Operating Systems 33/757 July 4, 2020

System Daemons
• programs that run in the background
• they either directly provide services
∘ but daemons are different from libraries
∘ we will learn more in later lectures

• or perform maintenance or periodic tasks
• or perform tasks requested by the kernel

PB152 Operating Systems 34/757 July 4, 2020

User Interface
• mediates user-computer interaction
• the main shell is typically part of the OS
∘ command line on UNIX or DOS
∘ graphical interfaces with a desktop and windows
∘ but also buttons on your microwave oven

• also building blocks for application UI
∘ buttons, tabs, text rendering, OpenGL...
∘ provided by system libraries and/or daemons

PB152 Operating Systems 35/757 July 4, 2020

System Utilities
• small programs required for OS-related tasks
• e.g. system configuration
∘ things like the registry editor onWindows
∘ or simple text editors

• filesystem maintenance, daemon management, ...
∘ programs like ls/dir or newfs or fdisk

• also bigger programs, like file managers

PB152 Operating Systems 36/757 July 4, 2020

Optional Components
• bundled application software
∘ web browser, media player, ...

• (3rd-party) software management
• a programming environment
∘ eg. a C compiler & linker
∘ C header files &c.

• source code

PB152 Operating Systems 37/757 July 4, 2020

Part 1.2: Interfaces

PB152 Operating Systems 38/757 July 4, 2020

Programming Interface
• kernel provides system calls
∘ ABI: Application Binary Interface
∘ defined in terms of machine instructions

• system libraries provide APIs
∘ Application Programming Interface
∘ symbolic / high-level interfaces
∘ typically defined in terms of C functions
∘ system calls also available as an API

PB152 Operating Systems 39/757 July 4, 2020

Message Passing
• APIs do not always come as C functions
• message-passing interfaces are possible
∘ based on inter-process communication
∘ possible even across networks

• form of API often provided by system daemons
∘ may be also wrapped by C APIs

PB152 Operating Systems 40/757 July 4, 2020

Portability
• some OS tasks require close HW cooperation
∘ virtual memory and CPU setup
∘ platform-specific device drivers

• but many do not
∘ scheduling algorithms
∘ memory allocation
∘ all sorts of management

• porting: changing a program to run in a new environment
∘ for an OS, typically new hardware

PB152 Operating Systems 41/757 July 4, 2020

Hardware Platform
• CPU instruction set (ISA)
• busses, IO controllers
∘ PCI, USB, Ethernet, ...

• firmware, power management

Examples
• x86 (ISA) – PC (platform)
• ARM – Snapdragon, i.MX 6, ...
• m68k – Amiga, Atari, ...

PB152 Operating Systems 42/757 July 4, 2020

Platform & Architecture Portability
• an OS typically supports many platforms
∘ Android on many different ARM SoC’s

• quite often also different CPU ISAs
∘ long tradition in UNIX-style systems
∘ NetBSD runs on 15 different ISAs
∘ many of them comprise 6+ different platforms

• special-purpose systems are usually less portable

PB152 Operating Systems 43/757 July 4, 2020

Code Re-Use
• it makes a lot of sense to re-use code
• majority of OS code is HW-independent
• this was not always the case
∘ pioneered by UNIX, which was written in C
∘ typical OS of the time was in machine language
∘ porting was basically “writing again”

PB152 Operating Systems 44/757 July 4, 2020

Application Portability
• applications care more about the OS than about HW
∘ apps are written in high-level languages
∘ and use system libraries extensively

• it is enough to port the OS to new/different HW
∘ most applications can be simply recompiled

• still a major hurdle (cf. Itanium)

PB152 Operating Systems 45/757 July 4, 2020

Application Portability (2)
• same application can often run on many OSes
• especially within the POSIX family
• but same app can run onWindows, macOS, UNIX, ...
∘ Java, Qt (C++)
∘ web applications (HTML, JavaScript)

• many systems provide the same set of services
∘ differences are mostly in programming interfaces
∘ high-level libraries and languages can hide those

PB152 Operating Systems 46/757 July 4, 2020

Abstraction
• instruction sets abstract over CPU details
• compilers abstract over instruction sets
• operating systems abstract over hardware
• portable runtimes abstract over operating systems
• applications sit on top of the abstractions

PB152 Operating Systems 47/757 July 4, 2020

Abstraction Costs
• more complexity
• less efficiency
• leaky abstractions

Abstraction Benefits
• easier to write and port software
• fewer constraints on HW evolution

PB152 Operating Systems 48/757 July 4, 2020

Abstraction Trade-Offs
• powerful hardware allows more abstraction
• embedded or real-time systems not so much
∘ the OS is smaller & less portable
∘ same for applications
∘ more efficient use of resources

PB152 Operating Systems 49/757 July 4, 2020

Part 1.3: Classification

PB152 Operating Systems 50/757 July 4, 2020

General-Purpose Operating Systems
• suitable for use in most situations
• flexible but complex and big
• run on both servers and clients
• cut down versions run on smartphones
• support variety of hardware

PB152 Operating Systems 51/757 July 4, 2020

Operating Systems: Examples
• Microsoft Windows
• Apple macOS & iOS
• Google Android
• Linux
• FreeBSD, OpenBSD
• MINIX
• many, many others

PB152 Operating Systems 52/757 July 4, 2020

Special-Purpose Operating Systems
• embedded devices
∘ limited budget
∘ small, slow, power-constrained
∘ hard or impossible to update

• real-time systems
∘ must react to real-world events
∘ often safety-critical
∘ robots, autonomous cars, space probes, ...

PB152 Operating Systems 53/757 July 4, 2020

Size and Complexity
• operating systems are usually large and complex
• typically 100K and more lines of code
• 10+ million is quite possible
• many thousand man-years of work
• special-purpose systems are much smaller

PB152 Operating Systems 54/757 July 4, 2020

Kernel Revisited
• bugs in the kernel are very bad
∘ system crashes, data loss
∘ critical security problems

• bigger kernel means more bugs
• third-party drivers inside the kernel?

PB152 Operating Systems 55/757 July 4, 2020

Monolithic Kernels
• lot of code in the kernel
• less abstraction, less isolation
• faster and more efficient

Microkernels
• move as much as possible out of kernel
• more abstraction, more isolation
• slower and less efficient

PB152 Operating Systems 56/757 July 4, 2020

Paradox?
• real-time & embedded systems often use microkernels
• isolation is good for reliability
• efficiency also depends on the workload
∘ throughput vs latency

• real-time does not necessarily mean fast

PB152 Operating Systems 57/757 July 4, 2020

Review Questions
1. What are the roles of an operating system?
2. What are the basic components of an OS?
3. What is an operating system kernel?
4. What is an Application Programming Interface?

PB152 Operating Systems 58/757 July 4, 2020

Part 2: System Libraries and APIs

PB152 Operating Systems 59/757 July 4, 2020

Programming Interfaces
• kernel system call interface
• → system libraries / APIs←
• inter-process protocols
• command-line utilities (scripting)

PB152 Operating Systems 60/757 July 4, 2020

Lecture Overview
1. The C Programming Language
2. System Libraries
∘ what is a library?
∘ header files & libraries

3. Compiler & Linker
∘ object files, executables

4. File-based APIs

PB152 Operating Systems 61/757 July 4, 2020

Sidenote: UNIX and POSIX
• we will mostly use those terms interchangeably
• it is a family of operating systems
∘ started in late 60s / early 70s

• POSIX is a specification
∘ a document describing what the OS should provide
∘ including programming interfaces

Wewill assume POSIX unless noted otherwise

PB152 Operating Systems 62/757 July 4, 2020

Part 2.1: The C Programming Language

PB152 Operating Systems 63/757 July 4, 2020

Programming Languages
• there are many different languages
∘ C, C++, Java, C#, ...
∘ Python, Perl, Ruby, ...
∘ ML, Haskell, Agda, ...

• but C has a special place in most OSes

PB152 Operating Systems 64/757 July 4, 2020

C: The Least Common Denominator
• except for assembly, C is the “bare minimum”
• you can almost think of C as portable assembly
• it is very easy to call C functions
• and to use C data structures

You can use C libraries in almost every language

PB152 Operating Systems 65/757 July 4, 2020

The Language of Operating Systems
• many (most) kernels are written in C
• this usually extends to system libraries
• and sometimes to almost the entire OS
• non-C operating systems provide C APIs

PB152 Operating Systems 66/757 July 4, 2020

Part 2.2: System Libraries

PB152 Operating Systems 67/757 July 4, 2020

(System) Libraries
• mainly C functions and data types
• interfaces defined in header files
• definitions provided in libraries
∘ static libraries (archives): libc.a
∘ shared (dynamic) libraries: libc.so

• onWindows: msvcrt.lib and msvcrt.dll

• there are (many) more besides libc / msvcrt

PB152 Operating Systems 68/757 July 4, 2020

Declaration: what but not how

int sum(int a, int b);

Definition: how is the operation done?

int sum(int a, int b)

{

return a + b;

}

PB152 Operating Systems 69/757 July 4, 2020

Library Files
• /usr/lib on most Unices
∘ may be mixed with application libraries
∘ especially on Linux-derived systems
∘ also /usr/local/lib for user/app libraries

• onWindows: C:\Windows\System32
∘ user libraries often bundled with programs

PB152 Operating Systems 70/757 July 4, 2020

Static Libraries
• stored in libfile.a, or file.lib (Windows)
• only needed for compiling (linking) programs
• the code is copied into the executable
• the resulting executable is also called static
∘ and is easier to work with for the OS
∘ but also more wasteful

PB152 Operating Systems 71/757 July 4, 2020

Shared (Dynamic) Libraries
• required for running programs
• linking is done at execution time
• less code duplication
• can be upgraded separately
• but: dependency problems

PB152 Operating Systems 72/757 July 4, 2020

Header Files
• on UNIX: /usr/include
• contains prototypes of C functions
• and definitions of C data structures
• required to compile C and C++ programs

PB152 Operating Systems 73/757 July 4, 2020

Header Example 1 (from unistd.h)

int execv(char *, char **);

pid_t fork(void);

int pipe(int *);

ssize_t read(int, void *, size_t);

(and many more prototypes)

PB152 Operating Systems 74/757 July 4, 2020

Header Example 2 (from sys/time.h)

struct timeval

{

time_t tv_sec;

long tv_usec;

};

/* ... */

int gettimeofday(timeval *, timezone *);

int settimeofday(timeval *, timezone *);

PB152 Operating Systems 75/757 July 4, 2020

The POSIX C Library
• libc – the C runtime library
• contains ISO C functions
∘ printf, fopen, fread

• and a number of POSIX functions
∘ open, read, gethostbyname, ...
∘ C wrappers for system calls

PB152 Operating Systems 76/757 July 4, 2020

System Calls: Numbers
• system calls are performed at machine level
• which syscall to perform is decided by a number
∘ e.g. SYS_write is 4 on OpenBSD
∘ numbers defined by sys/syscall.h

∘ different for each OS

PB152 Operating Systems 77/757 July 4, 2020

System Calls: the syscall function
• there is a C function called syscall

∘ prototype: int syscall(int number, ...)

• this implements the low-level syscall sequence
• it takes a syscall number and syscall parameters
∘ this is a bit like printf

∘ first parameter decides what are the other parameters
• (more about how syscall()works next week)

PB152 Operating Systems 78/757 July 4, 2020

System Calls: Wrappers
• using syscall() directly is inconvenient
• libc has a function for each system call
∘ SYS_write→ int write(int, char *, size_t)

∘ SYS_open→ int open(char *, int)

∘ and so on and so forth
• those wrappers may use syscall() internally

PB152 Operating Systems 79/757 July 4, 2020

Portability
• libraries provide an abstraction layer over OS internals
• they are responsible for application portability
∘ along with standardised filesystem locations
∘ and user-space utilities to some degree

• higher-level languages rely on system libraries

PB152 Operating Systems 80/757 July 4, 2020

NeXTSTEP and Objective C
• the NeXT OS was built around Objective C
• system libraries had ObjC APIs
• in API terms, ObjC is very different from C
∘ also very different from C++
∘ traditional OOP features (like Smalltalk)

• this has been partly inherited into macOS
∘ evolving into Swift

PB152 Operating Systems 81/757 July 4, 2020

System Libraries: UNIX
• the math library libm

∘ implements math functions like sin and exp

• thread library libpthread

• terminal access: libcurses
• cryptography: libcrypto (OpenSSL)
• the C++ standard library libstdc++ or libc++

PB152 Operating Systems 82/757 July 4, 2020

System Libraries: Windows
• msvcrt.dll – the ISO C functions
• kernel32.dll – basic OS APIs
• gdi32.dll – Graphics Device Interface
• user32.dll – standard GUI elements

PB152 Operating Systems 83/757 July 4, 2020

Documentation
• manual pages on UNIX
∘ try e.g. man 2 write on aisa.fi.muni.cz

∘ section 2: system calls
∘ section 3: library functions (man 3 printf)

• MSDN for Windows
∘ <https://msdn.microsoft.com>

• you can learn a lot from those sources

PB152 Operating Systems 84/757 July 4, 2020

Part 2.3: Compiler & Linker

PB152 Operating Systems 85/757 July 4, 2020

C Compiler
• many POSIX systems ship with a C compiler
• the compiler takes a C source file as input
∘ a text file with a .c suffix

• and produces an object file as its output
∘ binary file with machine code in it
∘ but cannot be directly executed

PB152 Operating Systems 86/757 July 4, 2020

Object Files
• contain native machine (executable) code
• along with static data
∘ e.g. string literals used in the program

• possibly split into a number of sections
∘ .text, .rodata, .data and so on

• and metadata
∘ list of symbols (function names) and their addresses

PB152 Operating Systems 87/757 July 4, 2020

Object File Formats
• a.out – earliest UNIX object format
• COFF – Common Object File Format
∘ adds support for sections over a.out

• PE – Portable Executable (MSWindows)
• Mach-O – Mach Microkernel Executable (macOS)
• ELF – Executable and Linkable Format (all modern Unices)

PB152 Operating Systems 88/757 July 4, 2020

Archives (Static Libraries)
• static libraries on UNIX are called archives
• this is why they get the .a suffix
• they are like a zip file full of object files
• plus a table of symbols (function names)

PB152 Operating Systems 89/757 July 4, 2020

Linker
• object files are incomplete
• they can refer to symbols that they do not define
∘ the definitions can be in libraries
∘ or in other object files

• a linker puts multiple object files together
∘ to produce a single executable
∘ or maybe a shared library

PB152 Operating Systems 90/757 July 4, 2020

Symbols vs Addresses
• we use symbolic names to call functions &c.
• but the callmachine instruction needs an address
• the executable will eventually live in memory
• data and instructions need to be given addresses
• what a linker does is assign those addresses

PB152 Operating Systems 91/757 July 4, 2020

Resolving Symbols
• the linker processes one object file at a time
• it maintains a symbol table
∘ mapping symbols (names) to addresses
∘ dynamically updated as more objects are processed

• relocations are typically processed all at once at the end
• resolving symbols = finding their addresses

PB152 Operating Systems 92/757 July 4, 2020

Executable
• finished image of a program to be executed
• usually in the same format as object files
• but already complete, with symbols resolved
∘ but: may use shared libraries
∘ in that case, some symbols remain unresolved

PB152 Operating Systems 93/757 July 4, 2020

Shared Libraries
• each shared library only needs to be in memory once
• shared libraries use symbolic names (like object files)
• there is a “mini linker” in the OS to resolve those names
∘ usually known as a runtime linker
∘ resolving = finding the addresses

• shared libraries can use other shared libraries
∘ they can form a DAG (Directed Acyclic Graph)

PB152 Operating Systems 94/757 July 4, 2020

Addresses Revisited
• when you run a program, it is loaded into memory
• parts of the program refer to other parts of the program
∘ this means they need to know where it will be loaded
∘ this is a responsibility of the linker

• shared libraries use position-independent code
∘ works regardless of the base address it is loaded at
∘ we won’t go into detail on how this is achieved

PB152 Operating Systems 95/757 July 4, 2020

Compiler, Linker &c.
• the C compiler is usually called cc

• the linker is known as ld
• the archive (static library) manager is ar
• the runtime linker is often known as ld.so

PB152 Operating Systems 96/757 July 4, 2020

Part 2.4: File-Based APIs

PB152 Operating Systems 97/757 July 4, 2020

Everything is a File
• part of the UNIX design philosophy
• directories are files
• devices are files
• pipes are files
• network connections are (almost) files

PB152 Operating Systems 98/757 July 4, 2020

Why is Everything a File
• re-use the comprehensive file system API
• re-use existing file-based command-line tools
• bugs are bad→ simplicity is good
• want to print? cat file.txt > /dev/ulpt0

∘ (reality is a little more complex)

PB152 Operating Systems 99/757 July 4, 2020

What is a Filesystem?
• a set of files and directories
• usually lives on a single block device
∘ but may also be virtual

• directories and files form a tree
∘ directories are internal nodes
∘ files are leaf nodes

PB152 Operating Systems 100/757 July 4, 2020

File Paths
• filesystems use paths to point at files
• a string with / as a directory delimiter
∘ the delimiter is \ onWindows

• a leading / indicates the filesystem root
• e.g. /usr/include

PB152 Operating Systems 101/757 July 4, 2020

The File Hierarchy

/

home var usr

xrockai include lib

stdio.h unistd.h libc.a libm.a

PB152 Operating Systems 102/757 July 4, 2020

The Role of Files and Filesystems
• very central in Plan9
• central in most UNIX systems
∘ cf. Linux pseudo-filesystems
∘ /proc provides info about all processes
∘ /sys gives info about the kernel and devices

• somewhat reduced inWindows
• quite suppressed in Android (and more on iOS)

PB152 Operating Systems 103/757 July 4, 2020

The Filesystem API
• you open a file (using the open() syscall)
• you can read() and write() data
• you close() the file when you are done
• you can rename() and unlink() files
• you can use mkdir() to create directories

PB152 Operating Systems 104/757 July 4, 2020

File Descriptors
• the kernel keeps a table of open files
• the file descriptor is an index into this table
• you do everything using file descriptors
• non-Unix systems have similar concepts
∘ descriptors are called handles onWindows

PB152 Operating Systems 105/757 July 4, 2020

Regular files
• these contain sequential data (bytes)
• may have inner structure but the OS does not care
• there is metadata attached to files
∘ like when were they last modified
∘ who can and who cannot access the file

• you read() and write() files

PB152 Operating Systems 106/757 July 4, 2020

Directories
• a list of files and other directories
∘ internal nodes of the filesystem tree
∘ directories give names to files

• can be opened just like files
∘ but read() and write() is not allowed
∘ files are created with open() or creat()
∘ directories with mkdir()

∘ directory listing with opendir() and readdir()

PB152 Operating Systems 107/757 July 4, 2020

Mounts
• UNIX joins all file systems into a single hierarchy
• the root of one filesystem becomes a directory in another
∘ this is called a mount point

• Windows uses drive letters instead (C:, D: &c.)

PB152 Operating Systems 108/757 July 4, 2020

Pipes
• pipes are a simple communication device
• one program can write() data to the pipe
• another program can read() that same data
• each end of the pipe gets a file descriptor
• a pipe can live in the filesystem (named pipe)

PB152 Operating Systems 109/757 July 4, 2020

Devices
• block and character devices are (special) files
• block devices are accessed one block at a time
∘ a typical block device would be a disk
∘ includes USB mass storage, flash storage, etc
∘ you can create a file system on a block device

• character devices are more like normal files
∘ terminals, tapes, serial ports, audio devices

PB152 Operating Systems 110/757 July 4, 2020

Sockets
• the socket API comes from early BSD Unix
• socket represents a (possible) network connection
• sockets are more complicated than normal files
∘ establishing connections is hard
∘ messages get lost much more often than file data

• you get a file descriptor for an open socket
• you can read() and write() to sockets

PB152 Operating Systems 111/757 July 4, 2020

Socket Types
• sockets can be internet or unix domain
∘ internet sockets connect to other computers
∘ Unix sockets live in the filesystem

• sockets can be stream or datagram
∘ stream sockets are like files
∘ you can write a continuous stream of data
∘ datagram sockets can send individual messages

PB152 Operating Systems 112/757 July 4, 2020

Review Questions
• What is a shared (dynamic) library?
• What does a linker do?
• What is a symbol in an object file?
• What is a file descriptor?

