
PB161 Programming in C++ 1/33 March 31, 2020

PB161 Programming in C++
Petr Ročkai

Part A: Preliminaries
This document is a collection of exercises and commented source code
examples. All the sources are also available as separate files that you
can edit and compile. Additionally, this section contains the rules and
general guidelines that apply to the course as a whole.

Part A.1: Course Overview
Welcome to PB161 Programming inC++. The course consists of lectures,
seminars, assignments, and a programming test at the end. Since this
is a programming subject, most of the coursework – and grading – will
center around actual programming. Youwillwrite tiny programs in the
seminar (15-20 minutes each), write small programs for homework (a
few hundred lines) and there will be a simple (but strict) programming
test at the end that you have to pass.
Writing programs is hard and consequently, this course will also be
hard – you absolutely need to put in effort to pass the subject. Hope-
fully, you will have learned something by the end of it.
Further details on the organisation of this course are in this directory:

• grading.txt – what is graded and how; what you need to pass,
• homework.txt – general guidelines that govern assignments,
• reviews.txt – writing and receiving peer reviews,
• advisors.txt – whom to talk to when you need help,
• test.txt – about the final programming exam.

Study materials for each seminar are in directories 01 through 13 –
one directory per week. Start by reading intro.txt. The content for
a given week will be made available to you on the Sunday preceding
that week. Assignments are in directories hw1 through hw6 and will be
made available according to the schedule shown in grading.txt.

Part A.2: Grading Overview
To pass the subject, you need to:

• collect a total of 20 points (by any means) and
• collect at least 4 activity points and
• pass a programming test (in the exam period)

The points can be obtained as follows (these are upper limits):

• 12 points for homework (6 assignments, 2 points each)
• 6 points for finishing your homework on time/early
• 6 points for activity
• 4 points for writing clean and elegant code
• 3 points for attending seminars
• 3 points for code review

Howmany points over 20 you have decides your grade:

• 28 points = A
• 26 points = B
• 24 points = C
• 22 points = D
• 20 points = E

If your ‘completion type’ is ‘z’ (credit), you will also need 20 points to
pass, but you will not need to take the programming test which takes
place in the exam period (see below).

A.2.1 Homeworks

There will be 6 assignments, one every two weeks. There will be 8

deadlines for each of them, oneweek apart and each deadline gives you
one chance to pass the automated test suite. If you pass on the first or
second deadline, you get 1 extra point for the assignment. For the third
and fourth deadlines, the bonus is reduced to 0.5 point. Afterwards,
you only get the baseline 2 points.
The deadline schedule is as follows:

given try 1 try 2 try 3 try 4 try 5 try 6 try 7 try 8
3 points 2.5 points 2 points

hw1 18.2. 25.2. 3.3. 10.3. 17.3. 24.3. 31.3. 7.4. 14.4.
hw2 3.3. 10.3. 17.3. 24.3. 31.3. 7.4. 14.4. 21.4. 28.4.
hw3 17.3. 24.3. 31.3. 7.4. 14.4. 21.4. 28.4. 5.5. 12.5.
hw4 31.3. 7.4. 14.4. 21.4. 28.4. 5.5. 12.5. 19.5. 26.5.
hw5 14.4. 21.4. 28.4. 5.5. 12.5. 19.5. 26.5. 2.6. 9.6.
hw6 28.4. 5.5. 12.5. 19.5. 26.5. 2.6. 9.6. 16.6. 23.6.

The test suite is strictly binary: you either pass or you fail. More details
and guidelines are in homework.txt.

A.2.2 Activity and Attendance

Most of the time in seminars will be devoted to you (students) demon-
strating solutions to small programming problems for your classmates.
This is how you earn activity points: each time you demonstrate a
problem on the beamer (projector), you earn 2 points. You must do this
at least twice during the semester to earn the mandatory points for
activity.
Attendance is not mandatory, other than meeting your activity re-
quirement above. Attending the seminar 4 times is worth 1 indivisible
point. You can therefore earn 1 point for coming 4-7 times, 2 points
for coming 8-11 times or 3 points for coming 12 or more times.