PB152 Operating Systems 113/757 July 4, 2020

Part 3: The Kernel

PB152 Operating Systems 114/757 July 4, 2020

Lecture Overview
1. privileged mode
2. booting
3. kernel architecture
4. system calls
5. kernel-provided services

PB152 Operating Systems 115/757 July 4, 2020

Reminder: Software Layering
• → the kernel←
• system libraries
• system services / daemons
• utilities
• application software

PB152 Operating Systems 116/757 July 4, 2020

Part 3.1: Privileged Mode

PB152 Operating Systems 117/757 July 4, 2020

CPUModes
• CPUs provide a privileged (supervisor) and a user mode
• this is the case with all modern general-purpose CPUs
∘ not necessarily with micro-controllers

• x86 provides 4 distinct privilege levels
∘ most systems only use ring 0 and ring 3
∘ Xen paravirtualisation uses ring 1 for guest kernels

PB152 Operating Systems 118/757 July 4, 2020

Privileged Mode
• many operations are restricted in user mode
∘ this is how user programs are executed
∘ also most of the operating system

• software running in privileged mode can do ~anything
∘ most importantly it can program the MMU
∘ the kernel runs in this mode

PB152 Operating Systems 119/757 July 4, 2020

Memory Management Unit
• is a subsystem of the processor
• takes care of address translation
∘ user software uses virtual addresses
∘ the MMU translates them to physical addresses

• the mappings can be managed by the OS kernel

PB152 Operating Systems 120/757 July 4, 2020

Paging
• physical memory is split into frames
• virtual memory is split into pages
• pages and frames have the same size (usually 4KiB)
• frames are places, pages are the content
• page tables map between pages and frames

PB152 Operating Systems 121/757 July 4, 2020

Swapping Pages
• RAM used to be a scarce resource
• paging allows the OS to move pages out of RAM
∘ a page (content) can be written to disk
∘ and the frame can be used for another page

• not as important with contemporary hardware
• useful for memory mapping files (cf. next lecture)

PB152 Operating Systems 122/757 July 4, 2020

Look Ahead: Processes
• process is primarily defined by its address space
∘ address space meaning the valid virtual addresses

• this is implemented via the MMU
• when changing processes, a different page table is loaded
∘ this is called a context switch

• the page table defines what the process can see

PB152 Operating Systems 123/757 July 4, 2020

Memory Maps
• different view of the same principles
• the OS maps physical memory into the process
• multiple processes can have the same RAM area mapped
∘ this is called shared memory

• often, a piece of RAM is only mapped in a single process

PB152 Operating Systems 124/757 July 4, 2020

Page Tables
• the MMU is programmed using translation tables
∘ those tables are stored in RAM
∘ they are usually called page tables

• and they are fully in the management of the kernel
• the kernel can ask the MMU to replace the page table
∘ this is how processes are isolated from each other

PB152 Operating Systems 125/757 July 4, 2020

Kernel Protection
• kernel memory is usually mapped into all processes
∘ this improves performance on many CPUs
∘ (until meltdown hit us, anyway)

• kernel pages have a special ’supervisor’ flag set
∘ code executing in user mode cannot touch them
∘ else, user code could tamper with kernel memory

PB152 Operating Systems 126/757 July 4, 2020

Part 3.2: Booting

PB152 Operating Systems 127/757 July 4, 2020

Starting the OS
• upon power on, the system is in a default state
∘ mainly because RAM is volatile

• the entire platform needs to be initialised
∘ this is first and foremost the CPU
∘ and the console hardware (keyboard, monitor, ...)
∘ then the rest of the devices

PB152 Operating Systems 128/757 July 4, 2020

Boot Process
• the process starts with a built-in hardware init
• when ready, the hardware hands off to the firmware
∘ this was BIOS on 16 and 32 bit systems
∘ replaced with EFI on current amd64 platforms

• the firmware then loads a bootloader
• the bootloader loads the kernel

PB152 Operating Systems 129/757 July 4, 2020

Boot Process (cont’d)
• the kernel then initialises device drivers
• and the root filesystem
• then it hands off to the init process
• at this point, the user space takes over

PB152 Operating Systems 130/757 July 4, 2020

User-mode Initialisation
• initmounts the remaining file systems
• the init process starts up user-mode system services
• then it starts application services
• and finally the login process

PB152 Operating Systems 131/757 July 4, 2020

After Log-In
• the login process initiates the user session
• loads desktop modules and application software
• drops the user in a (text or graphical) shell
• now you can start using the computer

PB152 Operating Systems 132/757 July 4, 2020

CPU Init
• this depends on both architecture and platform
• on x86, the CPU starts in 16-bit mode
• on legacy systems, BIOS & bootloader stay in this mode
• the kernel then switches to protected mode during its boot

PB152 Operating Systems 133/757 July 4, 2020

Bootloader
• historically limited to tens of kilobytes of code
• the bootloader locates the kernel on disk
∘ may allow the operator to choose different kernels
∘ limited understanding of file systems

• then it loads the kernel image into RAM
• and hands off control to the kernel

PB152 Operating Systems 134/757 July 4, 2020

Modern Booting on x86

• the bootloader nowadays runs in protected mode
∘ or even the long mode on 64-bit CPUs

• the firmware understands the FAT filesystem
∘ it can load files from there into memory
∘ this vastly simplifies the boot process

PB152 Operating Systems 135/757 July 4, 2020

Booting ARM
• on ARM boards, there is no unified firmware interface
• U-boot is as close as one gets to unification
• the bootloader needs low-level hardware knowledge
• this makes writing bootloaders for ARM quite tedious
• current U-boot can use the EFI protocol from PCs

PB152 Operating Systems 136/757 July 4, 2020

Part 3.3: Kernel Architecture

PB152 Operating Systems 137/757 July 4, 2020

Architecture Types
• monolithic kernels (Linux, *BSD)
• microkernels (Mach, L4, QNX, NT, ...)
• hybrid kernels (macOS)
• type 1 hypervisors (Xen)
• exokernels, rump kernels

PB152 Operating Systems 138/757 July 4, 2020

Microkernel
• handles memory protection
• (hardware) interrupts
• task / process scheduling
• message passing
• everything else is separate

PB152 Operating Systems 139/757 July 4, 2020

Monolithic kernels
• all that a microkernel does
• plus device drivers
• file systems, volume management
• a network stack
• data encryption, ...

PB152 Operating Systems 140/757 July 4, 2020

Microkernel Redux
• we need a lot more than a microkernel provides
• in a “true” microkernel OS, there are many modules
• each device driver runs in a separate process
• the same for file systems and networking
• those modules / processes are called servers

PB152 Operating Systems 141/757 July 4, 2020

Hybrid Kernels
• based around a microkernel
• and a gutted monolithic kernel
• the monolithic kernel is a big server
∘ takes care of stuff not handled by the microkernel
∘ easier to implement than true microkernel OS
∘ strikes middle ground on performance

PB152 Operating Systems 142/757 July 4, 2020

Micro vs Mono
• microkernels are more robust
• monolithic kernels are more efficient
∘ less context switching

• what is easier to implement is debatable
∘ in the short view, monolithic wins

• hybrid kernels are a compromise

PB152 Operating Systems 143/757 July 4, 2020

Exokernels
• smaller than a microkernel
• much fewer abstractions
∘ applications only get block storage
∘ networking is much reduced

• only research systems exist

PB152 Operating Systems 144/757 July 4, 2020

Type 1 Hypervisors
• also known as bare metal or native hypervisors
• they resemble microkernel operating systems
∘ or exokernels, depending on the viewpoint

• “applications” for a hypervisor are operating systems
∘ hypervisor can use coarser abstractions than an OS
∘ entire storage devices instead of a filesystem

PB152 Operating Systems 145/757 July 4, 2020

Unikernels
• kernels for running a single application
∘ makes little sense on real hardware
∘ but can be very useful on a hypervisor

• bundle applications as virtual machines
∘ without the overhead of a general-purpose OS

PB152 Operating Systems 146/757 July 4, 2020

Exo vs Uni
• an exokernel runs multiple applications
∘ includes process-based isolation
∘ but abstractions are very bare-bones

• unikernel only runs a single application
∘ provides more-or-less standard services
∘ e.g. standard hierarchical file system
∘ socket-based network stack / API

PB152 Operating Systems 147/757 July 4, 2020

Part 3.4: System Calls

PB152 Operating Systems 148/757 July 4, 2020

Reminder: Kernel Protection
• kernel executes in privileged mode of the CPU
• kernel memory is protected from user code

But: Kernel Services
• user code needs to ask kernel for services
• how do we switch the CPU into privileged mode?
• cannot be done arbitrarily (security)

PB152 Operating Systems 149/757 July 4, 2020

System Calls
• hand off execution to a kernel routine
• pass arguments into the kernel
• obtain return value from the kernel
• all of this must be done safely

PB152 Operating Systems 150/757 July 4, 2020

Trapping into the Kernel
• there are a few possible mechanisms
• details are very architecture-specific
• in general, the kernel sets a fixed entry address
∘ an instruction changes the CPU into privileged mode
∘ while at the same time jumping to this address

PB152 Operating Systems 151/757 July 4, 2020

Trap Example: x86
• there is an int instruction on those CPUs
• this is called a software interrupt
∘ interrupts are normally a hardware thing
∘ interrupt handlers run in privileged mode

• it is also synchronous
• the handler is set in IDT (interrupt descriptor table)

PB152 Operating Systems 152/757 July 4, 2020

Software Interrupts
• those are available on a range of CPUs
• generally not very efficient for system calls
• extra level of indirection
∘ the handler address is retrieved from memory
∘ a lot of CPU state needs to be saved

PB152 Operating Systems 153/757 July 4, 2020

Aside: SW Interrupts on PCs
• those are used even in real mode
∘ legacy 16-bit mode of 80x86 CPUs
∘ BIOS (firmware) routines via int 0x10 & 0x13

∘ MS-DOS API via int 0x21

• and on older CPUs in 32-bit protected mode
∘ Windows NT uses int 0x2e

∘ Linux uses int 0x80

PB152 Operating Systems 154/757 July 4, 2020

Trap Example: amd64 / x86_64
• sysenter and syscall instructions
∘ and corresponding sysexit / sysret

• the entry point is stored in a machine state register
• there is only one entry point
∘ unlike with software interrupts

• quite a bit faster than interrupts

PB152 Operating Systems 155/757 July 4, 2020

Which System Call?
• often there are many system calls
∘ there are more than 300 on 64-bit Linux
∘ about 400 on 32-bit Windows NT

• but there is only a handful of interrupts
∘ and only one sysenter address

PB152 Operating Systems 156/757 July 4, 2020

Reminder: System Call Numbers
• each system call is assigned a number
• available as SYS_write &c. on POSIX systems
• for the “universal” int syscall(int sys, ...)

• this number is passed in a CPU register

PB152 Operating Systems 157/757 July 4, 2020

System Call Sequence
• first, libc prepares the system call arguments
• and puts the system call number in the correct register
• then the CPU is switched into privileged mode
• this also transfers control to the syscall handler

PB152 Operating Systems 158/757 July 4, 2020

System Call Handler
• the handler first picks up the system call number
• and decides where to continue
• you can imagine this as a giant switch statement

switch (sysnum)

{

case SYS_write: return syscall_write();

case SYS_read: return syscall_read();

/* many more */

}

PB152 Operating Systems 159/757 July 4, 2020

System Call Arguments
• each system call has different arguments
• how they are passed to the kernel is CPU-dependent
• on 32-bit x86, most of them are passed in memory
• on amd64 Linux, all arguments go into registers
∘ 6 registers available for arguments

PB152 Operating Systems 160/757 July 4, 2020

Part 3.5: Kernel Services

PB152 Operating Systems 161/757 July 4, 2020

What Does a Kernel Do?
• memory & process management
• task (thread) scheduling
• device drivers
∘ SSDs, GPUs, USB, bluetooth, HID, audio, ...

• file systems
• networking

PB152 Operating Systems 162/757 July 4, 2020

Additional Services
• inter-process communication
• timers and time keeping
• process tracing, profiling
• security, sandboxing
• cryptography

PB152 Operating Systems 163/757 July 4, 2020

Reminder: Microkernel Systems
• the kernel proper is very small
• it is accompanied by servers
• in “true” microkernel systems, there are many servers
∘ each device, filesystem, etc. is separate

• in hybrid systems, there is one, or a few
∘ a “superserver” that resembles a monolithic kernel

PB152 Operating Systems 164/757 July 4, 2020

Kernel Services
• we usually don’t care which server provides what
∘ each system is different
∘ for services, we take a monolithic view

• the services are used through system librares
∘ they abstract away many of the details
∘ e.g. whether a service is a system call or an IPC call

PB152 Operating Systems 165/757 July 4, 2020

User-Space Drivers in Monolithic Systems
• not all device drivers are part of the kernel
• case in point: printer drivers
• also some USB devices (not the USB bus though)
• part of the GPU/graphics stack
∘ memory and output management in kernel
∘ most of OpenGL in user space

PB152 Operating Systems 166/757 July 4, 2020

Review Questions
• What CPU modes are there and how are they used?
• What is the memory management unit?
• What is a microkernel?
• What is a system call?

PB152 Operating Systems 167/757 July 4, 2020

Part 4: File Systems

PB152 Operating Systems 168/757 July 4, 2020

Lecture Overview
1. Filesystem Basics
2. The Block Layer
3. Virtual Filesystem Switch
4. The UNIX Filesystem
5. Advanced Features

PB152 Operating Systems 169/757 July 4, 2020

Part 4.1: Filesystem Basics

PB152 Operating Systems 170/757 July 4, 2020

What is a File System?
• a collection of files and directories
• (mostly) hierarchical
• usually exposed to the user
• usually persistent (across reboots)
• file managers, command line, etc.

PB152 Operating Systems 171/757 July 4, 2020

What is a (Regular) File?
• a sequence of bytes
• and some basic metadata
∘ owner, group, timestamp

• the OS does not care about the content
∘ text, images, video, source code are all the same
∘ executables are somewhat special

PB152 Operating Systems 172/757 July 4, 2020

What is a Directory?
• a list of name→ file mappings
• an associative container if you will
∘ semantically, the value types are not homogeneous
∘ syntactically, they are just i-nodes

• one directory = one component of a path
∘ /usr/local/bin

PB152 Operating Systems 173/757 July 4, 2020

What is an i-node?
• an anonymous, file-like object
• could be a regular file
∘ or a directory
∘ or a special file
∘ or a symlink

PB152 Operating Systems 174/757 July 4, 2020

Files are Anonymous
• this is the case with UNIX
∘ not all file systems work like this

• there are pros and cons to this approach
∘ e.g. open files can be unlinked

• names are assigned via directory entries

PB152 Operating Systems 175/757 July 4, 2020

What Else is a Byte Sequence?
• characters coming from a keyboard
• bytes stored on a magnetic tape
• audio data coming from a microphone
• pixels coming from a webcam
• data coming on a TCP connection

PB152 Operating Systems 176/757 July 4, 2020

Writing Byte Sequences
• sending data to a printer
• playing back audio
• writing text to a terminal (emulator)
• sending data over a TCP stream

PB152 Operating Systems 177/757 July 4, 2020

Special Files
• many things look somewhat like files
• let’s exploit that and unify them with files
• recall part 2 on APIs: “everything is a file”
∘ the API is the same for special and regular files
∘ not the implementation though

PB152 Operating Systems 178/757 July 4, 2020

File System Types
• fat16, fat32, vfat, exfat (DOS, flash media)
• ISO 9660 (CD-ROMs)
• UDF (DVD-ROM)
• NTFS (Windows NT)
• HFS+ (macOS)
• ext2, ext3, ext4 (Linux)
• ufs, ffs (BSD)

PB152 Operating Systems 179/757 July 4, 2020

Multi-User Systems
• file ownership
• file permissions
• disk quotas

PB152 Operating Systems 180/757 July 4, 2020

Ownership & Permissions
• we assume a discretionary model
• whoever creates a file is its owner
• ownership can be transferred
• the owner decides about permissions
∘ basically read, write, execute

PB152 Operating Systems 181/757 July 4, 2020

Disk Quotas
• disks are big but not infinite
• bad things happen when the file system fills up
∘ denial of service
∘ programs may fail and even corrupt data

• quotas limits the amount of space per user

PB152 Operating Systems 182/757 July 4, 2020

Part 4.2: The Block Layer

PB152 Operating Systems 183/757 July 4, 2020

Disk-Like Devices
• disk drives provide block-level access
• read and write data in 512-byte chunks
∘ or also 4K on big modern drives

• a big numbered array of blocks

PB152 Operating Systems 184/757 July 4, 2020

Aside: Disk Addressing Schemes
• CHS: Cylinder, Head, Sector
∘ structured adressing used in (very) old drives
∘ exposes information about relative seek times
∘ useless with variable-length cylinders
∘ 10:4:6 CHS = 1024 cylinders, 16 heads, 63 sectors

• LBA: Logical Block Addessing
∘ linear, unstructured address space
∘ started as 22, later 28, ... now 48 bit

PB152 Operating Systems 185/757 July 4, 2020

Block-Level Access
• disk drivers only expose linear addressing
• one block (sector) is the minimum read/write size
• many sectors can be written ‘at once’
∘ sequential access is faster than random
∘ maximum throughput vs IOPS

PB152 Operating Systems 186/757 July 4, 2020

Aside: Access Times
• block devices are slow (compared to RAM)
∘ RAM is slow (compared to CPU)

• we cannot treat drives as an extension of RAM
∘ not even fastest modern flash storage
∘ latency: HDD 3–12 ms, SSD 0.1 ms, RAM 70 ns

PB152 Operating Systems 187/757 July 4, 2020

Block Access Cache
• caching is used to hide latency
∘ same principle between CPU and RAM

• files recently accessed are kept in RAM
∘ many cache management policies exist

• implemented entirely in the OS
∘ many devices implement their own caching
∘ but the amount of fast memory is usually limited

PB152 Operating Systems 188/757 July 4, 2020

Write Buffers
• the write equivalent of the block cache
• data is kept in RAM until it can be processed
• must synchronise with caching
∘ other users may be reading the file

PB152 Operating Systems 189/757 July 4, 2020

I/O Scheduler (Elevator)
• reads and writes are requested by users
• access ordering is crucial on a mechanical drive
∘ not as important on an SSD
∘ but sequential access is still much preferred

• requests are queued (recall, disks are slow)
∘ but they are not processed in FIFO order

PB152 Operating Systems 190/757 July 4, 2020

RAID
• hard drives are also unreliable
∘ backups help, but take a long time to restore

• RAID = Redundant Array of Inexpensive Disks
∘ live-replicate same data across multiple drives
∘ many different configurations

• the system stays online despite disk failures

PB152 Operating Systems 191/757 July 4, 2020

RAID Performance
• RAID affects the performance of the block layer
• often improved reading throughput
∘ data is recombined from multiple channels

• write performance is more mixed
∘ may require a fair amount of computation
∘ more data needs to be written for redundancy

PB152 Operating Systems 192/757 July 4, 2020

Block-Level Encryption
• symmetric & length-preserving
• encryption key is derived from a passphrase
• also known as “full disk encryption”
• incurs a small performance penalty
• very important for security / privacy

PB152 Operating Systems 193/757 July 4, 2020

Storing Data in Blocks
• splitting data into fixed-size chunks is unnatural
• there is no permission system for individual blocks
∘ this is unlike virtual (paged) memory
∘ it’d be really inconvenient for users

• processes are not persistent, but block storage is

PB152 Operating Systems 194/757 July 4, 2020

Filesystem as Resource Sharing
• usually only 1 or few disks per computer
• many programs want to store persistent data
• file system allocates space for the data
∘ which blocks belong to which file

• different programs can write to different files
∘ no risk of trying to use the same block

PB152 Operating Systems 195/757 July 4, 2020

Filesystem as Abstraction
• allows the data to be organised into files
• enables the user to manage and review data
• files have arbitrary & dynamic size
∘ blocks are transparently allocated & recycled

• structured data instead of a flat block array

PB152 Operating Systems 196/757 July 4, 2020

Part 4.3: Virtual Filesystem Switch

PB152 Operating Systems 197/757 July 4, 2020

Virtual File System Layer
• many different filesystems
• the OS wants to treat them all alike
• VFS provides an internal, in-kernel API
• filesystem syscalls are hooked up to VFS

PB152 Operating Systems 198/757 July 4, 2020

VFS in OOP terms
• VFS provides an abstract class, filesystem
• each filesystem implementation derives filesystem
∘ e.g. class iso9660 : public filesystem

• each actual file system gets an instance
∘ /home, /usr, /mnt/usbflash each one
∘ the kernel uses the abstract interface to talk to them

PB152 Operating Systems 199/757 July 4, 2020

The filesystem Class

struct handle { /* ... */ };

struct filesystem

{

virtual int open(const char *path) = 0;

virtual int read(handle file, ...) = 0;

/* ... */

}

PB152 Operating Systems 200/757 July 4, 2020

Filesystem-Specific Operations
• open: look up the file for access
• read, write – self-explanatory
• seek: move the read/write pointer
• sync: flush data to disk
• mmap: memory-mapped IO
• select: IO readiness notification

PB152 Operating Systems 201/757 July 4, 2020

Standard IO
• the usual way to use files
• open the file
∘ operations to read and write bytes

• data has to be buffered in user space
∘ and then copied to/from kernel space

• not very efficient

PB152 Operating Systems 202/757 July 4, 2020

Memory-mapped IO
• uses virtual memory (cf. last lecture)
• treat a file as if it was swap space
• the file is mapped into process memory
∘ page faults indicate that data needs to be read
∘ dirty pages cause writes

• available as the mmap system call

PB152 Operating Systems 203/757 July 4, 2020

Sync-ing Data
• recall that the disk is very slow
• waiting for each write to hit disk is inefficient
• but if data is held in RAM, what if power is cut?
∘ the sync operation ensures the data has hit disk
∘ often used in database implementations

PB152 Operating Systems 204/757 July 4, 2020

Filesystem-Agnostic Operations
• handling executables
• fcntl handling
• special files
• management of file descriptors
• file locks

PB152 Operating Systems 205/757 July 4, 2020

Executables
• memory mapped (like mmap)
• may be paged in lazily
• executables must be immutable while running
• but can be still unlinked from the directory

PB152 Operating Systems 206/757 July 4, 2020

File Locking
• multiple programs writing the same file is bad
∘ operations will come in randomly
∘ the resulting file will be a mess

• file locks fix this problem
∘ multiple APIs: fcntl vs flock
∘ differences on networked filesystems

PB152 Operating Systems 207/757 July 4, 2020

The fcntl Syscall
• mostly operations relating to file descriptors
∘ synchronous vs asynchronous access
∘ blocking vs non-blocking
∘ close on exec: more on this in a later lecture

• one of the several locking APIs

PB152 Operating Systems 208/757 July 4, 2020

Special Files
• device nodes, pipes, sockets, ...
• only metadata for special files lives on disk
∘ this includes permissions & ownership
∘ type and properties of the special file

• they are just different kind of an i-node
• open, read, write, etc. bypass the filesystem

PB152 Operating Systems 209/757 July 4, 2020

Mount Points
• recall that there is only a single directory tree
• but there are multiple disks and filesystems
• file systems can be joined at directories
• root of one becomes a subdirectory of another

PB152 Operating Systems 210/757 July 4, 2020

Part 4.4: The UNIX Filesystem

PB152 Operating Systems 211/757 July 4, 2020

Superblock
• holds toplevel information about the filesystem
• locations of i-node tables
• locations of i-node and free space bitmaps
• block size, filesystem size

PB152 Operating Systems 212/757 July 4, 2020

I-Nodes
• recall that i-node is an anonymous file
∘ or a directory, or a special

• i-nodes only have numbers
• directories tie names to i-nodes

PB152 Operating Systems 213/757 July 4, 2020

I-Node Allocation
• often a fixed number of i-nodes
• i-nodes are either used or free
• free i-nodes may be stored in a bitmap
• alternatives: B-trees

PB152 Operating Systems 214/757 July 4, 2020

I-Node Content
• exact content of an i-node depends on its type
• regular file i-nodes contain a list of data blocks
∘ both direct and indirect (via a data block)

• symbolic links contain the target path
• special devices describe what device they represent

PB152 Operating Systems 215/757 July 4, 2020

Attaching Data to I-Nodes
• a few direct block addresses in the i-node
∘ eg. 10 refs, 4K blocks, max. 40 kilobytes

• indirect data blocks
∘ a block full of addresses of other blocks
∘ one indirect block approx. 2 MiB of data

• extents: a contiguous range of blocks

PB152 Operating Systems 216/757 July 4, 2020

Fragmentation
• internal – not all blocks are fully used
∘ files are of variable size, blocks are fixed
∘ a 4100 byte file needs 2 blocks of 4 KiB each
∘ this leads to waste of disk space

• external – free space is non-contiguous
∘ happens when many files try to grow at once
∘ this means new files are also fragmented

PB152 Operating Systems 217/757 July 4, 2020

External Fragmentation Problems
• performance: can’t use fast sequential IO
∘ programs often read files sequentially
∘ fragmention→ random IO on the device

• metadata size: can’t use long extents

PB152 Operating Systems 218/757 July 4, 2020

Directories
• uses data blocks (like regular files)
• but the blocks hold name→ i-node maps
• modern file systems use hashes or trees
• the format of directory data is filesystem-specific

PB152 Operating Systems 219/757 July 4, 2020

File Name Lookup
• we often need to find a file based on a path
• each component means a directory search
• directories can have many thousands entries

PB152 Operating Systems 220/757 July 4, 2020

Old-Style Directories
• unsorted sequential list of entries
• new entries are simply appended at the end
• unlinking can create holes
• lookup in large directories is very inefficient

PB152 Operating Systems 221/757 July 4, 2020

Hash-Based Directories
• only need one block read on average
• often the most efficient option
• extendible hashing
∘ directories can grow over time
∘ gradually allocates more blocks

PB152 Operating Systems 222/757 July 4, 2020

Tree-Based Directories
• self-balancing search trees
• optimised for block-level access
• B trees, B+ trees, B* trees
• logarithmic number of reads
∘ this is worst case, unlike hashing

PB152 Operating Systems 223/757 July 4, 2020

Hard Links
• multiple names can refer to the same i-node
∘ names are given by directory entries
∘ we call such multiple-named files hard links
∘ it’s usually forbidden to hard-link directories

• hard links cannot cross device boundaries
∘ i-node numbers are only unique within a filesystem

PB152 Operating Systems 224/757 July 4, 2020

Soft Links (Symlinks)
• they exist to lift the one-device limitation
• soft links to directories are allowed
∘ this can cause loops in the filesystem

• the soft link i-node contains a path
∘ the meaning can change when paths change

• dangling link: points to a non-existent path

PB152 Operating Systems 225/757 July 4, 2020

Free Space
• similar problem to i-node allocation
∘ but regards data blocks

• goal: quickly locate data blocks to use
∘ also: keep data of a single file close together
∘ also: minimise external fragmentation

• usually bitmaps or B-trees

PB152 Operating Systems 226/757 July 4, 2020

File System Consistency
• what happens if power is cut?
• data buffered in RAM is lost
• the IO scheduler can re-order disk writes
• the file system can become corrupt

PB152 Operating Systems 227/757 July 4, 2020

Journalling
• also known as an intent log
• write down what was going to happen synchronously
• fix the actual metadata based on the journal
• has a performance penalty at run-time
∘ reduces downtime due to faster consistency checks
∘ may also prevent data loss

PB152 Operating Systems 228/757 July 4, 2020

Part 4.5: Advanced Features

PB152 Operating Systems 229/757 July 4, 2020

What Else Can Filesystems Do?
• transparent file compression
• file encryption
• block de-duplication
• snapshots
• checksums
• redundant storage

PB152 Operating Systems 230/757 July 4, 2020

File Compression
• use one of the standard compression algorithms
∘ must be fairly general-purpose (i.e. not JPEG)
∘ and of course lossless
∘ e.g. LZ77, LZW, Huffman Coding, ...

• quite challenging to implement
∘ the length of the file changes (unpredictably)
∘ efficient random access inside the file

PB152 Operating Systems 231/757 July 4, 2020

File Encryption
• use symmetric encryption for individual files
∘ must be transparent to upper layers (applications)
∘ symmetric crypto is length-preserving
∘ encrypted directories, inheritance, &c.

• a new set of challenges
∘ key and passphrase management

PB152 Operating Systems 232/757 July 4, 2020

Block De-duplication
• sometimes the same data block appears many times
∘ virtual machine images are a common example
∘ also containers and so on

• some file systems will identify those cases
∘ internally point many files to the same block
∘ copy on write to preserve illusion of separate files

PB152 Operating Systems 233/757 July 4, 2020

Snapshots
• it is convenient to be able to copy entire filesystems
∘ but this is also expensive
∘ snapshots provide an efficient means for this

• snapshot is a frozen image of the filesystem
∘ cheap, because snapshots share storage
∘ easier than de-duplication
∘ again implemented as copy-on-write

PB152 Operating Systems 234/757 July 4, 2020

Checksums
• hardware is unreliable
∘ individual bytes or sectors may get corrupted
∘ this may happen without the hardware noticing

• checksums may be stored along with metadata
∘ and possibly also file content
∘ this protects the integrity of the filesystem

• beware: not cryptographically secure

PB152 Operating Systems 235/757 July 4, 2020

Redundant Storage
• like filesystem-level RAID
• data and metadata blocks are replicated
∘ may be between multiple local block devices
∘ but also across a cluster / many computers

• drastically improves fault tolerance

PB152 Operating Systems 236/757 July 4, 2020

Review Questions
• What is a block device?
• What is an IO scheduler?
• What does memory-mapped IO mean?
• What is an i-node?

PB152 Operating Systems 237/757 July 4, 2020

Part 5: Processes, Threads & Scheduling

PB152 Operating Systems 238/757 July 4, 2020

Lecture Overview
1. processes and virtual memory
2. thread scheduling
3. interrupts and clocks

PB152 Operating Systems 239/757 July 4, 2020

Part 5.1: Processes and Virtual Memory

PB152 Operating Systems 240/757 July 4, 2020

Prehistory: Batch Systems
• first computers ran one program at a time
• programs were scheduled ahead of time
• we are talking punch cards &c.
• and computers that took an entire room

PB152 Operating Systems 241/757 July 4, 2020

History: Time Sharing
• “mini” computers could run programs interactively
• teletype terminals, screens, keyboards
• multiple users at the same time
• hence, multiple programs at the same time

PB152 Operating Systems 242/757 July 4, 2020

Processes: Early View
• process is an executing program
• there can be multiple processes
• various resources belong to a process
• each process belongs to a particular user

PB152 Operating Systems 243/757 July 4, 2020

Process Resources
• memory (address space)
• processor time
• open files (descriptors)
∘ also working directory
∘ also network connections

PB152 Operating Systems 244/757 July 4, 2020

Process Memory Segments
• program text: contains instructions
• data: static and dynamic data
∘ with a separate read-only section

• stack memory: execution stack
∘ return addresses
∘ automatic variables

PB152 Operating Systems 245/757 July 4, 2020

Process Memory
• each process has its own address space
• this means processes are isolated from each other
• requires that the CPU has an MMU
• implemented via paging (page tables)

PB152 Operating Systems 246/757 July 4, 2020

Process Switching
• switching processes means switching page tables
• physical addresses do not change
• but the mapping of virtual addresses does
• large part of physical memory is not mapped
∘ could be completely unallocated (unused)
∘ or belong to other processes

PB152 Operating Systems 247/757 July 4, 2020

Paging and TLB
• address translation is slow
• recently-used pages are stored in a TLB
∘ short for Translation Look-aside Buffer
∘ very fast hardware cache

• the TLB needs to be flushed on process switch
∘ this is fairly expensive (microseconds)

PB152 Operating Systems 248/757 July 4, 2020

Threads
• the modern unit of CPU scheduling
• each thread runs sequentially
• one process can have multiple threads
∘ such threads share a single address space

PB152 Operating Systems 249/757 July 4, 2020

What is a Thread?
• thread is a sequence of instructions
∘ instructions depend on results of previous instructions

• different threads run different instructions
∘ as opposed to SIMD or many-core units (GPUs)

• each thread has its own stack

PB152 Operating Systems 250/757 July 4, 2020

Processor Time Sharing
• CPU time is sliced into time shares
• time shares (slices) are like memory frames
• process computation is like memory pages
• processes are allocated into time shares

PB152 Operating Systems 251/757 July 4, 2020

Multiple CPUs
• execution of a thread is sequential
• one CPU = one instruction sequence at a time
• physical limits on CPU speed→multiple cores
• more CPU cores = more throughput

PB152 Operating Systems 252/757 July 4, 2020

Modern View of a Process
• in a modern view, process is an address space
• threads are the right scheduling abstraction
• process is a unit of memory management
• thread is a unit of computation
• old view: one process = one thread

PB152 Operating Systems 253/757 July 4, 2020

Memory Segment Redux
• one (shared) text segment
• a shared read-write data segment
• a read-only data segment
• one stack for each thread

PB152 Operating Systems 254/757 July 4, 2020

Fork
• how do we create new processes?
• by fork-ing existing processes
• fork creates an identical copy of a process
• execution continues in both processes
∘ each of them gets a different return value

PB152 Operating Systems 255/757 July 4, 2020

Lazy Fork
• paging can make fork quite efficient
• we start by copying the page tables
• initially, all pages are marked read-only
• the processes start out sharing memory

PB152 Operating Systems 256/757 July 4, 2020

Lazy Fork: Faults
• the shared memory becomes copy on write
• fault when either process tries to write
∘ remember the memory is marked as read-only

• the OS checks if the memory is supposed to be writable
∘ if yes, it makes a copy and allows the write

PB152 Operating Systems 257/757 July 4, 2020

Init
• on UNIX, fork is the only way to make a process
• but fork splits existing processes into 2
• the first process is special
• it is directly spawned by the kernel on boot

PB152 Operating Systems 258/757 July 4, 2020

Process Identifier
• processes are assigned numeric identifiers
• also known as PID (Process ID)
• those are used in process management
• used calls like kill or setpriority

PB152 Operating Systems 259/757 July 4, 2020

Process vs Executable
• process is a dynamic entity
• executable is a static file
• an executable contains an initial memory image
∘ this sets up memory layout
∘ and content of the text and data segments

PB152 Operating Systems 260/757 July 4, 2020

Exec
• on UNIX, processes are created via fork

• how do we run programs though?
• exec: load a new executable into a process
∘ this completely overwrites process memory
∘ execution starts from the entry point

• running programs: fork + exec

PB152 Operating Systems 261/757 July 4, 2020

Part 5.2: Thread Scheduling

PB152 Operating Systems 262/757 July 4, 2020

What is a Scheduler?
• scheduler has two related tasks
∘ plan when to run which thread
∘ actually switch threads and processes

• usually part of the kernel
∘ even in micro-kernel operating systems

PB152 Operating Systems 263/757 July 4, 2020

Switching Threads
• threads of the same process share an address space
∘ a partial context switch is needed
∘ only register state has to be saved and restored

• no TLB flushing – lower overhead

PB152 Operating Systems 264/757 July 4, 2020

Fixed vs Dynamic Schedule
• fixed schedule = all processes known in advance
∘ only useful in special / embedded systems
∘ can conserve resources
∘ planning is not part of the OS

• most systems use dynamic scheduling
∘ what to run next is decided periodically

PB152 Operating Systems 265/757 July 4, 2020

Preemptive Scheduling
• tasks (threads) just run as if they owned the CPU
• the OS forcibly takes the CPU away from them
∘ this is called preemption

• pro: a faulty program cannot block the system
• somewhat less efficient than cooperative

PB152 Operating Systems 266/757 July 4, 2020

Cooperative Scheduling
• threads (tasks) cooperate to share the CPU
• each thread has to explicitly yield
• this can be very efficient if designed well
• but a bad program can easily block the system

PB152 Operating Systems 267/757 July 4, 2020

Scheduling in Practice
• cooperative onWindows 3.x for everything
• cooperative for threads on classic Mac OS
∘ but preemptive for processes

• preemptive on pretty much every modern OS
∘ including real-time and embedded systems

PB152 Operating Systems 268/757 July 4, 2020

Waiting and Yielding
• threads often need to wait for resources or events
∘ they could also use software timers

• a waiting thread should not consume CPU time
• such a thread will yield the CPU
• it is put on a list and later woken up by the kernel

PB152 Operating Systems 269/757 July 4, 2020

Run Queues
• runnable (non-waiting) threads are queued
• could be priority, round-robin or other queue types
• scheduler picks threads from the run queue
• preempted threads are put back

PB152 Operating Systems 270/757 July 4, 2020

Priorities
• what share of the CPU should a thread get?
• priorities are static and dynamic
• dynamic priority is adjusted as the thread runs
∘ this is done by the system / scheduler

• a static priority is assigned by the user

PB152 Operating Systems 271/757 July 4, 2020

Fairness
• equal (or priority-based) share per thread
• what if one process has many more threads?
• what if one user has many more processes?
• what if one user group has many more active users?

PB152 Operating Systems 272/757 July 4, 2020

Fair Share Scheduling
• we can use a multi-level scheduling scheme
• CPU is sliced fairly first among user groups
• then among users
• then among processes
• and finally among threads

PB152 Operating Systems 273/757 July 4, 2020

Scheduling Strategies
• first in, first served (batch systems)
• earliest deadline first (realtime)
• round robin
• fixed priority preemptive
• fair share scheduling (multi-user)

PB152 Operating Systems 274/757 July 4, 2020

Interactivity
• throughput vs latency
• latency is more important for interactive workloads
∘ think phone or desktop systems
∘ but also web servers

• throughput is more important for batch systems
∘ think render farms, compute grids, simulation

PB152 Operating Systems 275/757 July 4, 2020

Reducing Latency
• shorter time slices
• more willingness to switch tasks (more preemption)
• dynamic priorities
• priority boost for foreground processes

PB152 Operating Systems 276/757 July 4, 2020

Maximising Throughput
• longer time slices
• reduce context switches to minimum
• cooperative multitasking

PB152 Operating Systems 277/757 July 4, 2020

Multi-Core Schedulers
• traditionally one CPU, many threads
• nowadays: many threads, many CPUs (cores)
• more complicated algorithms
• more complicated & concurrent-safe data structures

PB152 Operating Systems 278/757 July 4, 2020

Scheduling and Caches
• threads can move between CPU cores
∘ important when a different core is idle
∘ and a runnable thread is waiting for CPU

• but there is a price to pay
∘ thread / process data is extensively cached
∘ caches are typically not shared by all cores

PB152 Operating Systems 279/757 July 4, 2020

Core Affinity
• modern schedulers try to avoid moving threads
• threads are said to have an affinity to a core
• an extreme case is pinning
∘ this altogether prevents the thread to be migrated

• practically, this practice improves throughput
∘ even if nominal core utilisation may be lower

PB152 Operating Systems 280/757 July 4, 2020

NUMA Systems
• non-uniform memory architecture
∘ different memory is attached to different CPUs
∘ each SMP block within a NUMA is called a node

• migrating a process to a different node is expensive
∘ thread vs node ping-pong can kill performance
∘ threads of one process should live on one node

PB152 Operating Systems 281/757 July 4, 2020

Part 5.3: Interrupts and Clocks

PB152 Operating Systems 282/757 July 4, 2020

Interrupt
• a way for hardware to request attention
• CPU mechanism to divert execution
• partial (CPU state only) context switch
• switch to privileged (kernel) CPU mode

PB152 Operating Systems 283/757 July 4, 2020

Hardware Interrupts
• asynchronous, unlike software interrupts
• triggered via bus signals to the CPU
• IRQ = interrupt request
∘ just a different name for hardware interrupts

• PIC = programmable interrupt controller

PB152 Operating Systems 284/757 July 4, 2020

Interrupt Controllers
• PIC: simple circuit, typically with 8 input lines
∘ peripherals connect to the PIC with wires
∘ PIC delivers prioritised signals to the CPU

• APIC: advanced programmable interrupt controller
∘ split into a shared IO APIC and per-core local APIC
∘ typically 24 incoming IRQ lines

• OpenPIC, MPIC: similar to APIC, used by e.g. Freescale

PB152 Operating Systems 285/757 July 4, 2020

Timekeeping
• PIT: programmable interval timer
∘ crystal oscillator + divider
∘ IRQ line to the CPU

• local APIC timer: built-in, per-core clock
• HPET: high-precision event timer
• RTC: real-time clock

PB152 Operating Systems 286/757 July 4, 2020

Timer Interrupt
• generated by the PIT or the local APIC
• the OS can set the frequency
• a hardware interrupt happens on each tick
• this creates an opportunity for bookkeeping
• and for preemptive scheduling

PB152 Operating Systems 287/757 July 4, 2020

Timer Interrupt and Scheduling
• measure how much time the current thread took
• if it ran out of its slice, preempt it
∘ pick a new thread to execute
∘ perform a context switch

• checks are done on each tick
∘ rescheduling is usually less frequent

PB152 Operating Systems 288/757 July 4, 2020

Timer Interrupt Frequency
• typical is 100 Hz
• this means a 10 ms scheduling tick (quantum)
• 1 kHz is also possible
∘ harms throughput but improves latency

PB152 Operating Systems 289/757 July 4, 2020

Tickless Kernels
• the timer interrupt wakes up the CPU
• this can be inefficient if the system is idle
• alternative: use one-off timers
∘ allows the CPU to sleep longer
∘ this improves power efficiency on light loads

PB152 Operating Systems 290/757 July 4, 2020

Tickless Scheduling
• quantum length becomes part of the planning
• if a core is idle, wake up on next software timer
∘ synchronisation of software timers

• other interrupts are delivered as normal
∘ network or disk activity
∘ keyboard, mice, ...

PB152 Operating Systems 291/757 July 4, 2020

Other Interrupts
• serial port
∘ data is available on the port

• network hardware
∘ data is available in a packet queue

• keyboards, mice
∘ user pressed a key, moved the mouse

• USB devices in general

PB152 Operating Systems 292/757 July 4, 2020

Interrupt Routing
• not all CPU cores need to see all interrupts
• APIC can be told how to deliver IRQs
∘ the OS can route IRQs to CPU cores

• multi-core systems: IRQ load balancing
∘ useful to spread out IRQ overhead
∘ especially useful with high-speed networks

PB152 Operating Systems 293/757 July 4, 2020

Review Questions
• What is a thread and a process?
• What is a (thread, process) scheduler?
• What do fork and exec do?
• What is an interrupt?

PB152 Operating Systems 294/757 July 4, 2020

Part 6: Concurrency and Locking

PB152 Operating Systems 295/757 July 4, 2020

Lecture Overview
1. Inter-Process Communication
2. Synchronisation
3. Deadlocks

PB152 Operating Systems 296/757 July 4, 2020

What is Concurrency?
• events that can happen at the same time
• it is not important if it does, only that it can
• events can be given a happens-before partial order
• they are concurrent if unordered by happens-before

PB152 Operating Systems 297/757 July 4, 2020

Why Concurrency?
• problem decomposition
∘ different tasks can be largely independent

• reflecting external concurrency
∘ serving multiple clients at once

• performance and hardware limitations
∘ higher throughput on multicore computers

PB152 Operating Systems 298/757 July 4, 2020

Parallel Hardware
• hardware is inherently parallel
• software is inherently sequential
• something has to give
∘ hint: it’s not going to be hardware

PB152 Operating Systems 299/757 July 4, 2020

Part 6.1: Inter-Process Communication

PB152 Operating Systems 300/757 July 4, 2020

Reminder: What is a Thread
• thread is a sequence of instructions
• each instruction happens-before the next
∘ or: happens-before is a total order on the thread

• basic unit of scheduling

PB152 Operating Systems 301/757 July 4, 2020

Reminder: What is a Process
• the basic unit of resource ownership
∘ primarily memory, but also open files &c.

• may contain one or more threads
• processes are isolated from each other
∘ IPC creates gaps in that isolation

PB152 Operating Systems 302/757 July 4, 2020

I/O vs Communication
• take standard input and output
∘ imagine process A writes a file
∘ later, process B reads that file

• communication happens in real time
∘ between two running threads / processes
∘ automatic: without user intervention

PB152 Operating Systems 303/757 July 4, 2020

Direction
• bidirectional communication is typical
∘ this is analogous to a conversation

• but unidirectional communication also makes sense
∘ e.g. sending commands to a child process
∘ do acknowledgments count as communication?