A.2.3 Clean Code

We should all strive to always write clean, readable and well-designed
code. Of course, this takes more time (often a lot more time) than just
going with the first thing that sort of works. Out of the 6 assignments,
you will be able to submit two for teacher review. Which assignments
you choose to submit is up to you. Make sure that you put in adequate
effort to make the code as clean and nice as you possibly can. There
are two conditions:

• you must have earned at least 2.5 points for the assignment in
question

• you must submit the request by the ‘try 5’ deadline
• the code as submitted for review must pass the testsuite

This means you have an extra week to make your code pretty after the
last 2.5 point deadline. However, if you introduce regressions during
this time, you will not qualify! For this reason, you may prefer to
submit the already-clean code before the ‘try 4’ deadline.
The points earned here are fractional: you can earn anything between
0 and 1 point for each of the assignments you submit for teacher review.
The remaining 2 ‘clean code’ points are reserved for the programming
test that you will do at school (details below).

A.2.4 Peer Review

Reading code is an important skill – sometimes more so than writing
it. While the space to practice reading code in this subject is limited,

PB161 Programming in C++ 2/33 March 31, 2020

you will be able to earn a few points doing just that. The rules for peer
review are quite different from those for teacher reviews above:

• you can submit any code (even completely broken) for peer review
• to write a review for any given submission, you must have already

passed the respective assignment yourself
• there are no deadlines for requesting or providing peer reviews
• writing a review is worth 0.3 points and you can write at most 10

It is okay to point out correctness problems during peer reviews, with
the expectation that this might help the recipient pass the assignment.
This is the only allowed form of cooperation (more on that below).

A.2.5 Programming Test

To pass the subject, you need to demonstrate your ability to write
programs on your own. The goal of the programming test is exactly
this. You will get:

• a simple programming assignment
• a computer without internet access
• a selection of basic test cases
• an offline copy of cppreference.com
• a C++17 compiler
• a selection of text editors and IDEs in their default configuration
• 120 minutes of time

The programming test will be evaluated using automated tests, just like
homework. You must pass those tests in order to succeed. If you fail
the tests but you believe either the tests are in error, or you failed due
to a very minor mistake, you can appeal to a human, who can overrule
the test suite.
If you fail, you get an F and you can try again according to the standard
rules for repeating exams. If you really don’t want the F to blemish
your study record, you can trade in 3 points that you already earned
to have the result erased.
If you pass, your program will be reviewed by a human, who can
still fail you if your code is unacceptable for some reason that was
not detected by the automated testsuite. Otherwise (and this is the
expected outcome) they will give you 0-2 points for style. You can keep
collecting points after passing the exam, if you want.
To take the test, you need to already have 18 points. For more details,
see also test.txt.

A.2.6 Plagiarism

Copying someone else’s work or letting someone else copy yours will
earn you -8 points per instance and a chat with the disciplinary com-
mittee. You are also responsible for keeping your solutions private. If
you only use the pb161 command on aisa, it will make your ~/pb161 di-
rectory inaccessible to anyone else (this also applies to school-provided
UNIX workstations). Keep it that way. If you work on your solution
using other computers, make sure they are secure. Do not publish
your solutions anywhere (on the internet or otherwise). All parties in
a copying incident will be treated equally.

Part A.3: Homework
The general principles outlined here apply to all assignments. The first
and most important rule is, use your brain – the specifications are not
exhaustive and sometimes leave room for different interpretations. Do
your best to apply the most sensible one. Do not try to find loopholes
(all you are likely to get is failed tests). Technically correct is not the
best kind of correct.
Think about pre- and postconditions. Aim for weakest preconditions
that still allow you to guarantee the postconditions required by the
assignment. If your preconditions are too strong (i.e. you disallow
inputs that are not ruled out by the spec) you will likely fail the tests.
Do not print anything that you are not specifically directed to. Pro-