PB152 Operating Systems 304/757 July 4, 2020

Communication Example
• network services are a typical example
• take a web server and a web browser
• the browser sends a request for a web page
• the server responds by sending data

PB152 Operating Systems 305/757 July 4, 2020

Files
• it is possible to communicate through files
• multiple processes can open the same file
• one can write data and another can process it
∘ the original program picks up the results
∘ typical when using programs as modules

PB152 Operating Systems 306/757 July 4, 2020

A File-Based IPC Example
• files are used e.g. when you run cc file.c

∘ it first runs a preprocessor: cpp -o file.i file.c

∘ then the compiler proper: cc1 -o file.o file.i

∘ and finally a linker: ld file.o crt.o -lc

• the intermediate files may be hidden in /tmp

∘ and deleted when the task is completed

PB152 Operating Systems 307/757 July 4, 2020

Directories
• communication by placing files or links
• typical use: a spool directory
∘ clients drop files into the directory for processing
∘ a server periodically picks up files in there

• used for e.g. printing and email

PB152 Operating Systems 308/757 July 4, 2020

Pipes
• a device for moving bytes in a stream
∘ note the difference from messages

• one process writes, the other reads
• the reader blocks if the pipe is empty
• the writer blocks if the pipe buffer is full

PB152 Operating Systems 309/757 July 4, 2020

UNIX and Pipes
• pipes are used extensively in UNIX
• pipelines built via the shell’s | operator
• e.g. ls | grep hello.c

• most useful for processing data in stages

PB152 Operating Systems 310/757 July 4, 2020

Sockets
• similar to, but more capable than pipes
• allows one server to talk to many clients
• each connection acts like a bidirectional pipe
• could be local but also connected via a network

PB152 Operating Systems 311/757 July 4, 2020

Shared Memory
• memory is shared when multiple threads can access it
∘ happens naturally for threads of a single process
∘ the primary means of inter-thread communication

• many processes can map the same physical location
∘ this is the more traditional setting
∘ hence also allows inter-process communication

PB152 Operating Systems 312/757 July 4, 2020

Message Passing
• communication using discrete messages
• we may or may not care about delivery order
• we can decide to tolerate message loss
• often used across a network
• can be implemented on top of sockets

PB152 Operating Systems 313/757 July 4, 2020

Part 6.2: Synchronisation

PB152 Operating Systems 314/757 July 4, 2020

Shared Variables
• structured view of shared memory
• typical in multi-threaded programs
• e.g. any global variable in a program
• but may also live in memory from malloc

PB152 Operating Systems 315/757 July 4, 2020

Shared Heap Variable

void *thread(int *x) { *x = 7; }

int main()

{

pthread_t id;

int *x = malloc(sizeof(int));

pthread_create(&id, NULL, thread, x);

}

PB152 Operating Systems 316/757 July 4, 2020

Race Condition: Example
• consider a shared counter, i
• and the following two threads

int i = 0;

void thread1() { i = i + 1; }

void thread2() { i = i - 1; }

What is the value of i after both finish?

PB152 Operating Systems 317/757 July 4, 2020

Race on a Variable
• memory access is not atomic
• take i = i + 1 / i = i - 1

a₀ ← load i | b₀ ← load i

a₁ ← a₀ + 1 | b₁ ← b₀ - 1

store a₁ i | store b₁ i

PB152 Operating Systems 318/757 July 4, 2020

Critical Section
• any section of code that must not be interrupted
• the statement x = x + 1 could be a critical section
• what is a critical section is domain-dependent
∘ another example could be a bank transaction
∘ or an insertion of an element into a linked list

PB152 Operating Systems 319/757 July 4, 2020

Race Condition: Definition
• (anomalous) behaviour that depends on timing
• typically among multiple threads or processes
• an unexpected sequence of events happens
• recall that ordering is not guaranteed

PB152 Operating Systems 320/757 July 4, 2020

Races in a Filesystem
• the file system is also a shared resource
• and as such, prone to race conditions
• e.g. two threads both try to create the same file
∘ what happens if they both succeed?
∘ if both write data, the result will be garbled

PB152 Operating Systems 321/757 July 4, 2020

Mutual Exclusion
• context: only one thread can access a resource at once
• ensured by a mutual exclusion device (a.k.a mutex)
• a mutex has 2 operations: lock and unlock

• lockmay need to wait until another thread unlocks

PB152 Operating Systems 322/757 July 4, 2020

Semaphore
• somewhat more general than a mutex
• allows multiple interchangeable instances of a resource
∘ consider there are N identical printers
∘ then N processes can be printing at any given time

• basically an atomic counter

PB152 Operating Systems 323/757 July 4, 2020

Monitors
• a programming language device (not OS-provided)
• internally uses standard mutual exclusion
• data of the monitor is only accessible to its methods
• only one thread can enter the monitor at once

PB152 Operating Systems 324/757 July 4, 2020

Condition Variables
• what if the monitor needs to wait for something?
• imagine a bounded queue implemented as a monitor
∘ what happens if it becomes full?
∘ the writer must be suspended

• condition variables have wait and signal operations

PB152 Operating Systems 325/757 July 4, 2020

Spinlocks
• a spinlock is the simplest form of a mutex
• the lockmethod repeatedly tries to acquire the lock
∘ this means it is taking up processor time
∘ also known as busy waiting

• spinlocks contention on the same CPU is very bad
∘ but can be very efficient between CPUs

PB152 Operating Systems 326/757 July 4, 2020

Suspending Mutexes
• these need cooperation from the OS scheduler
• when lock acquisition fails, the thread sleeps
∘ it is put on a waiting queue in the scheduler

• unlocking the mutex will wake up the waiting thread
• needs a system call→ slow compared to a spinlock

PB152 Operating Systems 327/757 July 4, 2020

Condition Variables Revisited
• same principle as a suspending mutex
• the waiting thread goes into a wait queue
• signalmoves the thread back to a run queue
• the busy-wait version is known as polling

PB152 Operating Systems 328/757 July 4, 2020

Barrier
• sometimes, parallel computation proceeds in phases
∘ all threads must finish phase 1
∘ before any can start phase 2

• this is achieved with a barrier
∘ blocks all threads until the last one arrives
∘ waiting threads are usually suspended

PB152 Operating Systems 329/757 July 4, 2020

Readers andWriters
• imagine a shared database
• many threads can read the database at once
• but if one is writing, no other can read nor write
• what if there are always some readers?

PB152 Operating Systems 330/757 July 4, 2020

Read-Copy-Update
• the fastest lock is no lock
• RCU allows readers to work while updates are done
∘ make a copy and update the copy
∘ point new readers to the updated copy

• when is it safe to reclaim memory?

PB152 Operating Systems 331/757 July 4, 2020

Part 6.3: Deadlocks and Starvation

PB152 Operating Systems 332/757 July 4, 2020

Dining Philosophers

Aristotle fork Plato

fork fork

Pythagoras fork Socrates

bowl

PB152 Operating Systems 333/757 July 4, 2020

Shared Resources
• hardware comes in a limited number of instances
• many devices can only do one thing at a time
• think printers, DVD writers, tape drives, ...
• we want to use the devices efficiently→ sharing
• resources can be acquired and released

PB152 Operating Systems 334/757 July 4, 2020

Network-based Sharing
• sharing is not limited to processes on one computer
• printers and scanners can be network-attached
• the entire network may need to coordinate access
∘ this could lead to multi-computer deadlocks

PB152 Operating Systems 335/757 July 4, 2020

Locks as Resources
• we explored locks in the previous section
• locks (mutexes) are also a form of resource
∘ a mutex can be acquired (locked) and released
∘ a locked mutex belongs to a particular thread

• locks are proxy (stand-in) resources

PB152 Operating Systems 336/757 July 4, 2020

Preemptable Resources
• sometimes, held resources can be taken away
• this is the case with e.g. physical memory
∘ a process can be swapped to disk if need be

• preemtability may also depend on context
∘ maybe paging is not available

PB152 Operating Systems 337/757 July 4, 2020

Non-preemptable Resources
• those resources cannot be (easily) taken away
• think photo printer in the middle of a page
• or a DVD burner in the middle of writing
• non-preemptable resources can cause deadlocks

PB152 Operating Systems 338/757 July 4, 2020

Resource Acquisition
• a process needs to request access to a resource
• this is called an acquisition
• when the request is granted, it can use the device
• after it is done, it must release the device
∘ this makes it available for other processes

PB152 Operating Systems 339/757 July 4, 2020

Waiting
• what to do if we wish to acquire a busy resource?
• unless we don’t really need it, we have to wait
• this is the same as waiting for a mutex
• the thread is moved to a wait queue

PB152 Operating Systems 340/757 July 4, 2020

Resource Deadlock
• two resources, A and B
• two threads (processes), P and Q
• P acquires A, Q acquires B
• P tries to acquire B but has to wait for Q
• Q tries to acquire A but has to wait for P

PB152 Operating Systems 341/757 July 4, 2020

Resource Deadlock Conditions
1. mutual exclusion
2. hold and wait condition
3. non-preemtability
4. circular wait

Deadlock is only possible if all 4 are present.

PB152 Operating Systems 342/757 July 4, 2020

Non-Resource Deadlocks
• not all deadlocks are due to resource contention
• imagine a message-passing system
• process A is waiting for a message
• process B sends a message to A and waits for reply
• the message is lost in transit

PB152 Operating Systems 343/757 July 4, 2020

Example: Pipe Deadlock
• recall that both the reader and writer can block
• what if we create a pipe in each direction?
• process A writes data and tries to read a reply
∘ it blocks because the opposite pipe is empty

• process B reads the data but waits for more→ deadlock

PB152 Operating Systems 344/757 July 4, 2020

Deadlocks: DoWe Care?
• deadlocks can be very hard to debug
• they can also be exceedingly rare
• we may find the risk of a deadlock acceptable
• just reboot everything if we hit a deadlock
∘ also known as the ostrich algorithm

PB152 Operating Systems 345/757 July 4, 2020

Deadlock Detection
• we can at least try to detect deadlocks
• usually by checking the circular wait condition
• keep a graph of ownership vs waiting
• if there is a loop in the graph→ deadlock

PB152 Operating Systems 346/757 July 4, 2020

Deadlock Recovery
• if a preemptable resource is involved, reassign it
• otherwise, it may be possible to do a rollback
∘ this needs elaborate checkpointing mechanisms

• all else failing, kill some of the processes
∘ the devices may need to be re-initialised

PB152 Operating Systems 347/757 July 4, 2020

Deadlock Avoidance
• we can possibly deny acquisitions to avoid deadlocks
• must know the maximum resources for each process
• avoidance relies on safe states
∘ worst case: all processes ask for maximum resources
∘ safe means deadlocks are avoided in the worst case

PB152 Operating Systems 348/757 July 4, 2020

Deadlock Prevention
• deadlock avoidance is typically impractical
• there are 4 conditions for deadlocks to exist
• we can try attacking those conditions
• if we can remove one of them, deadlocks are prevented

PB152 Operating Systems 349/757 July 4, 2020

Prevention via Spooling
• this attacks the mutual exclusion property
• multiple programs could write to a printer
• the data is collected by a spooling daemon
• which then sends the jobs to the printer in sequence

PB152 Operating Systems 350/757 July 4, 2020

Prevention via Reservation
• we can also try removing hold-and-wait
• for instance, we can only allow batch acquisition
∘ the process must request everything at once
∘ this is usually impractical

• alternative: release and re-acquire

PB152 Operating Systems 351/757 July 4, 2020

Prevention via Ordering
• this approach eliminates circular waits
• we impose a global order on resources
• a process can only acquire resources in this order
∘ must release + re-acquire if the order is wrong

• it is impossible to form a cycle this way

PB152 Operating Systems 352/757 July 4, 2020

Livelock
• in a deadlock, no progress can be made
• but it’s not much better if processes go back and forth
∘ for instance releasing and re-acquiring resources
∘ they make no useful progress
∘ they additionally consume resources

• this is a livelock and is just as bad as a deadlock

PB152 Operating Systems 353/757 July 4, 2020

Starvation
• starvation happens when a process can’t make progress
• generalisation of both deadlock and livelock
• for instance, unfair scheduling on a busy system
• also recall the readers and writers problem

PB152 Operating Systems 354/757 July 4, 2020

Review Questions
• What is a mutex?
• What is a deadlock?
• What are the conditions for a deadlock to form?
• What is a race condition?

PB152 Operating Systems 355/757 July 4, 2020

Part 7: Device Drivers

PB152 Operating Systems 356/757 July 4, 2020

Lecture Overview
1. Drivers, IO and Interrupts
2. System and Expansion Busses
3. Graphics
4. Persistent Storage
5. Networking andWireless

PB152 Operating Systems 357/757 July 4, 2020

Part 7.1: Drivers, IO and Interrupts

PB152 Operating Systems 358/757 July 4, 2020

Input and Output
• we will mostly think in terms of IO
• peripherals produce and consume data
• input – reading data produced by a device
• output – sending data to a device

PB152 Operating Systems 359/757 July 4, 2020

What is a Driver?
• piece of software that talks to a device
• usually quite specific / unportable
∘ tied to the particular device
∘ and also to the operating system

• often part of the kernel

PB152 Operating Systems 360/757 July 4, 2020

Kernel-mode Drivers
• they are part of the kernel
• running with full kernel privileges
∘ including unrestricted hardware access

• no or minimal context switching overhead
∘ fast but dangerous

PB152 Operating Systems 361/757 July 4, 2020

Microkernels
• drivers are excluded from microkernels
• but the driver still needs hardware access
∘ this could be a special memory region
∘ it may need to react to interrupts

• in principle, everything can be done indirectly
∘ but this may be quite expensive, too

PB152 Operating Systems 362/757 July 4, 2020

User-mode Drivers
• many drivers can run completely in user space
• this improves robustness and security
∘ driver bugs can’t bring the entire system down
∘ nor can they compromise system security

• possibly at some cost to performance

PB152 Operating Systems 363/757 July 4, 2020

Drivers in Processes
• user-mode drivers typically run in their own process
• this means context switches
∘ every time the device demands attention (interrupt)
∘ every time another process wants to use the device

• the driver needs system calls to talk to the device
∘ this incurs even more overhead

PB152 Operating Systems 364/757 July 4, 2020

In-Process Drivers
• what if a (large portion of) a driver could be a library
• best of both worlds
∘ no context switch overhead for requests
∘ bugs and security problems remain isolated

• often used for GPU-accelerated 3D graphics

PB152 Operating Systems 365/757 July 4, 2020

Port-Mapped IO
• early CPUs had very limited address space
∘ 16-bit addresses mean 64KB of memory

• peripherals got a separate address space
• special instructions for using those addresses
∘ e.g. in and out on x86 processors

PB152 Operating Systems 366/757 July 4, 2020

Memory-mapped IO
• devices share address space with memory
• more common in contemporary systems
• IO uses the same instructions as memory access
∘ load and store on RISC, mov on x86

• allows selective user-level access (via the MMU)

PB152 Operating Systems 367/757 July 4, 2020

Programmed IO
• input or output is driven by the CPU
• the CPU must wait until the device is ready
• would usually run at bus speed
∘ 8 MHz for ISA (and hence ATA-1)

• PIO would talk to a buffer on the device

PB152 Operating Systems 368/757 July 4, 2020

Interrupt-driven IO
• peripherals are much slower than the CPU
∘ polling the device is expensive

• the peripheral can signal data availability
∘ and also readiness to accept more data

• this frees up CPU to do other work in the meantime

PB152 Operating Systems 369/757 July 4, 2020

Interrupt Handlers
• also known as first-level interrupt handler
• they must run in privileged mode
∘ they are part of the kernel by definition

• the low-level interrupt handler must finish quickly
∘ it will mask its own interrupt to avoid re-entering
∘ and schedule any long-running jobs for later (SLIH)

PB152 Operating Systems 370/757 July 4, 2020

Second-level Handler
• does any expensive interrupt-related processing
• can be executed by a kernel thread
∘ but also by a user-mode driver

• usually not time critical (unlike first-level handler)
∘ can use standard locking mechanisms

PB152 Operating Systems 371/757 July 4, 2020

Direct Memory Access
• allows the device to directly read/write memory
• this is a huge improvement over programmed IO
• interrupts only indicate buffer full/empty
• devices can read and write arbitrary physical memory
∘ opens up security / reliability problems

PB152 Operating Systems 372/757 July 4, 2020

IO-MMU
• like the MMU, but for DMA transfers
• allows the OS to limit memory access per device
• very useful in virtualisation
• only recently found its way into consumer computers

PB152 Operating Systems 373/757 July 4, 2020

Part 7.2: System and Expansion Busses

PB152 Operating Systems 374/757 July 4, 2020

History: ISA (Industry Standard Architecture)
• 16-bit system expansion bus on IBM PC/AT
• programmed IO and interrupts (but no DMA)
• a fixed number of hardware-configured interrupt lines
∘ likewise for I/O port ranges
∘ the HW settings then need to be typed back for SW

• parallel data and address transmission

PB152 Operating Systems 375/757 July 4, 2020

MCA, EISA
• MCA: Micro Channel Architecture
∘ proprietary to IBM, patent-encumbered
∘ 32-bit, software-driven device configuration
∘ expensive and ultimately a market failure

• EISA: Enhanced ISA
∘ a 32-bit extension of ISA
∘ mostly created to avoid MCA licensing costs
∘ short-lived and replaced by PCI

PB152 Operating Systems 376/757 July 4, 2020

VESA Local Bus
• memory mapped IO & DMA on otherwise ISA systems
• tied to the 80486 line of Intel CPUs (and AMD clones)
• primarily for graphics cards
∘ but also used with hard drives

• quickly fell out of use with the arrival of PCI

PB152 Operating Systems 377/757 July 4, 2020

PCI: Peripheral Component Interconnect
• a 32-bit successor to ISA
∘ 33 MHz (compared to 8 MHz for ISA)
∘ later revisions at 66 MHz, PCI-X at 133 MHz
∘ added support for bus-mastering and DMA

• still a shared, parallel bus
∘ all devices share the same set of wires

PB152 Operating Systems 378/757 July 4, 2020

Bus Mastering
• normally, the CPU is the bus master
∘ which means it initiates communication

• it’s possible to have multiple masters
∘ they need to agree on a conflict resolution protocol

• usually used for accessing the memory

PB152 Operating Systems 379/757 July 4, 2020

DMA (Direct Memory Access)
• the most common form of bus mastering
• the CPU tells the device what and where to write
• the device then sends data directly to RAM
∘ the CPU can work on other things in the meantime
∘ completion is signaled via an interrupt

PB152 Operating Systems 380/757 July 4, 2020

Plug and Play
• the ISA system for IRQ configuration was messy
• MCA pioneered software-configured devices
• PCI further improved on MCA with “Plug and Play”
∘ each PCI device has an ID it can tell the system
∘ enables enumeration and automatic configuration

PB152 Operating Systems 381/757 July 4, 2020

PCI IDs and Drivers
• PCI allows for device enumeration
• device identifiers can be paired to device drivers
• this allows the OS to load and configure its drivers
∘ or even download / install drivers from a vendor

PB152 Operating Systems 382/757 July 4, 2020

AGP: Accelerated Graphics Port
• PCI eventually became too slow for GPUs
∘ AGP is based on PCI and only improves performance
∘ enumeration and configuration stays the same

• adds a dedicated point-to-point connection
• multiple transfers per clock (up to 8, for 2 GB/s)

PB152 Operating Systems 383/757 July 4, 2020

PCI Express
• the current high-speed peripheral bus for PC
• builds on / extends conventional PCI
• point-to-point, serial data interconnect
• much improved throughput (up to ~30GB/s)

PB152 Operating Systems 384/757 July 4, 2020

USB: Universal Serial Bus
• primarily for external peripherals
∘ keyboards, mice, printers, ...
∘ replaced a host of legacy ports

• later revisions allow high-speed transfers
∘ suitable for storage devices, cameras &c.

• device enumeration, capability negotiation

PB152 Operating Systems 385/757 July 4, 2020

USB Classes
• a set of vendor-neutral protocols
• HID = human-interface device
• mass storage = disk-like devices
• audio equipment
• printing

PB152 Operating Systems 386/757 July 4, 2020

Other USB Uses
• ethernet adapters
• usb-serial adapters
• wifi adapters (dongles)
∘ there isn’t a universal protocol
∘ each USBWiFi adapter needs a special driver

• bluetooth

PB152 Operating Systems 387/757 July 4, 2020

ARM Busses
• ARM is typically used in System-on-a-Chip designs
• those use a proprietary bus to connect peripherals
• there is less need for enumeration
∘ the entire system is baked into a single chip

• the peripherals can be pre-configured

PB152 Operating Systems 388/757 July 4, 2020

USB and PCIe on ARM
• USB nor PCIe are exclusive to the PC platform
• most ARM SoC’s support USB devices
∘ for slow and medium-speed off-SoC devices
∘ e.g. used for ethernet on RPi 1

• some ARM SoC’s support PCI Express
∘ this allows for high-speed off-SoC peripherals

PB152 Operating Systems 389/757 July 4, 2020

PCMCIA & PC Card
• People Can’t Memorize Computer Industry Acronyms
∘ PC = Personal Computer, MC = Memory Card
∘ IA = International Association

• hotplug-capable notebook expansion bus
• used for memory cards, network adapters, modems
• comes with its own set of drivers (cardbus)

PB152 Operating Systems 390/757 July 4, 2020

ExpressCard
• an expansion card standard like PCMCIA / PC Card
• based on PCIe and USB
∘ can mostly re-use drivers for those standards

• not in wide use anymore
∘ last update was in 2009, introducing USB 3 support
∘ the industry association disbanded the same year

PB152 Operating Systems 391/757 July 4, 2020

miniPCIe, mSATA, M.2
• those are physical interfaces, not special busses
• they provide some mix of PCIe, SATA and USB
∘ also other protocols like I²C, SMBus, ...

• used mainly for compact SSDs and wireless
∘ also GPS, NFC, bluetooth, ...

PB152 Operating Systems 392/757 July 4, 2020

Part 7.3: Graphics and GPUs

PB152 Operating Systems 393/757 July 4, 2020

Graphics Cards
• initially just a device to drive displays
• reads pixels from memory and provides display signal
∘ basically a DAC with a clock
∘ the memory can be part of the graphics card

• evolved acceleration capabilities

PB152 Operating Systems 394/757 July 4, 2020

Graphics Accelerator
• allows common operations to be done in hardware
• like drawing lines or filled polygons
• the pixels are computed directly in video RAM
• this can save considerable CPU time

PB152 Operating Systems 395/757 July 4, 2020

3D Graphics
• rendering 3D scenes is computationally intensive
• CPU-based, software-only rendering is possible
∘ texture-less in early flight simulators
∘ bitmap textures since ’95 / ’96 (Descent, Quake)

• CAD workstations had 3D accelerators (OpenGL ’92)

PB152 Operating Systems 396/757 July 4, 2020

GPU (Graphical Processing Unit)
• a term coined by nVidia near the end of ’90s
• originally a purpose-built hardware renderer
∘ based on polygonal meshes and Z buffering

• increasingly more flexible and programmable
• on-board RAM, high-speed connection to system RAM

PB152 Operating Systems 397/757 July 4, 2020

GPU Drivers
• split into a number of components
• graphics output / frame buffer access
• memory management is often done in kernel
• geometry, textures &c. are prepared in-process
• front end API: OpenGL, Direct3D, Vulkan, ...

PB152 Operating Systems 398/757 July 4, 2020

Shaders
• current GPUs are computation devices
• the GPU has its own machine code for shaders
• the GPU driver contains a shader compiler
∘ either all the way from a high level language (HLSL)
∘ or starting with an intermediate code (SPIR)

PB152 Operating Systems 399/757 July 4, 2020

Mode Setting
• deals with screen configuration and resolution
• including support for e.g. multiple displays
• usually also supports primitive (SW-only) framebuffer
• often in-kernel, with minimum user-level support

PB152 Operating Systems 400/757 July 4, 2020

Graphics Servers
• multiple apps cannot all drive the graphics card
∘ the graphics hardware needs to be shared
∘ one option is a graphics server

• provides an IPC-based drawing and/or windowing API
• performs painting on behalf of the applications

PB152 Operating Systems 401/757 July 4, 2020

Compositors
• a more direct way to share graphics cards
• each application gets its own buffer to paint into
• painting is mostly done by a (context-switched) GPU
• the individual buffers are then composed onto screen
∘ composition is also hardware-accelerated

PB152 Operating Systems 402/757 July 4, 2020

GP-GPU
• general-purpose GPU (CUDA, OpenCL, ...)
• used for computation instead of just graphics
• basically a return of vector processors
• close to CPUs but not part of normal OS scheduling

PB152 Operating Systems 403/757 July 4, 2020

Part 7.4: Persistent Storage

PB152 Operating Systems 404/757 July 4, 2020

Drivers
• split into adapter, bus and device drivers
• often a single driver per device type
∘ at least for disk drives and CD-ROMs

• bus enumeration and configuration
• data addressing and data transfers

PB152 Operating Systems 405/757 July 4, 2020

IDE / ATA
• Integrated Drive Electronics
∘ disk controller becomes part of the disk
∘ standardised as ATA-1 (AT Attachment ...)

• based on the ISA bus, but with cables
• later adapted for non-disk use via ATAPI

PB152 Operating Systems 406/757 July 4, 2020

ATA Enumeration
• each ATA interface can attach only 2 drives
∘ the drives are HW-configured as master/slave
∘ this makes enumeration quite simple

• multiple ATA interfaces were standard
• no need for specific HDD drivers

PB152 Operating Systems 407/757 July 4, 2020

PIO vs DMA
• original IDE could only use programmed IO
• this eventually became a serious bottleneck
• later ATA revisions include DMAmodes
∘ up to 160MB/s with highest DMAmodes
∘ compare 1900MB/s for SATA 3.2

PB152 Operating Systems 408/757 July 4, 2020

SATA
• serial, point-to-point replacement for ATA
• hardware-level incompatible to (parallel) ATA
∘ but SATA inherited the ATA command set
∘ legacy mode lets PATA drivers talk to SATA drives

• hot-swap capable – replace drives in a running system

PB152 Operating Systems 409/757 July 4, 2020

AHCI (Advanced Host Controller Interface)
• vendor-neutral interface to SATA controllers
∘ in theory only a single ’AHCI’ driver is needed

• an alternative to ’legacy mode’
• NCQ = Native Command Queuing
∘ allows the drive to re-order requests
∘ another layer of IO scheduling

PB152 Operating Systems 410/757 July 4, 2020

ATA and SATA Drivers
• the host controller (adapter) is mostly vendor-neutral
• the bus driver will expose the ATA command set
∘ including support for command queuing

• device driver uses the bus driver to talk to devices
• partially re-uses SCSI drivers for ATAPI &c.

PB152 Operating Systems 411/757 July 4, 2020

SCSI (Small Computer System Interface)
• originated with minicomputers in the 80’s
• more complicated and capable than ATA
∘ ATAPI basically encapsulates SCSI over ATA

• device enumeration, including aggregates
∘ e.g. entire enclosures with many drives

• also allows CD-ROM, tapes, scanners (!)

PB152 Operating Systems 412/757 July 4, 2020

SCSI Drivers
• split into: a host bus adapter (HBA) driver
• a generic SCSI bus and command component
∘ often re-used in both ATAPI and USB storage

• and per-device or per-class drivers
∘ optical drives, tapes, CD/DVD-ROM
∘ standard disk and SSD drives

PB152 Operating Systems 413/757 July 4, 2020

iSCSI
• basically SCSI over TCP/IP
• entirely software-based
• allows standard computers to serve as block storage
• takes advantage of fast cheap ethernet
• re-uses most of the SCSI driver stack

PB152 Operating Systems 414/757 July 4, 2020

NVMe: Non-Volatile Memory Express
• a fairly simple protocol for PCIe-attached storage
• optimised for SSD-based devices
∘ much bigger and more command queues than AHCI
∘ better / faster interrupt handling

• stresses concurrency in the kernel block layer

PB152 Operating Systems 415/757 July 4, 2020

USB Mass Storage
• an USB device class (vendor-neutral protocol)
∘ one driver for the entire class

• typically USB flash drives, but also external disks
• USB 2 is not suitable for high-speed storage
∘ USB 3 introduced UAS = USB-Attached SCSI

PB152 Operating Systems 416/757 July 4, 2020

Tape Drives
• unlike disk drives, only allow sequential access
• needs support for media ejection, rewinding
• can be attached with SCSI, SATA, USB
• parts of the driver will be bus-neutral
• mainly for data backup, capacities 6-15TB

PB152 Operating Systems 417/757 July 4, 2020

Optical Drives
• mainly used as a read-only distribution medium
• laser-facilitated reading of a rotating disc
• can be again attached to SCSI, SATA or USB
• conceived for audio playback→ very slow seek

PB152 Operating Systems 418/757 July 4, 2020

Optical Disk Writers (Burners)
• behaves more like a printer for optical disks
• drivers are often done in user space
• attached by one of the standard disk busses
• special programs required to burn disks
∘ alternative: packet-writing drivers

PB152 Operating Systems 419/757 July 4, 2020

Part 7.5: Networking andWireless

PB152 Operating Systems 420/757 July 4, 2020

Networking
• networks allow multiple computers to exchange data
∘ this could be files, streams or messages

• there are wired and wireless networks
• we will only deal with the lowest layers for now
• NIC = Network Interface Card

PB152 Operating Systems 421/757 July 4, 2020

Ethernet
• specifies the physical medium
• on-wire format and collision resolution
• in modern setups, mostly point-to-point links
∘ using active packet switching devices

• transmits data in frames (low-level packets)

PB152 Operating Systems 422/757 July 4, 2020

Addressing
• at this level, only local addressing
∘ at most a single LAN segment

• uses baked-in MAC addresses
∘ MAC =Media Access Control

• addresses belong to interfaces, not computers

PB152 Operating Systems 423/757 July 4, 2020

Transmit Queue
• packets are picked up from memory
• the OS prepares packets into the transmit queue
• the device picks them up asynchronously
• similar to how SATA queues commands and data

PB152 Operating Systems 424/757 July 4, 2020

Receive Queue
• data is also queued in the other direction
• the NIC copies packets into a receive queue
• it invokes an interrupt to tell the OS about new items
∘ the NIC may batch multiple packets per interrupt

• if the queue is not cleared quickly→ packet loss

PB152 Operating Systems 425/757 July 4, 2020

Multi-Queue Adapters
• fast adapters can saturate a CPU
∘ e.g. 10GbE cards, or multi-port GbE

• these NICs can manage multiple RX and TX queues
∘ each queue gets its own interrupt
∘ different queues→ possibly different CPU cores

PB152 Operating Systems 426/757 July 4, 2020

Checksum and TCP Offloading
• more advanced adapters can offload certain features
• e.g. computation of mandatory packet checksums
• but also TCP-related features
• needs both driver support and TCP/IP stack support

PB152 Operating Systems 427/757 July 4, 2020

WiFi
• wireless network interface – “wireless ethernet”
• shared medium – electromagnetic waves in air
• (almost) mandatory encryption
∘ otherwise easy to eavesdrop or even actively attack

• a very complex protocol (relative to hardware standards)
∘ assisted by firmware running on the adapter

PB152 Operating Systems 428/757 July 4, 2020

Bluetooth
• a wireless alternative to USB
• allows short-distance radio links with peripherals
∘ input (keyboard, mice, game controllers)
∘ audio (headsets, speakers)
∘ data transmission (e.g. smartphone sync)
∘ gadgets (watches, heartrate monitoring, GPS, ...)

PB152 Operating Systems 429/757 July 4, 2020

Review Questions
• What is memory-mapped IO and DMA?
• What is a system bus?
• What is a graphics accelerator?
• What is a NIC receive queue?

PB152 Operating Systems 430/757 July 4, 2020

Part 8: Network Stack

PB152 Operating Systems 431/757 July 4, 2020

Lecture Overview
1. Networking Intro
2. The TCP/IP Stack
3. Using Networks
4. Network File Systems

PB152 Operating Systems 432/757 July 4, 2020

Part 8.1: Networking Intro

PB152 Operating Systems 433/757 July 4, 2020

Host and Domain Names
• hostname = human readable computer name
• hierarchical system, little endian: www.fi.muni.cz
• FQDN = fully-qualified domain name
• the local suffix may be omitted (ping aisa)

PB152 Operating Systems 434/757 July 4, 2020

Network Addresses
• address = machine-friendly and numeric
• IPv4 address: 4 octets (bytes): 192.168.1.1
∘ the octets are ordered MSB-first (big endian)

• IPv6 address: 16 octets
• Ethernet (MAC): 6 octets, c8:5b:76:bd:6e:0b

PB152 Operating Systems 435/757 July 4, 2020

Network Types
• LAN = Local Area Network
∘ Ethernet: wired, up to 10Gb/s
∘ WiFi (802.11): wireless, up to 1Gb/s

• WAN =Wide Area Network (the Internet)
∘ PSTN, xDSL, PPPoE
∘ GSM, 2G (GPRS, EDGE), 3G (UMTS), 4G (LTE)
∘ also LAN technologies – Ethernet, WiFi

PB152 Operating Systems 436/757 July 4, 2020

Networking Layers
1. Link (Ethernet, WiFi)
2. Internet / Network (IP)
3. Transport (TCP, UDP, ...)
4. Application (HTTP, SMTP, ...)

PB152 Operating Systems 437/757 July 4, 2020

Networking and Operating Systems
• a network stack is a standard part of an OS
• large part of the stack lives in the kernel
∘ although this only applies to monolithic kernels
∘ microkernels use user-space networking

• another chunk is in system libraries & utilities

PB152 Operating Systems 438/757 July 4, 2020

Kernel-Side Networking
• device drivers for networking hardware
• network and transport protocol layers
• routing and packet filtering (firewalls)
• networking-related system calls (sockets)
• network file systems (SMB, NFS)

PB152 Operating Systems 439/757 July 4, 2020

System Libraries
• the socket and related APIs
• host name resolution (a DNS client)
• encryption and data authentication (SSL, TLS)
• certificate handling and validation

PB152 Operating Systems 440/757 July 4, 2020

System Utilities & Services
• network configuration (ifconfig, dhclient, dhcpd)
• route management (route, bgpd)
• diagnostics (ping, traceroute)
• packet logging and inspection (tcpdump)
• other network services (ntpd, sshd, inetd)

PB152 Operating Systems 441/757 July 4, 2020

Networking Aspects
• packet format
∘ what are the units of communication

• addressing
∘ how are the sender and recipient named

• packet delivery
∘ how a message is delivered

PB152 Operating Systems 442/757 July 4, 2020

Protocol Nesting
• protocols run on top of each other
• this is why it is called a network stack
• higher levels make use of the lower levels
∘ HTTP uses abstractions provided by TCP
∘ TCP uses abstractions provided by IP

PB152 Operating Systems 443/757 July 4, 2020

Packet Nesting
• higher-level packets are just data to the lower level
• an Ethernet frame can carry an IP packet in it
• the IP packet can carry a TCP packet
• the TCP packet can carry (a fragment of) an HTTP request

PB152 Operating Systems 444/757 July 4, 2020

Stacked Delivery
• delivery is, in the abstract, point-to-point
∘ routing is mostly hidden from upper layers
∘ the upper layer requests delivery to an address

• lower-layer protocols are usually packet-oriented
∘ packet size mismatches can cause fragmentation

• a packet can pass through different low-level domains

PB152 Operating Systems 445/757 July 4, 2020

Layers vs Addressing
• not as straightforward as packet nesting
∘ address relationships are tricky

• special protocols exist to translate addresses
∘ DNS for hostname vs IP address mapping
∘ ARP for IP vs MAC address mapping

PB152 Operating Systems 446/757 July 4, 2020

ARP (Address Resolution Protocol)
• finds the MAC that corresponds to an IP
• required to allow packet delivery
∘ IP uses the link layer to deliver its packets
∘ the link layer must be given a MAC address

• the OS builds a map of IP $→$ MAC translations

PB152 Operating Systems 447/757 July 4, 2020

Ethernet
• link-level communication protocol
• largely implemented in hardware
• the OS uses a well-defined interface
∘ packet receive and submit
∘ using MAC addresses (ARP is part of the OS)

PB152 Operating Systems 448/757 July 4, 2020

Packet Switching
• shared media are inefficient due to collisions
• ethernet is typically packet switched
∘ a switch is usually a hardware device
∘ but also in software (usually for virtualisation)
∘ physical connections form a star topology

PB152 Operating Systems 449/757 July 4, 2020

Bridging
• bridges operate at the link layer (layer 2)
• a bridge is a two-port device
∘ each port is connected to a different LAN
∘ the bridge joins the LANs by forwarding frames

• can be done in hardware or software
∘ brctl on Linux, ifconfig on OpenBSD

PB152 Operating Systems 450/757 July 4, 2020

Tunneling
• tunnels are virtual layer 2 or 3 devices
• they encapsulate traffic using a higher-level protocol
• tunneling can implement Virtual Private Networks
∘ a software bridge can operate over an UDP tunnel
∘ the tunnel is usually encrypted

PB152 Operating Systems 451/757 July 4, 2020

PPP (Point-to-Point Protocol)
• a link-layer protocol for 2-node networks
• available over many physical connections
∘ phone lines, cellular connections, DSL, Ethernet
∘ often used to connect endpoints to the ISP

• supported by most operating systems
∘ split between the kernel and system utilities

PB152 Operating Systems 452/757 July 4, 2020

Wireless
• WiFi is mostly like (slow, unreliable) Ethernet
• needs encryption since anyone can listen
• also authentication to prevent rogue connections
∘ PSK (pre-shared key), EAP / 802.11x

• encryption needs key management

PB152 Operating Systems 453/757 July 4, 2020

Part 8.2: The TCP/IP Stack

PB152 Operating Systems 454/757 July 4, 2020

IP (Internet Protocol)
• uses 4 byte (v4) or 16 byte (v6) addresses
∘ split into network and host parts

• it is a packet-based protocol
• is a best-effort protocol
∘ packets may get lost, reordered or corrupted

PB152 Operating Systems 455/757 July 4, 2020

IP Networks
• IP networks roughly correspond to LANs
∘ hosts on the same network are located with ARP
∘ remote networks are reached via routers

• a netmask splits the address into network/host parts
• IP typically runs on top of Ethernet or PPP

PB152 Operating Systems 456/757 July 4, 2020

Routing
• routers forward packets between networks
• somewhat like bridges but layer 3
• routers act as normal LAN endpoints
∘ but represent entire remote IP networks
∘ or even the entire Internet

PB152 Operating Systems 457/757 July 4, 2020

ICMP: Internet Control Message Protocol
• control messages (packets)
∘ destination host/network unreachable
∘ time to live exceeded
∘ fragmentation required

• diagnostic packets, e.g. the ping command
∘ echo request and echo reply

∘ combine with TTL for traceroute

PB152 Operating Systems 458/757 July 4, 2020

Services and TCP/UDP Port Numbers
• networks are generally used to provide services
∘ each computer can host multiple

• different services can run on different ports
• port is a 16-bit number and some are given names
∘ port 25 is SMTP, port 80 is HTTP, ...

PB152 Operating Systems 459/757 July 4, 2020

TCP: Transmission Control Protocol
• a stream-oriented protocol on top of IP
• works like a pipe (transfers a byte sequence)
∘ must respect delivery order
∘ and also re-transmit lost packets

• must establish connections

PB152 Operating Systems 460/757 July 4, 2020

TCP Connections
• the endpoints must establish a connection first
• each connection serves as a separate data stream
• a connection is bidirectional
• TCP uses a 3-way handshake: SYN, SYN/ACK, ACK

PB152 Operating Systems 461/757 July 4, 2020

Sequence Numbers
• TCP packets carry sequence numbers
• these numbers are used to re-assemble the stream
∘ IP packets can arrive out of order

• they are also used to acknowledge reception
∘ and subsequently to manage re-transmission

PB152 Operating Systems 462/757 July 4, 2020

Packet Loss and Re-transmission
• packets can get lost for a variety of reasons
∘ a link goes down for an extended period of time
∘ buffer overruns on routing equipment

• TCP sends acknowledgments for received packets
∘ the ACKs use sequence numbers to identify packets

PB152 Operating Systems 463/757 July 4, 2020

UDP: User (Unreliable) Datagram Protocol
• TCP comes with non-trivial overhead
∘ and its guarantees are not always required

• UDP is a much simpler protocol
∘ a very thin wrapper around IP
∘ with minimal overhead on top of IP

PB152 Operating Systems 464/757 July 4, 2020

Firewalls
• the name comes from building construction
∘ a fire-proof barrier between parts of a building

• the idea is to separate networks from each other
∘ making attacks harder from the outside
∘ limiting damage in case of compromise

PB152 Operating Systems 465/757 July 4, 2020

Packet Filtering
• packet filtering is an implementation of a firewall
• can be done on a router or at an endpoint
• dedicated routers + packet filters are more secure
∘ a single such firewall protects the entire network
∘ less opportunity for mis-configuration

PB152 Operating Systems 466/757 July 4, 2020

Packet Filter Operation
• packet filters operate on a set of rules
∘ the rules are generally operator-provided

• each incoming packet is classified using the rules
• and then dispatched accordingly
∘ may be forwarded, dropped, rejected or edited

PB152 Operating Systems 467/757 July 4, 2020

Packet Filter Examples
• packet filters are often part of the kernel
• the rule parser is a system utility
∘ it loads rules from a configuration file
∘ and sets up the kernel-side filter

• there are multiple implementations
∘ iptables, nftables in Linux
∘ pf in OpenBSD, ipfw in FreeBSD

PB152 Operating Systems 468/757 July 4, 2020

Name Resolution
• users do not want to remember numeric addresses
∘ phone numbers are bad enough

• host names are used instead
• can be stored in a file, e.g. /etc/hosts
∘ not very practical for more than 3 computers
∘ but there are millions of computers on the Internet

PB152 Operating Systems 469/757 July 4, 2020

DNS: Domain Name System
• hierarchical protocol for name resolution
∘ runs on top of TCP or UDP

• domain names are split into parts using dots
∘ each domain knows whom to ask for the next bit
∘ the name database is effectively distributed

PB152 Operating Systems 470/757 July 4, 2020

DNS Recursion
• take www.fi.muni.cz. as an example domain
• resolution starts from the right at root servers
∘ the root servers refer us to the cz. servers
∘ the cz. servers refer us to muni.cz

∘ finally muni.cz. tells us about fi.muni.cz

PB152 Operating Systems 471/757 July 4, 2020

DNS Recursion Example

$ dig www.fi.muni.cz. A +trace

. IN NS j.root-servers.net.

cz. IN NS b.ns.nic.cz.

muni.cz. IN NS ns.muni.cz.

fi.muni.cz. IN NS aisa.fi.muni.cz.

www.fi.muni.cz. IN A 147.251.48.1

PB152 Operating Systems 472/757 July 4, 2020

DNS Record Types
• A is for (IP) Address
• AAAA is for an IPv6 Address
• CNAME is for an alias
• MX is for mail servers
• and many more

PB152 Operating Systems 473/757 July 4, 2020

Part 8.3: Using Networks

PB152 Operating Systems 474/757 July 4, 2020

Sockets Reminder
• the socket API comes from early BSD Unix
• socket represents a (possible) network connection
• you get a file descriptor for an open socket
• you can read() and write() to sockets
∘ but also sendmsg() and recvmsg()

∘ and sendto() and recvfrom()

PB152 Operating Systems 475/757 July 4, 2020

Socket Types
• sockets can be internet or unix domain
∘ internet sockets work across networks

• stream sockets are like files
∘ you can write a continuous stream of data
∘ usually implemented using TCP

• datagram sockets send individual messages
∘ usually implemented using UDP

PB152 Operating Systems 476/757 July 4, 2020

Creating Sockets
• a socket is created using the socket() function
• it can be turned into a server using listen()

∘ individual connections are established with accept()

• or into a client using connect()

PB152 Operating Systems 477/757 July 4, 2020

Resolver API
• libc contains a resolver
∘ available as gethostbyname (and getaddrinfo)
∘ also gethostbyaddr for reverse lookups

• can look in many different places
∘ most systems support at least /etc/hosts
∘ and DNS-based lookups

PB152 Operating Systems 478/757 July 4, 2020

Network Services
• servers listen on a socket for incoming connections
∘ a client actively establishes a connection to a server

• the network simply transfers data between them
• interpretation of the data is a layer 7 issue
∘ could be commands, file transfers, ...