grams which print garbage (i.e. anything that wasn’t specified) will fail
tests.
You can use the standard C++ library. External libraries or header
files are not allowed, unless specified as part of the assignment. Make
sure that your classes and methods use the correct spelling, and that
you accept and/or return the correct types. In most cases, either the
‘syntax’ or the ‘sanity’ test suite will catch problems of this kind, but
we cannot guarantee that it always will – do not rely on it.
If you don’t get everything right the first time around, do not despair.
The expectation is that most of the time, you will pass in the second
or third week. In the real world, the first delivered version of your
product will rarely be perfect, or even acceptable, despite your best
effort to fulfill every customer requirement.
If you strongly disagree with a test outcome and you believe you ad-
hered to the specification and resolved any ambiguities in a sensible
fashion, please come to discuss the issue in person (see advisors.txt

for details).

A.3.1 Submitting Solutions

The easiest way to submit a solution is this:

$ ssh aisa.fi.muni.cz

$ cd ~/pb161/hw1

<edit files until satisfied>

$ pb161 submit

If you prefer to work in some other directory, you may need to specify
which homework you wish to submit, like this: pb161 submit hw1. The
number of times you submit is not limited (but see also below).
NB. Only the files listed in the assignment will be submitted and eval-
uated. Please put your entire solution into existing files.
You can check the status of your submissions by issuing the following
command:

$ pb161 status

In case you already submitted a solution, but later changed it, you can
see the differences between your most recent submitted version and
your current version by issuing:

$ pb161 diff

The lines starting with - have been removed since the submission,
those with + have been added and those with neither are common to
both versions.

A.3.2 Compilation

To compile and test your homework, use the make command: each hwX

directory has a makefile in it. Typing make in the homework directory
will first compile your homework into an executable binary and then
run clang-tidy for you. If you want to work on your own computer in-
stead of aisa, you need to figure out the settings yourself. The makefile
will tell you which compiler we use and how we invoke it.

A.3.3 Evaluation

There are three sets of automated tests which are executed on the solu-
tions you submit. The first set is called ‘syntax’ and runs immediately
after you submit. Only 2 checks are performed: the code compiles and
passes clang-tidy.
The next step is ‘sanity’ and runs every midnight. Its main role is
to check that your program meets basic semantic requirements, e.g.
that it recognizes correct inputs and produces correctly formatted
outputs. The ‘sanity’ test suite is for your information only and does
not guarantee that your solution will be accepted. The ‘sanity’ test
suite is only executed if you passed ‘syntax’.
The ‘verity’ test suite covers most of the specified functionality and

PB161 Programming in C++ 3/33 March 31, 2020

runs once aweek – every Tuesday at midnight, right after the deadline.
If you pass the verity suite, the assignment is considered complete and
you are awarded the corresponding number of points. The verity
suite will not run unless the code passes ‘sanity’. Please note that any
memory errors (including memory leaks, as reported by valgrind) will
cause ‘verity’ to fail.
If you pass on the first or the second run of the full test suite (7 or 14
days after the assignment is given), you are entitled to a bonus point.
If you pass at one of the next 2 attempts, you are entitled to half a
bonus point. After that, you have 4 more attempts to get it right. See
grading.txt for more details.
Only the most recent submission is evaluated, and each submission
is evaluated at most once in the ‘sanity‘ and once in the ‘verity’ mode.
You will find your latest evaluation results in the IS in notepads (one
per assignment).

Part A.4: Peer Reviews
You can optionally participate in peer reviews, both as a reviewer and
as a review recipient. Reviewers get points for their effort, the recipi-
ents do not, but instead get (hopefully) useful information.