PB152 Operating Systems 479/757 July 4, 2020

Network Service Examples
• (secure) remote shell – sshd

• the internet email suite
∘ MTA =Mail Transfer Agent, speaks SMTP
∘ SMTP = Simple Mail-Transfer Protocol

• the world wide web
∘ web servers provide content (files)
∘ clients and servers speak HTTP and HTTPS

PB152 Operating Systems 480/757 July 4, 2020

Client Software
• the ssh command uses the SSH protocol
∘ a very useful system utility on virtually all UNIXes

• web browser is the client for world wide web
∘ browsers are complex application programs
∘ some of them bigger than even operating systems

• email client is also known as a MUA (Mail User Agent)

PB152 Operating Systems 481/757 July 4, 2020

Part 8.4: Network File Systems

PB152 Operating Systems 482/757 July 4, 2020

Why Network Filesystems?
• copying files back and forth is impractical
∘ and also error-prone (which is the latest version?)

• how about storing data in a central location
• and sharing it with all the computers on the LAN

PB152 Operating Systems 483/757 July 4, 2020

NAS (Network-Attached Storage)
• a (small) computer dedicated to storing files
• usually running a cut down operating system
∘ often based on Linux or FreeBSD

• provides file access to the network
• sometimes additional app-level services
∘ e.g. photo management, media streaming, ...

PB152 Operating Systems 484/757 July 4, 2020

NFS (Network File System)
• the traditional UNIX networked filesystem
• hooked quite deep into the kernel
∘ assumes generally reliable network (LAN)

• filesystems are exported for use over NFS
• the client side mounts the NFS-exported volume

PB152 Operating Systems 485/757 July 4, 2020

NFS History
• originated in Sun Microsystems in the 80s
• v2 implemented in System V, DOS, ...
• v3 appeared in ’95 and is still in use
• v4 arrives in 2000, improving security

PB152 Operating Systems 486/757 July 4, 2020

VFS Reminder
• implementation mechanism for multiple FS types
• an object-oriented approach
∘ open: look up the file for access
∘ read, write – self-explanatory
∘ rename: rename a file or directory

PB152 Operating Systems 487/757 July 4, 2020

RPC (Remote Procedure Call)
• any protocol for calling functions on remote hosts
∘ ONC-RPC = Open Network Computing RPC
∘ NFS is based on ONC-RPC (also known as Sun RPC)

• NFS basically runs VFS operations using RPC
∘ easy to implement on UNIX-like systems

PB152 Operating Systems 488/757 July 4, 2020

Port Mapper
• ONC-RPC is executed over TCP or UDP
∘ but it is more dynamic wrt. available services

• TCP/UDP port numbers are assigned on demand
• portmap translates from RPC services to port numbers
∘ the port mapper itself listens on port 111

PB152 Operating Systems 489/757 July 4, 2020

The NFS Daemon
• also known as nfsd
• provides NFS access to a local file system
• can run as a system service
• or it can be part of the kernel
∘ this is more typical for performance reasons

PB152 Operating Systems 490/757 July 4, 2020

SMB (Server Message Block)
• a network file system fromMicrosoft
• available in Windows since version 3.1 (1992)
∘ originally ran on top of NetBIOS
∘ later versions used TCP/IP

• SMB1 accumulated a lot of cruft and complexity

PB152 Operating Systems 491/757 July 4, 2020

SMB 2.0
• simpler than SMB1 due to fewer retrofits and compat
• better performance and security
• support for symbolic links
• available since Windows Vista (2006)

PB152 Operating Systems 492/757 July 4, 2020

Review Questions
• What is ARP (Address Resolution Protocol)?
• What is IP (Internet Protocol)?
• What is TCP (Transmission Control Protocol)?
• What is DNS (Domain Name Service)?

PB152 Operating Systems 493/757 July 4, 2020

Part 9: Shells & User Interfaces

PB152 Operating Systems 494/757 July 4, 2020

Lecture Overview
1. Command Interpreters
2. The Command Line
3. Graphical Interfaces

PB152 Operating Systems 495/757 July 4, 2020

Part 9.1: Command Interpreters

PB152 Operating Systems 496/757 July 4, 2020

Shell
• programming language centered on OS interaction
• rudimentary control flow
• untyped, text-centered variables
• dubious error handling

PB152 Operating Systems 497/757 July 4, 2020

Interactive Shells
• almost all shells have an interactive mode
• the user inputs a single statement on keyboard
• when confirmed, it is immediately executed
• this forms the basis of command-line interfaces

PB152 Operating Systems 498/757 July 4, 2020

Shell Scripts
• a shell script is an (executable) file
• in simplest form, it is a sequence of commands
∘ each command goes on a separate line
∘ executing a script is about the same as typing it

• but can use structured programming constructs

PB152 Operating Systems 499/757 July 4, 2020

Shell Upsides
• very easy to write simple scripts
• first choice for simple automation
• often useful to save repetitive typing
• definitely not good for big programs

PB152 Operating Systems 500/757 July 4, 2020

Bourne Shell
• a specific language in the “shell” family
• the first shell with consistent programming support
∘ available since 1976

• still widely used today
∘ best known implementation is bash
∘ /bin/sh is mandated by POSIX

PB152 Operating Systems 501/757 July 4, 2020

C Shell
• also known as csh, first released in 1978
• more C-like syntax than sh (Bourne Shell)
∘ but not really very C-like at all

• improved interactive mode (over sh from ’76)
• also still used today (tcsh)

PB152 Operating Systems 502/757 July 4, 2020

Korn Shell
• also known as ksh, released in 1983
• middle ground between sh and csh

• basis of the POSIX.2 requirements
• a number of implementations exist

PB152 Operating Systems 503/757 July 4, 2020

Commands
• typically a name of an executable
∘ may also be control flow or a built-in

• the executable is looked up in the filesystem
• the shell does a fork + exec

∘ this means new process for each command
∘ process creation is fairly expensive

PB152 Operating Systems 504/757 July 4, 2020

Built-in Commands
• cd change the working directory
• export for setting up environment
• echo print a message
• exec replace the shell process (no fork)

PB152 Operating Systems 505/757 July 4, 2020

Variables
• variable names are made of letters and digits
• using variables is indicated with $

• setting variables does not use the $

• all variables are global (except subshells)

VARIABLE="some text"

echo $VARIABLE

PB152 Operating Systems 506/757 July 4, 2020

Variable Substitution
• variables are substituted as text
• $foo is simply replaced with the content of foo
• arithmetic is not well supported in most shells
∘ or any expression syntax, e.g. relational operators
∘ consider z=$(($x + $y)) for addition in bash

PB152 Operating Systems 507/757 July 4, 2020

Command Substitution
• basically like variable substitution
• written as `command` or $(command)
∘ first executes the command
∘ and captures its standard output
∘ then replaces $(command)with the output

PB152 Operating Systems 508/757 July 4, 2020

Quoting
• whitespace is an argument separator in shell
• multi-word arguments must be quoted
• quotes can be double quotes "x" or single 'x'

∘ double quotes allow variable substitution

PB152 Operating Systems 509/757 July 4, 2020

Quoting and Substitution
• whitespace from variable substitution must be quoted
∘ foo="hello world"

∘ ls $foo is different than ls "$foo"

• bad quoting is a very common source of bugs
• consider also filenames with spaces in them

PB152 Operating Systems 510/757 July 4, 2020

Special Variables
• $? is the result of last command
• $$ is the PID of the current shell
• $1 through $9 are positional parameters
∘ $# is the number of parameters

• $0 is the name of the shell – argv[0]

PB152 Operating Systems 511/757 July 4, 2020

Environment
• is like shell variables but not the same
• the environment is passed to all executed programs
∘ a child cannot modify environment of its parent

• variables are moved into the environment by export

• environment variables often act as settings

PB152 Operating Systems 512/757 July 4, 2020

Important Environment Variables
• $PATH tells the system where to find programs
• $HOME is the home directory of the current user
• $EDITOR and $VISUAL set which text editor to use
• $EMAIL is the email address of the current user
• $PWD is the current working directory

PB152 Operating Systems 513/757 July 4, 2020

Globbing
• patterns for quickly listing multiple files
• e.g. ls *.c shows all files ending in .c

• *matches any number of characters
• ? matches one arbitrary character
• works on entire paths – ls src/*/*.c

PB152 Operating Systems 514/757 July 4, 2020

Conditionals
• allows conditional execution of commands
• if cond; then cmd1; else cmd2; fi

• also elif cond2; then cmd3; fi

• cond is also a command (the exit code is used)

PB152 Operating Systems 515/757 July 4, 2020

test (evaluating boolean expressions)
• originally an external program, also known as [
∘ nowadays built-in in most shells
∘ works around lack of expressions in shell

• evaluates its arguments and returns true or false
∘ can be used with if and while constructs

PB152 Operating Systems 516/757 July 4, 2020

test Examples
• test file1 -nt file2→ ’nt’ = newer than
• test 32 -gt 14→ ’gt’ = greater than
• test foo = bar→ string equality
• combines with variable substitution (test $y = x)

PB152 Operating Systems 517/757 July 4, 2020

Loops
• while cond; do cmd; done

∘ cond is a command, like in if

• for i in 1 2 3 4; do cmd; done

∘ allows globs: for f in *.c; do cmd; done

∘ also command substitution
∘ for f in `seq 1 10`; do cmd; done

PB152 Operating Systems 518/757 July 4, 2020

Case Analysis
• selects a command based on pattern matching
• case $x in *.c) cc $x;; *) ls $x;; esac

∘ yes, case really uses unbalanced parens
∘ the ;; indicates end of a case

PB152 Operating Systems 519/757 July 4, 2020

Command Chaining
• ; (semicolon): run two commands in sequence
• && run the second command if the first succeeded
• || run the second command if the first failed
• e.g. compile and run: cc file.c && ./a.out

PB152 Operating Systems 520/757 July 4, 2020

Pipes
• shells can run pipelines of commands
• cmd1 | cmd2 | cmd3

∘ all commands are run in parallel
∘ output of cmd1 becomes input of cmd2
∘ output of cmd2 is processed by cmd3

echo hello world | sed -e s,hello,goodbye,

PB152 Operating Systems 521/757 July 4, 2020

Functions
• you can also define functions in shell
• mostly a light-weight alternative to scripts
∘ no need to export variables
∘ but cannot be invoked by non-shell programs

• functions can also set variables

PB152 Operating Systems 522/757 July 4, 2020

Part 9.2: The Command Line

PB152 Operating Systems 523/757 July 4, 2020

Interactive Shell
• the shell displays a prompt and waits
• the user types in a command and hits enter
• the command is executed immediately
• output is printed to the terminal

PB152 Operating Systems 524/757 July 4, 2020

Command Completion
• most shells let you use TAB to auto-complete
∘ works at least for command names and file names
∘ but “smart completion” is common

• interactive history: hit “up” to recall a command
∘ also interactive history search, e.g. C-r in bash

PB152 Operating Systems 525/757 July 4, 2020

Prompt
• the string printed when shell expects a command
• controlled by the PS1 environment variable
• usually shows your username and the hostname
• or working directory, battery status, time, weather, ...

PB152 Operating Systems 526/757 July 4, 2020

Job Control
• only one program can run in the foreground (terminal)
• but a running program can be suspended (C-z)
• and resumed in background (bg) or in foreground (fg)
• use & to run a command in background: ./spambot &

PB152 Operating Systems 527/757 July 4, 2020

Terminal
• can print text and read text from a keyboard
• normally everything is printed on the last line
• the text could contain escape (control) sequences
∘ for printing colourful text or clearing the screen
∘ also for printing text at a specific coordinate

PB152 Operating Systems 528/757 July 4, 2020

Full-Screen Terminal Apps
• applications can use the entire terminal screen
• a library abstracts away the low-level control sequences
∘ the library is called ncurses for new curses

∘ different terminals use different control sequences
• special characters exist to draw frames and separators

PB152 Operating Systems 529/757 July 4, 2020

UNIX Text Editors
• sed – stream editor, non-interactive
• ed – line oriented, interactive
• vi – visual, screen oriented
• ex – line-oriented mode of vi

PB152 Operating Systems 530/757 July 4, 2020

TUI: Text User Interface
• the program draws a 2D interface on a terminal
• these types of interfaces can be quite comfortable
• they are often easier to program than GUIs
• very low bandwidth requirements for remote use

PB152 Operating Systems 531/757 July 4, 2020

Part 9.3: Graphical Interfaces

PB152 Operating Systems 532/757 July 4, 2020

Windowing Systems
• each application runs in its own window
∘ or possibly multiple windows

• multiple applications can be shown on screen
• windows can be moved around, resized &c.
∘ facilitated by frames around window content
∘ generally known as window management

PB152 Operating Systems 533/757 July 4, 2020

Window-less Systems
• especially popular on smaller screens
• applications take the entire screen
∘ give or take status or control widgets

• task switching via a dedicated screen

PB152 Operating Systems 534/757 July 4, 2020

A GUI Stack
• graphics card driver, mode setting
• drawing/painting (usually hardware-accelerated)
• multiplexing (e.g. using windows)
• widgets: buttons, labels, lists, ...
• layout: what goes where on the screen

PB152 Operating Systems 535/757 July 4, 2020

Well-known GUI Stacks
• Windows
• macOS, iOS
• X11
• Wayland
• Android

PB152 Operating Systems 536/757 July 4, 2020

Portability
• GUI “toolkits” make portability easy
∘ Qt, GTK, Swing, HTML5+CSS, ...
∘ many of them run on all major platforms

• code portability is not the only issue
∘ GUIs come with look and feel guidelines
∘ portable applications may fail to fit

PB152 Operating Systems 537/757 July 4, 2020

Text Rendering
• a surprisingly complex task
• unlike terminals, GUIs use variable pitch fonts
∘ brings up issues like kerning
∘ hard to predict pixel width of a line

• bad interaction with printing (cf. WYSIWIG)

PB152 Operating Systems 538/757 July 4, 2020

Bitmap Fonts
• characters are represented as pixel arrays
∘ usually just black and white

• traditionally pixel-drawn by hand
∘ very time consuming (many letters, sizes, variants)

• the result is sharp but jagged (not smooth)

PB152 Operating Systems 539/757 July 4, 2020

Outline Fonts
• Type1, TrueType – based on splines
• they can be scaled to arbitrary pixel sizes
• same font can be used for screen and for print
• rasterisation is usually done in software

PB152 Operating Systems 540/757 July 4, 2020

Hinting, Anti-Aliasing
• screens are low resolution devices
∘ typical HD displays have DPI around 100
∘ laser printers have DPI of 300 or more

• hinting: deform outlines to better fit a pixel grid
• anti-aliasing: smooth outlines using grayscale

PB152 Operating Systems 541/757 July 4, 2020

X11 (XWindow System)
• a traditional UNIX windowing system
• provides a C API (xlib)
• built-in network transparency (socket-based)
• core protocol version 11 from 1987

PB152 Operating Systems 542/757 July 4, 2020

X11 Architecture
• X server provides graphics and input
• X client is an application that uses X
• a window manager is a (special) client
• a compositor is another special client

PB152 Operating Systems 543/757 July 4, 2020

Remote Displays
• application is running on computer A
• the display is not the console of A
∘ could be a dedicated graphical terminal
∘ could be another computer on a LAN
∘ or even across the internet

PB152 Operating Systems 544/757 July 4, 2020

Remote Display Protocols
• one approach is pushing pixels
∘ VNC (Virtual Network Computing)

• X11 uses a custom drawing protocol
• others use high-level abstractions
∘ NeWS (PostScript-based)
∘ HTML5 + JavaScript

PB152 Operating Systems 545/757 July 4, 2020

VNC (Virtual Network Computing)
• sends compressed pixel data over the wire
∘ can leverage regularities in pixel data
∘ can send incremental updates

• and input events in the other direction
• no support for peripherals or file sync

PB152 Operating Systems 546/757 July 4, 2020

RDP (Remote Desktop Protocol)
• more sophisticated than VNC (but proprietary)
• can also send drawing commands over the wire
∘ like X11, but using DirectX drawing
∘ also allows remote OpenGL

• support for audio, remote USB &c.

PB152 Operating Systems 547/757 July 4, 2020

SPICE
• Simple Protocol for Independent Computing Env.
• open protocol somewhere between VNC and RDP
• can send OpenGL (but only over a local socket)
• two-way audio, USB, clipboard integration
• still mainly based on pushing (compressed) pixels

PB152 Operating Systems 548/757 July 4, 2020

Remote Desktop Security
• the user needs to be authenticated over network
∘ passwords are easy, biometric data less so

• the data stream should be encrypted
∘ not part of the X11 or NeWS protocols
∘ or even HTTP by default (used for HTML5/JS)

PB152 Operating Systems 549/757 July 4, 2020

Review Questions
• What is a shell?
• What does variable substitution mean?
• What is an environment variable?
• What belongs into the GUI stack?

PB152 Operating Systems 550/757 July 4, 2020

Part 10: Access Control

PB152 Operating Systems 551/757 July 4, 2020

Lecture Overview
1. Multi-User Systems
2. File Systems
3. Sub-user Granularity

PB152 Operating Systems 552/757 July 4, 2020

Part 10.1: Multi-User Systems

PB152 Operating Systems 553/757 July 4, 2020

Users
• originally a proxy for people
• currently a more general abstraction
• user is the unit of ownership
• many permissions are user-centered

PB152 Operating Systems 554/757 July 4, 2020

Computer Sharing
• computer is a (often costly) resource
• efficiency of use is a concern
∘ a single user rarely exploits a computer fully

• data sharing makes access control a necessity

PB152 Operating Systems 555/757 July 4, 2020

Ownership
• various objects in an OS can be owned
∘ primarily files and processes

• the owner is typically whoever created the object
∘ though ownership can be transferred
∘ restrictions usually apply

PB152 Operating Systems 556/757 July 4, 2020

Process Ownership
• each process belongs to some user
• the process acts on behalf of the user
∘ the process gets the same privilege as its owner
∘ this both constrains and empowers the process

• processes are active participants

PB152 Operating Systems 557/757 July 4, 2020

File Ownership
• each file also belongs to some user
• this gives rights to the user (or rather their processes)
∘ they can read and write the file
∘ they can change permissions or ownership

• files are passive participants

PB152 Operating Systems 558/757 July 4, 2020

Access Control Models
• owners usually decide who can access their objects
∘ this is known as discretionary access control

• in high-security environments, this is not allowed
∘ known as mandatory access control
∘ a central authority decides the policy

PB152 Operating Systems 559/757 July 4, 2020

(Virtual) System Users
• users are an useful ownership abstraction
• various system services get their own ‘fake’ users
• this allows them to own files and processes
• and also limit their access to the rest of the OS

PB152 Operating Systems 560/757 July 4, 2020

Principle of Least Privilege
• entities should have minimum privilege required
∘ applies to software components
∘ but also to human users of the system

• this limits the scope of mistakes
∘ and also of security compromises

PB152 Operating Systems 561/757 July 4, 2020

Privilege Separation
• different parts of a system need different privilege
• least privilege dictates splitting the system
∘ components are isolated from each other
∘ they are given only the rights they need

• components communicate using very simple IPC

PB152 Operating Systems 562/757 July 4, 2020

Process Separation
• recall that each process runs in its own address space
∘ shared memory must be explicitly requested

• each user has a view of the filesystem
∘ a lot more is shared by default in the filesystem
∘ especially the namespace (directory hierarchy)

PB152 Operating Systems 563/757 July 4, 2020

Access Control Policy
• there are 3 pieces of information
∘ the subject (user)
∘ the action/verb (what is to be done)
∘ the object (the file or other resource)

• there are many ways to encode this information

PB152 Operating Systems 564/757 July 4, 2020

Access Rights Subjects
• in a typical OS those are (possibly virtual) users
∘ sub-user units are possible (e.g. programs)
∘ roles and groups could also be subjects

• the subject must be named (names, identifiers)
∘ easy on a single system, hard in a network

PB152 Operating Systems 565/757 July 4, 2020

Access Rights Actions (Verbs)
• the available ‘verbs’ (actions) depend on object type
• a typical object would be a file
∘ files can be read, written, executed
∘ directories can be searched or listed or changed

• network connections can be established &c.

PB152 Operating Systems 566/757 July 4, 2020

Access Rights Objects
• anything that can be manipulated by programs
∘ although not everything is subject to access control

• could be files, directories, sockets, shared memory, ...
• object names depend on their type
∘ file paths, i-node numbers, IP addresses, ...

PB152 Operating Systems 567/757 July 4, 2020

Subjects in POSIX
• there are 2 types of subjects: users and groups
• each user can belong to multiple groups
• users are split into normal users and root

∘ root is also known as the super-user

PB152 Operating Systems 568/757 July 4, 2020

User and Group Identifiers
• users and groups are represented as numbers
∘ this improves efficiency of many operations
∘ the numbers are called uid and gid

• those numbers are valid on a single computer
∘ or at most, a local network

PB152 Operating Systems 569/757 July 4, 2020

User Management
• the system needs a database of users
• in a network, user identities often need to be shared
• could be as simple as a text file
∘ /etc/passwd and /etc/group on UNIX systems

• or as complex as a distributed database

PB152 Operating Systems 570/757 July 4, 2020

Changing Identities
• each process belongs to a particular user
• ownership is inherited across fork()
• super-user processes can use setuid()

• exec() can sometimes change a process owner

PB152 Operating Systems 571/757 July 4, 2020

Login
• a super-user process manages user logins
• the user types in their name and password
∘ the login program authenticates the user
∘ then calls setuid() to change the process owner
∘ and uses exec() to start a shell for the user

PB152 Operating Systems 572/757 July 4, 2020

User Authentication
• the user needs to authenticate themselves
• passwords are the most commonly used method
∘ the system needs to recognize the right password
∘ user should be able to change their password

• biometric methods are also quite popular

PB152 Operating Systems 573/757 July 4, 2020

Remote Login
• authentication over network is more complicated
• passwords are easiest, but not easy
∘ encryption is needed to safely transmit passwords
∘ along with computer authentication

• 2-factor authentication is a popular improvement

PB152 Operating Systems 574/757 July 4, 2020

Computer Authentication
• how to ensure we send the password to the right party?
∘ an attacker could impersonate our remote computer

• usually via asymmetric cryptography
∘ a private key can be used to sign messages
∘ the server signs a challenge to establish its identity

PB152 Operating Systems 575/757 July 4, 2020

2-factor Authentication
• 2 different types of authentication
∘ harder to spoof both at the same time

• there are a few factors to pick from
∘ something the user knows (password)
∘ something the user has (keys, tokens)
∘ what the user is (biometric)

PB152 Operating Systems 576/757 July 4, 2020

Enforcement: Hardware
• all enforcement begins with the hardware
∘ the CPU provides a privileged mode for the kernel
∘ DMAmemory and IO instructions are protected

• the MMU allows the kernel to isolate processes
∘ and protect its own integrity

PB152 Operating Systems 577/757 July 4, 2020

Enforcement: Kernel
• kernel uses hardware facilities to implement security
∘ it stands between resources and processes
∘ access is mediated through system calls

• file systems are part of the kernel
• user and group abstractions are part of the kernel

PB152 Operating Systems 578/757 July 4, 2020

Enforcement: System Calls
• the kernel acts as an arbitrator
• a process is trapped in its own address space
• processes use system calls to access resources
∘ kernel can decide what to allow
∘ based on its access control model and policy

PB152 Operating Systems 579/757 July 4, 2020

Enforcement: Service APIs
• userland processes can enforce access control
∘ usually system services which provide IPC API

• e.g. via the getpeereid() system call
∘ tells the caller which user is connected to a socket
∘ user-level access control relies on kernel facilities

PB152 Operating Systems 580/757 July 4, 2020

Part 10.2: File Systems

PB152 Operating Systems 581/757 July 4, 2020

File Access Rights
• file systems are a case study in access control
• all modern file systems maintain permissions
∘ the only extant exception is FAT (USB sticks)

• different systems adopt different representation

PB152 Operating Systems 582/757 July 4, 2020

Representation
• file systems are usually object-centric
∘ permissions are attached to individual objects
∘ easily answers “who can access this file”?

• there is a fixed set of verbs
∘ those may be different for files and directories
∘ different systems allow different verbs

PB152 Operating Systems 583/757 July 4, 2020

The UNIX Model
• each file and directory has a single owner
• plus a single owning group
∘ not limited to those the owner belongs to

• ownership and permissions are attached to i-nodes

PB152 Operating Systems 584/757 July 4, 2020

Access vs Ownership
• POSIX ties ownership and access rights
• only 3 subjects can be named on a file
∘ the owner (user)
∘ the owning group
∘ anyone else

PB152 Operating Systems 585/757 July 4, 2020

Access Verbs in POSIX File Systems
• read: read a file, list a directory
• write: write a file, link/unlink i-nodes to a directory
• execute: exec a program, enter the directory
• execute as owner (group): setuid/setgid

PB152 Operating Systems 586/757 July 4, 2020

Permission Bits
• basic UNIX permissions can be encoded in 9 bits
• 3 bits per 3 subject designations
∘ first comes the owner, then group, then others
∘ written as e.g. rwxr-x--- or 0750

• plus two numbers for the owner/group identifiers

PB152 Operating Systems 587/757 July 4, 2020

Changing File Ownership
• the owner and root can change file owners
• chown and chgrp system utilities
• or via the C API
∘ chown(), fchown(), fchownat(), lchown()
∘ same set for chgrp

PB152 Operating Systems 588/757 July 4, 2020

Changing File Permissions
• again available to the owner and to root

• chmod is the user space utility
∘ either numeric argument: chmod 644 file.txt

∘ or symbolic: chmod +x script.sh

• and the corresponding system call (numeric-only)

PB152 Operating Systems 589/757 July 4, 2020

setuid and setgid

• special permissions on executable files
• they allow exec to also change the process owner
• often used for granting extra privileges
∘ e.g. the mount command runs as the super-user

PB152 Operating Systems 590/757 July 4, 2020

Sticky Directories
• file creation and deletion is a directory permission
∘ this is problematic for shared directories
∘ in particular the system /tmp directory

• in a sticky directory, different rules apply
∘ new files can be created as usual
∘ only the owner can unlink a file from the directory

PB152 Operating Systems 591/757 July 4, 2020

Access Control Lists
• ACL is a list of ACE’s (access control elements)
∘ each ACE is a subject + verb pair
∘ it can name an arbitrary user

• ACL is attached to an object (file, directory)
• more flexible than the traditional UNIX system

PB152 Operating Systems 592/757 July 4, 2020

ACLs and POSIX
• part of POSIX.1e (security extensions)
• most POSIX systems implement ACLs
∘ this does not supersede UNIX permission bits
∘ instead, they are interpreted as part of the ACL

• file system support is not universal (but widespread)

PB152 Operating Systems 593/757 July 4, 2020

Device Files
• UNIX represents devices as special i-nodes
∘ this makes them subject to normal access control

• the particular device is described in the i-node
∘ only a super-user can create device nodes
∘ users could otherwise gain access to any device

PB152 Operating Systems 594/757 July 4, 2020

Sockets and Pipes
• named sockets and pipes are just i-nodes
∘ also subject to standard file permissions

• especially useful with sockets
∘ a service sets up a named socket in the file system
∘ file permissions decide who can talk to the service

PB152 Operating Systems 595/757 July 4, 2020

Special Attributes
• flags that allow additional restrictions on file use
∘ e.g. immutable files (cannot be changed by anyone)
∘ append-only files (for logfile integrity protection)
∘ compression, copy-on-write controls

• non-standard (Linux chattr, BSD chflags)

PB152 Operating Systems 596/757 July 4, 2020

Network File System
• NFS 3.0 simply transmits numeric uid and gid

∘ the numbering needs to be synchronised
∘ can be done via a central user database

• NFS 4.0 uses per-user authentication
∘ the user authenticates to the server directly
∘ filesystem uid and gid values are mapped

PB152 Operating Systems 597/757 July 4, 2020

File System Quotas
• storage space is limited, shared by users
∘ files take up storage space
∘ file ownership is also a liability

• quotas set up limits space use by users
∘ exhausted quota can lead to denial of access

PB152 Operating Systems 598/757 July 4, 2020

Removable Media
• access control at file system level makes no sense
∘ other computers may choose to ignore permissions
∘ user names or id’s would not make sense anyway

• option 1: encryption (for denying reads)
• option 2: hardware-level controls
∘ usually read-only vs read-write on the entire medium

PB152 Operating Systems 599/757 July 4, 2020

The chroot System Call
• each process in UNIX has its own root directory
∘ for most, this coincides with the system root

• the root directory can be changed using chroot()

• can be useful to limit file system access
∘ e.g. in privilege separation scenarios

PB152 Operating Systems 600/757 July 4, 2020

Uses of chroot
• chroot alone is not a security mechanism
∘ a super-user process can get out easily
∘ but not easy for a normal user process

• also useful for diagnostic purposes
• and as lightweight alternative to virtualisation

PB152 Operating Systems 601/757 July 4, 2020

Part 10.3: Sub-User Granularity

PB152 Operating Systems 602/757 July 4, 2020

Users are Not Enough
• users are not always the right abstraction
∘ creating users is relatively expensive
∘ only a super-user can create new users

• you may want to include programs as subjects
∘ or rather, the combination user + program

PB152 Operating Systems 603/757 July 4, 2020

Naming Programs
• users have user names, but how about programs?
• option 1: cryptographic signatures
∘ portable across computers but complex
∘ establishes identity based on the program itself

• option 2: i-node of the executable
∘ simple, local, identity based on location

PB152 Operating Systems 604/757 July 4, 2020

Program as a Subject
• program: passive (file) vs active (processes)
∘ only a process can be a subject
∘ but program identity is attached to the file

• rights of a process depend on its program
∘ exec()will change privileges

PB152 Operating Systems 605/757 July 4, 2020

Mandatory Access Control
• delegates permission control to a central authority
• often coupled with security labels
∘ classifies subjects (users, processes)
∘ and also objects (files, sockets, programs)

• the owner cannot change object permissions

PB152 Operating Systems 606/757 July 4, 2020

Capabilities
• not all verbs (actions) need to take objects
• e.g. shutting down the computer (there is only one)
• mounting file systems (they can’t be always named)
• listening on ports with number less than 1024

PB152 Operating Systems 607/757 July 4, 2020

Dismantling the root User
• the traditional root user is all-powerful
∘ “all or nothing” is often unsatisfactory
∘ violates the principle of least privilege

• many special properties of root are capabilities
∘ root then becomes the user with all capabilities
∘ other users can get selective privileges

PB152 Operating Systems 608/757 July 4, 2020

Security and Execution
• security hinges on what is allowed to execute
• arbitrary code execution are the worst exploits
∘ this allows unauthorized execution of code
∘ same effect as impersonating the user
∘ almost as bad as stolen credentials

PB152 Operating Systems 609/757 July 4, 2020

Untrusted Input
• programs often process data from dubious sources
∘ think image viewers, audio & video players
∘ archive extraction, font rendering, ...

• bugs in programs can be exploited
∘ the program can be tricked into executing data

PB152 Operating Systems 610/757 July 4, 2020

Process as a Subject
• some privileges can be tied to a particular process
∘ those only apply during the lifetime of the process
∘ often restrictions rather than privileges
∘ this is how privilege dropping is done

• restrictions are inherited across fork()

PB152 Operating Systems 611/757 July 4, 2020

Sandboxing
• tries to limit damage from code execution exploits
• the program drops all privileges it can
∘ this is done before it touches any of the input
∘ the attacker is stuck with the reduced privileges
∘ this can often prevent a successful attack

PB152 Operating Systems 612/757 July 4, 2020

Untrusted Code
• traditionally, you would only execute trusted code
∘ often based on reputation or other external factors
∘ this does not scale to a large number of vendors

• it is common to execute untrusted, even dubious code
∘ this can be okay with sufficient sandboxing

PB152 Operating Systems 613/757 July 4, 2020

API-Level Access Control
• capability system for user-level resources
∘ things like contact lists, calendars, bookmarks
∘ objects not provided directly by the kernel

• enforcement e.g. via a virtual machine
∘ not applicable to execution of native code
∘ alternative: an IPC-based API

PB152 Operating Systems 614/757 July 4, 2020

Android/iOS Permissions
• applications from a store are semi-trusted
• typically single-user computers/devices
• permissions are attached to apps instead of users
• partially virtual users, partially API-level

PB152 Operating Systems 615/757 July 4, 2020

Review Questions
• What is a user?
• What is the principle of least privilege?
• What is an access control object?
• What is a sandbox?

PB152 Operating Systems 616/757 July 4, 2020

Part 11: Virtualisation & Containers

PB152 Operating Systems 617/757 July 4, 2020

Lecture Overview
1. Hypervisors
2. Containers
3. Management

PB152 Operating Systems 618/757 July 4, 2020

Part 11.1: Hypervisors

PB152 Operating Systems 619/757 July 4, 2020

What is a Hypervisor
• also known as a Virtual Machine Monitor
• allows execution of multiple operating systems
• like a kernel that runs kernels
• improves hardware utilisation

PB152 Operating Systems 620/757 July 4, 2020

Motivation
• OS-level sharing is tricky
∘ user isolation is often insufficient
∘ only root can install software

• the hypervisor/OS interface is simple
∘ compared to OS-application interfaces

PB152 Operating Systems 621/757 July 4, 2020

Virtualisation in General
• many resources are “virtualised”
∘ physical memory by the MMU
∘ peripherals by the OS

• makes resource management easier
• enables isolation of components

PB152 Operating Systems 622/757 July 4, 2020

Hypervisor Types
• type 1: bare metal
∘ standalone, microkernel-like

• type 2: hosted
∘ runs on top of normal OS
∘ usually need kernel support

PB152 Operating Systems 623/757 July 4, 2020

Type 1 (Bare Metal)
• IBM z/VM
• (Citrix) Xen
• Microsoft Hyper-V
• VMWare ESX

PB152 Operating Systems 624/757 July 4, 2020

Type 2 (Hosted)
• VMWare (Workstation, Player)
• Oracle VirtualBox
• Linux KVM
• FreeBSD bhyve
• OpenBSD vmm

PB152 Operating Systems 625/757 July 4, 2020

History
• started with mainframe computers
• IBM CP/CMS: 1968
• IBM VM/370: 1972
• IBM z/VM: 2000

PB152 Operating Systems 626/757 July 4, 2020

Desktop Virtualisation
• x86 hardware lacks virtual supervisor mode
• software-only solutions viable since late 90s
∘ Bochs: 1994
∘ VMWareWorkstation: 1999
∘ QEMU: 2003

PB152 Operating Systems 627/757 July 4, 2020

Paravirtualisation
• introduced as VMI in 2005 by VMWare
• alternative approach in Xen in 2006
• relies on modification of the guest OS
• near-native speed without HW support

PB152 Operating Systems 628/757 July 4, 2020

The Virtual x86 Revolution
• 2005: virtualisation extensions on x86

• 2008: MMU virtualisation
• unmodified guest at near-native speed
• most software-only solutions became obsolete

PB152 Operating Systems 629/757 July 4, 2020

Paravirtual Devices
• special drivers for virtualised devices
∘ block storage, network, console
∘ random number generator

• faster and simpler than emulation
∘ orthogonal to CPU/MMU virtualisation

PB152 Operating Systems 630/757 July 4, 2020

Virtual Computers
• usually known as Virtual Machines
• everything in the computer is virtual
∘ either via hardware (VT-x, EPT)
∘ or software (QEMU, virtio, ...)

• much easier to manage than actual hardware

PB152 Operating Systems 631/757 July 4, 2020

Essential Resources
• the CPU and RAM
• persistent (block) storage
• network connection
• a console device

PB152 Operating Systems 632/757 July 4, 2020

CPU Sharing
• same principle as normal processes
• there is a scheduler in the hypervisor
∘ simpler, with different trade-offs

• privileged instructions are trapped

PB152 Operating Systems 633/757 July 4, 2020

RAM Sharing
• very similar to standard paging
• software (shadow paging)
• or hardware (second-level translation)
• fixed amount of RAM for each VM

PB152 Operating Systems 634/757 July 4, 2020

Shadow Page Tables
• the guest system cannot access the MMU
• set up shadow table, invisible to the guest
• guest page tables are sync’d to the sPT by VMM
• the gPT can be made read-only to cause traps

PB152 Operating Systems 635/757 July 4, 2020

Second-Level Translation
• hardware-assisted MMU virtualisation
• adds guest-physical to host-physical layer
• greatly simplifies the VMM
• also much faster than shadow page tables

PB152 Operating Systems 636/757 July 4, 2020

Network Sharing
• usually a paravirtualised NIC
∘ transports frames between guest and host
∘ usually connected to a SW bridge in the host
∘ alternatives: routing, NAT

• a single physical NIC is used by everyone

PB152 Operating Systems 637/757 July 4, 2020

Virtual Block Devices
• usually also paravirtualised
• often backed by normal files
∘ maybe in a special format
∘ e.g. based on copy-on-write

• but can be a real block device

PB152 Operating Systems 638/757 July 4, 2020

Special Resources
• mainly useful in desktop systems
• GPU / graphics hardware
• audio equipment
• printers, scanners, ...

PB152 Operating Systems 639/757 July 4, 2020

PCI Passthrough
• an anti-virtualisation technology
• based on an IO-MMU (VT-d, AMD-Vi)
• a virtual OS can touch real hardware
∘ only one OS at a time, of course

PB152 Operating Systems 640/757 July 4, 2020

GPUs and Virtualisation
• can be assigned (via VT-d) to a single OS
• or time-shared using native drivers (GVT-g)
• paravirtualised
• shared by other means (X11, SPICE, RDP)

PB152 Operating Systems 641/757 July 4, 2020

Peripherals
• useful either via passthrough
∘ audio, webcams, ...

• or standard sharing technology
∘ network printers & scanners
∘ networked audio servers

PB152 Operating Systems 642/757 July 4, 2020

Peripheral Passthrough
• virtual PCI, USB or SATA bus
• forwarding to a real device
∘ e.g. a single USB stick
∘ or a single SATA drive

PB152 Operating Systems 643/757 July 4, 2020

Suspend & Resume
• the VM can be quite easily stopped
• the RAM of a stopped VM can be copied
∘ e.g. to a file in the host filesystem
∘ along with registers and other state

• and also later loaded and resumed

PB152 Operating Systems 644/757 July 4, 2020

Migration Basics
• the stored state can be sent over network
• and resumed on a different host
• as long as the virtual environment is same
• this is known as paused migration

PB152 Operating Systems 645/757 July 4, 2020

Live Migration
• uses asynchronous memory snapshots
• host copies pages and marks them read-only
• the snapshot is sent as it is constructed
• changed pages are sent at the end

PB152 Operating Systems 646/757 July 4, 2020

Live Migration Handoff
• the VM is then paused
• registers and last few pages are sent
• the VM is resumed at the remote end
• usually within a few milliseconds

PB152 Operating Systems 647/757 July 4, 2020

Memory Ballooning
• how to deallocate “physical” memory?
∘ i.e. return it to the hypervisor

• this is often desirable in virtualisation
• needs a special host/guest interface

PB152 Operating Systems 648/757 July 4, 2020

Part 11.2: Containers

PB152 Operating Systems 649/757 July 4, 2020

What are Containers?
• OS-level virtualisation
∘ e.g. virtualised network stack
∘ or restricted file system access

• not a complete virtual computer
• turbocharged processes

PB152 Operating Systems 650/757 July 4, 2020

Why Containers
• virtual machines take a while to boot
• each VM needs its own kernel
∘ this adds up if you need many VMs

• easier to share memory efficiently
• easier to cut down the OS image

PB152 Operating Systems 651/757 July 4, 2020

Kernel Sharing
• multiple containers share a single kernel
• but not user tables, process tables, ...
• the kernel must explicitly support this
• another level of isolation (process, user, container)

PB152 Operating Systems 652/757 July 4, 2020

Boot Time
• a light virtual machine takes a second or two
• a container can take under 50ms
• but VMs can be suspended and resumed
• but dormant VMs take up a lot more space

PB152 Operating Systems 653/757 July 4, 2020

chroot

• the mother of all container systems
• not very sophisticated or secure
• but allows multiple OS images under 1 kernel
• everything else is shared

PB152 Operating Systems 654/757 July 4, 2020

chroot-based ‘Containers’
• process tables, network, etc. are shared
• the superuser must also be shared
• containers have their own view of the filesystem
∘ including system libraries and utilities

PB152 Operating Systems 655/757 July 4, 2020

BSD Jails
• an evolution of the chroot container
• adds user and process table separation
• and a virtualised network stack
∘ each jail can get its own IP address

• root in the jail has limited power

PB152 Operating Systems 656/757 July 4, 2020

Linux VServer
• like BSD jails but on Linux
∘ FreeBSD jail 2000, VServer 2001

• not part of the mainline kernel
• jailed root user is partially isolated

PB152 Operating Systems 657/757 July 4, 2020

Namespaces
• visibility compartments in the Linux kernel
• virtualizes common OS resources
∘ the filesystem hierarchy (including mounts)
∘ process tables
∘ networking (IP address)

PB152 Operating Systems 658/757 July 4, 2020

cgroups

• controls HW resource allocation in Linux
• a CPU group is a fair scheduling unit
• a memory group sets limits on memory use
• mostly orthogonal to namespaces

PB152 Operating Systems 659/757 July 4, 2020

LXC
• mainline Linux way to do containers
• based on namespaces and cgroups

• relative newcomer (2008, 7 years after vserver)
• feature set similar to VServer, OpenVZ &c.

PB152 Operating Systems 660/757 July 4, 2020

User-Mode Linux
• halfway between a container and a virtual machine
• an early fully paravirtualised system
• a Linux kernel runs as a process on another Linux
• integrated in Linux 2.6 in 2003

PB152 Operating Systems 661/757 July 4, 2020

DragonFlyBSD Virtual Kernels
• very similar to User-Mode Linux
• part of DFlyBSD since 2007
• uses standard libc, unlike UML
• paravirtual ethernet, storage and console

PB152 Operating Systems 662/757 July 4, 2020

User Mode Kernels
• easier to retrofit securely
∘ uses existing security mechanisms
∘ for the host, mostly a standard process

• the kernel needs to be ported though
∘ analogous to a new hardware platform

PB152 Operating Systems 663/757 July 4, 2020

Migration
• not widely supported, unlike in hypervisors
• process state is much harder to serialise
∘ file descriptors, network connections &c.