A.4.1 Requesting Reviews

If you would like to have your code reviewed, you can issue the follow-
ing command:

$ pb161 review --request hw1

Substitute other assignments for hw1 as appropriate. You can request a
review on an assignment which you did not pass yet. You may get up
to 3 reviews for any given request. The reviewer will work with the
submission that was current at the time they agreed to do the review.
Make sure you submit the code you want reviewed before requesting
the review.
The pb161 update command will indicate whether someone reviewed
your code, by printing a line of the form A reviews/hw1.from.xlogin. To
read the review, look at the files in ~/pb161/reviews/hw1.from.xlogin –
you will find a copy of your submitted sources along with comments
provided by the reviewer. After you read your review, you should
write a few sentences for the reviewer into note.txt in the review
directory (please wrap lines to 80 columns) and then run:

$ pb161 review --accept 100

Instead of 100, you can use a smaller number, indicating what percent-
age of the points the reviewer deserves for their job. Please make sure
that you grade the review honestly – the reviews will be screened for
abuse and depending on the type of misconduct, one or both parties
will be punished.
To request a review from a teacher (as opposed to from other students),
add --teacher to the command:

$ pb161 review --request hw1 --teacher

The output from pb161 statuswill indicate the assignments for which
you have requested a teacher review.

A.4.2 Writing Reviews

To participate as a reviewer, start with the following command:

$ pb161 review --list

You will get a list of review requests for which you are an eligible
reviewer. In particular, only assignments that you have already suc-
cessfully solved will show up. If you like one of the entries, note its
number (e.g. 7) and type:

$ pb161 review --checkout 7

$ cd ~/pb161/reviews/

$ ls

There will be a directory for each of the reviews you agreed to write.
Each directory contains the source code submitted for review, along
with further instructions (the file readme.txt).
When inserting your comments, please use double ** to make the
comment stand out, like this:

/** A short, one-line remark. **/

or for longer comments:

/** A longer comment, which should be wrapped to 80 columns or

** less, and where each line should start with the ** marker.

** It is okay to end the comment on the last line of text like

** this. **/

You can write up to 10 reviews, each for a maximum of 0.3 points (and
a total of 3 points). The limit is applied at checkout time: once you
agree to do a particular review, you cannot change your mind and
‘uncheckout’ it to reclaim one of the 10 slots. If you have questions,
your first (and best) option is to come to see one of the advisors for the
subject. They can help you with understanding the assignments, they
can help explain failed tests and they should be able to help you with
C++ problems. If you cannot make it to any of the slots listed below,
try asking your tutor after the seminar you attend. If that fails, use
the discussion board in the IS.
Everything else failing (i.e. you didn’t get a satisfactory answer using
any of the above methods), come to me directly during my office hours
(every Tuesday and Thursday between 2pm and 3pm in B421).
You can find the advisers in A417 at the following times (every week,
unless noted otherwise), starting Tuesday 25th of February (inclusive).
Location: A417

advisor day from until
Roman Lacko Monday 4pm 5pm
Anna Řechtáčková Tuesday 12pm 1pm
Peter Navrátil Wednesday 6pm 7pm
Vladimír Ulman Friday 10am 11am

Except: Wednesday 25th (cancelled due to illness)

Part A.5: Programming Test
The raison d’être of this course is to teach you to write correct C++ pro-
grams on your own – and the programming test is designed to ensure
that this was indeed the outcome for you personally. Of course, we
recognize that there is additional pressure when you are programming
for an exam, and that the lack of any personalisation of tools that you
get may slow you down. For these reasons, we will be striving to give
you problems that can be done in an hour, but you will get 2 hours of
time to work them out.
For the test, you get:

• a simple programming assignment
• a computer without internet access
• a selection of basic testcases
• an offline copy of cppreference.com
• a C++17 compiler
• a selection of text editors and IDEs in their default configuration
• 120 minutes of time

Youwill also get a chance for a ‘rehearsal’: near the end of the semester,
we will publish one or two mock programming tests. You should work
them out on your own and try to do so in an hour, to account for the
adverse conditions of an actual exam. When you are done, you will
be able to submit them (using the same commands that you use for
submitting homework) and you will get test results back. You can

PB161 Programming in C++ 4/33 March 31, 2020

submit multiple times for the mock test, but please keep in mind that
this will not be possible at the actual exam – you will have to get it
right the first time around.

Finally, the rehearsal tests will not be graded in any way, you will just
get your test results and that’s it. It is your responsibility to use this
mechanism wisely.