• somewhat mitigated by fast shutdown/boot time

PB152 Operating Systems 664/757 July 4, 2020

Part 11.3: Management

PB152 Operating Systems 665/757 July 4, 2020

Disk Images
• disk image is the embodiment of the VM
• the virtual OS needs to be installed
• the image can be a simple file
• or a dedicated block device on the host

PB152 Operating Systems 666/757 July 4, 2020

Snapshots
• making a copy of the image = snapshot
• can be done more efficiently: copy on write
• alternative to OS installation
∘ make copies of the freshly installed image
∘ and run updates after cloning the image

PB152 Operating Systems 667/757 July 4, 2020

Duplication
• each image will have a copy of the system
• copy-on-write snapshots can help
∘ most of the base system will not change
∘ regression as images are updated separately

• block-level de-duplication is expensive

PB152 Operating Systems 668/757 July 4, 2020

File Systems
• disk images contain entire file systems
• the virtual disk is of (apparently) fixed size
• sparse images: unwritten area is not stored
• initially only filesystem metadata is allocated

PB152 Operating Systems 669/757 July 4, 2020

Overcommit
• the host can allocate more resources than it has
• this works as long as not many VMs reach limits
• enabled by sparse images and CoW snapshots
• also applies to available RAM

PB152 Operating Systems 670/757 July 4, 2020

Thin Provisioning
• the act of obtaining resources on demand
• the host system can be extended as needed
∘ to keep pace with growing guest demands

• alternatively, VMs can be migrated out
• improves resource utilisation

PB152 Operating Systems 671/757 July 4, 2020

Configuration
• each OS has its own configuration files
• same methods apply as for physical networks
∘ software configuration management

• bundled services are deployed to VMs

PB152 Operating Systems 672/757 July 4, 2020

Bundling vs Sharing
• bundling makes deployment easier
• the bundled components have known behaviour
• but updates are much trickier
• this also prevents resource sharing

PB152 Operating Systems 673/757 July 4, 2020

Security
• hypervisors have a decent track record
∘ security here means protection of host from guest
∘ breaking out is still possible sometimes

• containers are more of a mixed bag
∘ many hooks are needed into the kernel

PB152 Operating Systems 674/757 July 4, 2020

Updates
• each system needs to be updated separately
∘ this also applies to containers

• blocks coming from a common ancestor are shared
∘ but updating images means loss of sharing

PB152 Operating Systems 675/757 July 4, 2020

Container vs VM Updates
• de-duplication may be easier in containers
∘ shared file system – e.g. link farming

• kernel updates: containers and type 2 hypervisors
∘ can be mitigated by live migration

• type 1 hypervisors need less downtime

PB152 Operating Systems 676/757 July 4, 2020

Docker
• automated container image management
• mainly a service deployment tool
• containers share a single Linux kernel
∘ the kernel itself can run in a VM

• rides on a wave of bundling resurgence

PB152 Operating Systems 677/757 July 4, 2020

The Cloud
• public virtualisation infrastructure
• “someone else’s computer”
• the guests are not secure against the host
∘ entire memory is exposed, including secret keys
∘ host compromise is fatal

• the host is mostly secure from the guests

PB152 Operating Systems 678/757 July 4, 2020

Review Questions
• What is a hypervisor?
• What is paravirtualisation?
• How are VMs suspended and migrated?
• What is a container?

PB152 Operating Systems 679/757 July 4, 2020

Part 12: Special-Purpose Operating
Systems

PB152 Operating Systems 680/757 July 4, 2020

Review Questions
• Question 1
• Question 2
• Question 3
• Question 4

PB152 Operating Systems 681/757 July 4, 2020

Part 13: Review

PB152 Operating Systems 682/757 July 4, 2020

What is an OS made of?
• the kernel
• system libraries
• system daemons / services
• user interface
• system utilities

Basically every OS has those.

PB152 Operating Systems 683/757 July 4, 2020

The Kernel
• lowest level of an operating system
• executes in privileged mode
• manages all the other software
∘ including other OS components

• enforces isolation and security
• provides low-level services to programs

PB152 Operating Systems 684/757 July 4, 2020

System Libraries
• form a layer above the OS kernel
• provide higher-level services
∘ use kernel services behind the scenes
∘ easier to use than the kernel interface

• typical example: libc
∘ provides C functions like printf

∘ also known as msvcrt onWindows

PB152 Operating Systems 685/757 July 4, 2020

Programming Interfaces
• kernel system call interface
• → system libraries / APIs←
• inter-process protocols
• command-line utilities (scripting)

PB152 Operating Systems 686/757 July 4, 2020

(System) Libraries
• mainly C functions and data types
• interfaces defined in header files
• definitions provided in libraries
∘ static libraries (archives): libc.a
∘ shared (dynamic) libraries: libc.so

• onWindows: msvcrt.lib and msvcrt.dll

• there are (many) more besides libc / msvcrt

PB152 Operating Systems 687/757 July 4, 2020

Shared (Dynamic) Libraries
• required for running programs
• linking is done at execution time
• less code duplication
• can be upgraded separately
• but: dependency problems

PB152 Operating Systems 688/757 July 4, 2020

Why is Everything a File
• re-use the comprehensive file system API
• re-use existing file-based command-line tools
• bugs are bad→ simplicity is good
• want to print? cat file.txt > /dev/ulpt0

∘ (reality is a little more complex)

PB152 Operating Systems 689/757 July 4, 2020

What is a Filesystem?
• a set of files and directories
• usually lives on a single block device
∘ but may also be virtual

• directories and files form a tree
∘ directories are internal nodes
∘ files are leaf nodes

PB152 Operating Systems 690/757 July 4, 2020

File Descriptors
• the kernel keeps a table of open files
• the file descriptor is an index into this table
• you do everything using file descriptors
• non-Unix systems have similar concepts

PB152 Operating Systems 691/757 July 4, 2020

Regular files
• these contain sequential data (bytes)
• may have inner structure but the OS does not care
• there is metadata attached to files
∘ like when were they last modified
∘ who can and who cannot access the file

• you read() and write() files

PB152 Operating Systems 692/757 July 4, 2020

Privileged CPUMode
• many operations are restricted in user mode
∘ this is how user programs are executed
∘ also most of the operating system

• software running in privileged mode can do ~anything
∘ most importantly it can program the MMU
∘ the kernel runs in this mode

PB152 Operating Systems 693/757 July 4, 2020

Memory Management Unit
• is a subsystem of the processor
• takes care of address translation
∘ user software uses virtual addresses
∘ the MMU translates them to physical addresses

• the mappings can be managed by the OS kernel

PB152 Operating Systems 694/757 July 4, 2020

What does a Kernel Do?
• memory & process management
• task (thread) scheduling
• device drivers
∘ SSDs, GPUs, USB, bluetooth, HID, audio, ...

• file systems
• networking

PB152 Operating Systems 695/757 July 4, 2020

Kernel Architecture Types
• monolithic kernels (Linux, *BSD)
• microkernels (Mach, L4, QNX, NT, ...)
• hybrid kernels (macOS)
• type 1 hypervisors (Xen)
• exokernels, rump kernels

PB152 Operating Systems 696/757 July 4, 2020

System Call Sequence
• first, libc prepares the system call arguments
• and puts the system call number in the correct register
• then the CPU is switched into privileged mode
• this also transfers control to the syscall handler

PB152 Operating Systems 697/757 July 4, 2020

What is an i-node?
• an anonymous, file-like object
• could be a regular file
∘ or a directory
∘ or a special file
∘ or a symlink

PB152 Operating Systems 698/757 July 4, 2020

Disk-Like Devices
• disk drives provide block-level access
• read and write data in 512-byte chunks
∘ or also 4K on big modern drives

• a big numbered array of blocks

PB152 Operating Systems 699/757 July 4, 2020

I/O Scheduler (Elevator)
• reads and writes are requested by users
• access ordering is crucial on a mechanical drive
∘ not as important on an SSD
∘ but sequential access is still much preferred

• requests are queued (recall, disks are slow)
∘ but they are not processed in FIFO order

PB152 Operating Systems 700/757 July 4, 2020

Filesystem as Resource Sharing
• usually only 1 or few disks per computer
• many programs want to store persistent data
• file system allocates space for the data
∘ which blocks belong to which file

• different programs can write to different files
∘ no risk of trying to use the same block

PB152 Operating Systems 701/757 July 4, 2020

Filesystem as Abstraction
• allows the data to be organised into files
• enables the user to manage and review data
• files have arbitrary & dynamic size
∘ blocks are transparently allocated & recycled

• structured data instead of a flat block array

PB152 Operating Systems 702/757 July 4, 2020

Memory-mapped IO
• uses virtual memory
• treat a file as if it was swap space
• the file is mapped into process memory
∘ page faults indicate that data needs to be read
∘ dirty pages cause writes

• available as the mmap system call

PB152 Operating Systems 703/757 July 4, 2020

Fragmentation
• internal – not all blocks are fully used
∘ files are of variable size, blocks are fixed
∘ a 4100 byte file needs 2 4 KiB blocks

• external – free space is non-contiguous
∘ happens when many files try to grow at once
∘ this means new files are also fragmented

PB152 Operating Systems 704/757 July 4, 2020

Hard Links
• multiple names can refer to the same i-node
∘ names are given by directory entries
∘ we call such multiple-named files hard links
∘ it’s usually forbidden to hard-link directories

• hard links cannot cross device boundaries
∘ i-node numbers are only unique within a filesystem

PB152 Operating Systems 705/757 July 4, 2020

Process Resources
• memory (address space)
• processor time
• open files (descriptors)
∘ also working directory
∘ also network connections

PB152 Operating Systems 706/757 July 4, 2020

Process Memory
• each process has its own address space
• this means processes are isolated from each other
• requires that the CPU has an MMU
• implemented via paging (page tables)

PB152 Operating Systems 707/757 July 4, 2020

Process Switching
• switching processes means switching page tables
• physical addresses do not change
• but the mapping of virtual addresses does
• large part of physical memory is not mapped
∘ could be completely unallocated (unused)
∘ or belong to other processes

PB152 Operating Systems 708/757 July 4, 2020

What is a Thread?
• thread is a sequence of instructions
• different threads run different instructions
∘ as opposed to SIMD or many-core units (GPUs)

• each thread has its own stack
• multiple threads can share an address space

PB152 Operating Systems 709/757 July 4, 2020

Fork
• how do we create new processes?
• by fork-ing existing processes
• fork creates an identical copy of a process
• execution continues in both processes
∘ each of them gets a different return value

PB152 Operating Systems 710/757 July 4, 2020

Process vs Executable
• process is a dynamic entity
• executable is a static file
• an executable contains an initial memory image
∘ this sets up memory layout
∘ and content of the text and data segments

PB152 Operating Systems 711/757 July 4, 2020

Exec
• on UNIX, processes are created via fork

• how do we run programs though?
• exec: load a new executable into a process
∘ this completely overwrites process memory
∘ execution starts from the entry point

• running programs: fork + exec

PB152 Operating Systems 712/757 July 4, 2020

What is a Scheduler?
• scheduler has two related tasks
∘ plan when to run which thread
∘ actually switch threads and processes

• usually part of the kernel
∘ even in micro-kernel operating systems

PB152 Operating Systems 713/757 July 4, 2020

Interrupt
• a way for hardware to request attention
• CPU mechanism to divert execution
• partial (CPU state only) context switch
• switch to privileged (kernel) CPU mode

PB152 Operating Systems 714/757 July 4, 2020

Timer Interrupt
• generated by the PIT or the local APIC
• the OS can set the frequency
• a hardware interrupt happens on each tick
• this creates an opportunity for bookkeeping
• and for preemptive scheduling

PB152 Operating Systems 715/757 July 4, 2020

What is Concurrency?
• events that can happen at the same time
• it is not important if it does, only that it can
• events can be given a happens-before partial order
• they are concurrent if unordered by happens-before

PB152 Operating Systems 716/757 July 4, 2020

Why Concurrency?
• problem decomposition
∘ different tasks can be largely independent

• reflecting external concurrency
∘ serving multiple clients at once

• performance and hardware limitations
∘ higher throughput on multicore computers

PB152 Operating Systems 717/757 July 4, 2020

Critical Section
• any section of code that must not be interrupted
• the statement x = x + 1 could be a critical section
• what is a critical section is domain-dependent
∘ another example could be a bank transaction
∘ or an insertion of an element into a linked list

PB152 Operating Systems 718/757 July 4, 2020

Race Condition: Definition
• (anomalous) behaviour that depends on timing
• typically among multiple threads or processes
• an unexpected sequence of events happens
• recall that ordering is not guaranteed

PB152 Operating Systems 719/757 July 4, 2020

Mutual Exclusion
• only one thread can access a resource at once
• ensured by a mutual exclusion device (a.k.a mutex)
• a mutex has 2 operations: lock and unlock

• lockmay need to wait until another thread unlocks

PB152 Operating Systems 720/757 July 4, 2020

Deadlock Conditions
1. mutual exclusion
2. hold and wait condition
3. non-preemtability
4. circular wait

Deadlock is only possible if all 4 are present.

PB152 Operating Systems 721/757 July 4, 2020

Starvation
• starvation happens when a process can’t make progress
• generalisation of both deadlock and livelock
• for instance, unfair scheduling on a busy system
• also recall the readers and writers problem

PB152 Operating Systems 722/757 July 4, 2020

What is a Driver?
• piece of software that talks to a device
• usually quite specific / unportable
∘ tied to the particular device
∘ and also to the operating system

• often part of the kernel

PB152 Operating Systems 723/757 July 4, 2020

Drivers and Microkernels
• drivers are excluded from microkernels
• but the driver still needs hardware access
∘ this could be a special memory region
∘ it may need to react to interrupts

• in principle, everything can be done indirectly
∘ but this may be quite expensive, too

PB152 Operating Systems 724/757 July 4, 2020

Interrupt-driven IO
• peripherals are much slower than the CPU
∘ polling the device is expensive

• the peripheral can signal data availability
∘ and also readiness to accept more data

• this frees up CPU to do other work in the meantime

PB152 Operating Systems 725/757 July 4, 2020

Memory-mapped IO
• devices share address space with memory
• more common in contemporary systems
• IO uses the same instructions as memory access
∘ load and store on RISC, mov on x86

• allows selective user-level access (via the MMU)

PB152 Operating Systems 726/757 July 4, 2020

Direct Memory Access
• allows the device to directly read/write memory
• this is a huge improvement over programmed IO
• interrupts only indicate buffer full/empty
• devices can read and write arbitrary physical memory
∘ opens up security / reliability problems

PB152 Operating Systems 727/757 July 4, 2020

GPU Drivers
• split into a number of components
• graphics output / frame buffer access
• memory management is often done in kernel
• geometry, textures &c. are prepared in-process
• front end API: OpenGL, Direct3D, Vulkan, ...

PB152 Operating Systems 728/757 July 4, 2020

Storage Drivers
• split into adapter, bus and device drivers
• often a single driver per device type
∘ at least for disk drives and CD-ROMs

• bus enumeration and configuration
• data addressing and data transfers

PB152 Operating Systems 729/757 July 4, 2020

Networking Layers
1. Link (Ethernet, WiFi)
2. Network (IP)
3. Transport (TCP, UDP, ...)
4. Application (HTTP, SMTP, ...)

PB152 Operating Systems 730/757 July 4, 2020

Networking and Operating Systems
• a network stack is a standard part of an OS
• large part of the stack lives in the kernel
∘ although this only applies to monolithic kernels
∘ microkernels use user-space networking

• another chunk is in system libraries & utilities

PB152 Operating Systems 731/757 July 4, 2020

Kernel-Side Networking
• device drivers for networking hardware
• network and transport protocol layers
• routing and packet filtering (firewalls)
• networking-related system calls (sockets)
• network file systems (SMB, NFS)

PB152 Operating Systems 732/757 July 4, 2020

IP (Internet Protocol)
• uses 4 byte (v4) or 16 byte (v6) addresses
∘ split into network and host parts

• it is a packet-based protocol
• is a best-effort protocol
∘ packets may get lost, reordered or corrupted

PB152 Operating Systems 733/757 July 4, 2020

TCP: Transmission Control Protocol
• a stream-oriented protocol on top of IP
• works like a pipe (transfers a byte sequence)
∘ must respect delivery order
∘ and also re-transmit lost packets

• must establish connections

PB152 Operating Systems 734/757 July 4, 2020

UDP: User (Unreliable) Datagram Protocol
• TCP comes with non-trivial overhead
∘ and its guarantees are not always required

• UDP is a much simpler protocol
∘ a very thin wrapper around IP
∘ with minimal overhead on top of IP

PB152 Operating Systems 735/757 July 4, 2020

DNS: Domain Name Service
• hierarchical protocol for name resolution
∘ runs on top of TCP or UDP

• domain names are split into parts using dots
∘ each domain knows whom to ask for the next bit
∘ the name database is effectively distributed

PB152 Operating Systems 736/757 July 4, 2020

NFS (Network File System)
• the traditional UNIX networked filesystem
• hooked quite deep into the kernel
∘ assumes generally reliable network (LAN)

• filesystems are exported for use over NFS
• the client side mounts the NFS-exported volume

PB152 Operating Systems 737/757 July 4, 2020

Shell
• programming language centered on OS interaction
• rudimentary control flow
• untyped, text-centered variables
• dubious error handling

PB152 Operating Systems 738/757 July 4, 2020

Interactive Shells
• almost all shells have an interactive mode
• the user inputs a single statement on keyboard
• when confirmed, it is immediately executed
• this forms the basis of command-line interfaces

PB152 Operating Systems 739/757 July 4, 2020

Shell Scripts
• a shell script is an (executable) file
• in simplest form, it is a sequence of commands
∘ each command goes on a separate line
∘ executing a script is about the same as typing it

• but can use structured programming constructs

PB152 Operating Systems 740/757 July 4, 2020

Terminal
• can print text and read text from a keyboard
• normally everything is printed on the last line
• the text could contain escape (control) sequences
∘ for printing colourful text or clearing the screen
∘ also for printing text at a specific coordinate

PB152 Operating Systems 741/757 July 4, 2020

A GUI Stack
• graphics card driver, mode setting
• drawing/painting (usually hardware-accelerated)
• multiplexing (e.g. using windows)
• widgets: buttons, labels, lists, ...
• layout: what goes where on the screen

PB152 Operating Systems 742/757 July 4, 2020

X11 (XWindow System)
• a traditional UNIX windowing system
• provides a C API (xlib)
• built-in network transparency (socket-based)
• core protocol version 11 from 1987

PB152 Operating Systems 743/757 July 4, 2020

Users
• originally a proxy for people
• currently a more general abstraction
• user is the unit of ownership
• many permissions are user-centered

PB152 Operating Systems 744/757 July 4, 2020

User Management
• the system needs a database of users
• in a network, user identities often need to be shared
• could be as simple as a text file
∘ /etc/passwd and /etc/group on UNIX systems

• or as complex as a distributed database

PB152 Operating Systems 745/757 July 4, 2020

User Authentication
• the user needs to authenticate themselves
• passwords are the most commonly used method
∘ the system needs to know the right password
∘ user should be able to change their password

• biometric methods are also quite popular

PB152 Operating Systems 746/757 July 4, 2020

Ownership
• various objects in an OS can be owned
∘ primarily files and processes

• the owner is typically whoever created the object
∘ ownership can be transferred
∘ usually at the impetus of the original owner

PB152 Operating Systems 747/757 July 4, 2020

Access Control Policy
• there are 3 pieces of information
∘ the subject (user)
∘ the verb (what is to be done)
∘ the object (the file or other resource)

• there are many ways to encode this information

PB152 Operating Systems 748/757 July 4, 2020

Sandboxing
• tries to limit damage from code execution exploits
• the program drops all privileges it can
∘ this is done before it touches any of the input
∘ the attacker is stuck with the reduced privileges
∘ this can often prevent a successful attack

PB152 Operating Systems 749/757 July 4, 2020

What is a Hypervisor
• also known as a Virtual Machine Monitor
• allows execution of multiple operating systems
• like a kernel that runs kernels
• isolation and resource sharing

PB152 Operating Systems 750/757 July 4, 2020

Hypervisor Types
• type 1: bare metal
∘ standalone, microkernel-like

• type 2: hosted
∘ runs on top of normal OS
∘ usually need kernel support

PB152 Operating Systems 751/757 July 4, 2020

Paravirtual Devices
• special drivers for virtualised devices
∘ block storage, network, console
∘ random number generator

• faster than software emulation
∘ orthogonal to CPU/MMU virtualisation

PB152 Operating Systems 752/757 July 4, 2020

VM Suspend & Resume
• the VM can be quite easily stopped
• the RAM of a stopped VM can be copied
∘ e.g. to a file in the host filesystem
∘ along with registers and other state

• and also later loaded and resumed

PB152 Operating Systems 753/757 July 4, 2020

What are Containers?
• OS-level virtualisation
∘ e.g. virtualised network stack
∘ or restricted file system access

• not a complete virtual computer
• turbocharged processes

PB152 Operating Systems 754/757 July 4, 2020

Bundling vs Sharing
• bundling makes deployment easier
• the bundled components have known behaviour
• but updates are much trickier
• this also prevents resource sharing

PB152 Operating Systems 755/757 July 4, 2020

Review Questions
• What does portability mean?
• What is a socket?
• What is a device driver?
• What is a directory?

PB152 Operating Systems 756/757 July 4, 2020

1 The End

PB152 Operating Systems 757/757 July 4, 2020

Actually...
• a 2-part, written final exam
• test: 9/10 required
∘ pool of 52 questions (in the slides)

• free-form text
∘ one of the 11 lecture topics
∘ 1 page A4: be concise but comprehensive