Part 1: Strings and Classes
Welcome to PB161. If you haven’t read the rules and guidelines under
../info, please make a note to read them as soon as possible after the
seminar. Your tutor will only highlight the most important parts for
you.
The exercises today will look at some of the basics that you have seen
in the lecture: strings, dynamic arrays – std::vector, classeswithmeth-
ods and const references. The introduction:

1. (to be done)

The second part of the study materials for the week gives you a couple
of „warm-up“ exercises: you can do these at home and then compare
your solutionwith a commented solutionwhich is enclosed. This week,
the exercises are:

2. bulbs.cpp – light bulb control center
3. (to be done)

The next section is the exercises that we will work out together in
the seminar. You should read them and perhaps think about how you
would go about solving them before the seminar, but the expectation
is that you do the bulk of the work during the seminar. That said, the
main set of exercises for today is:

4. counting.cpp – count words and lines in a string
5. wrap.cpp – wrap long lines into paragraphs of a given width
6. words.cpp – break a string into a vector of one-word strings
7. account.cpp – encapsulation of state, constmethods
8. shapes.cpp – object composition
9. contacts.cpp – collections of your own objects

There’s also some bonus work, in case you are finished early with the
above, or want to practice a bit more:

10. sieve.cpp – find prime numbers
11. bsearch.cpp – binary search in an std::vector

To build any of the exercises, use make and the name of the exercise:

$ make words

$./words

Part 1.1: counting

Wewill start by working with strings in a read-only way: by counting
things in them. Write two functions, word_count and line_count: the
former will count words (runs of characters without spaces) and the
latter will count the number of non-empty lines. Use range for to look
at the content of the string.

#include <string>

Here are the prototypes of the functions – you can simply turn those
into definitions. We pass arguments by const references: for now,
consider this to be a bit of syntax, the purpose of which is to avoid
making a copy of the string. It will be explained in more detail later.
Also notice that in a prototype, the arguments do not need to be named
(but you will have to give them names to use them).

int word_count(const std::string &);

int line_count(const std::string &);

Part 1.2: wrap

Wewill first look at using std::string. Our first goal will be to implement

a simple word wrapping (paragraph filling) algorithm.

#include <string>

Input: An std::string with ASCII text (letters, spaces, newlines and
punctuation) and columns (a number of columns). Each line of the input
text represents a single paragraph.
Output: A string inwhich there are actual paragraphs with line breaks,
not too far after the given column number. That is, at most a single
word crosses the column-th column. Newlines in the input are replaced
by double newlines in the output.

std::string fill(const std::string &in, int columns);

Part 1.3: words

Write a function that breaks up a string into individual words. We
consider a word to be any string without whitespace (spaces, newlines,
tabs) in it.

#include <vector>

#include <string>

Since we are lazy to type the long-winded type for a vector of strings,
we define a type alias. The syntax is different from C, but it should be
clearly understandable. We will encounter this construct many times
in the future.

using string_vec = std::vector< std::string >;

The output of words should be a vector of strings, where each of the
strings a contains a single word from in.

string_vec words(const std::string &in);

Part 1.4: account

In this exercise, you will create a simple class: it will encapsulate some
state (account balance) and provide a simple, safe interface around that
state. The class should have the following interface:

• the constructor takes 2 integer arguments: the initial balance and
the maximum overdraft

• a withdrawmethod which returns a boolean: it performs the action
and returns true iff there was sufficient balance to do the with-
drawal

• a depositmethod which adds funds to the account
• a balancemethod which returns the current balance (may be nega-

tive) and that can be called on const instances of account

class account;

Part 1.5: shapes

Another exercise about objects, this time about their composition. We
will write 2 classes: point and rectangle. Points have 2 coordinates (𝑥
and 𝑦) and rectangles are defined by 2 points (their opposing corners).

#include <cmath>

Points are constructed from two doubles: the 𝑥 and 𝑦 coordinates, and
they have x() and y()methods which return doubles.

PB161 Programming in C++ 5/33 March 31, 2020

class point;

A function to compute euclidean distance between two points. Writing
it is a part of the exercise, but it will be also useful when implementing
the diagonalmethod in rectangle.

double distance(point a, point b);

Rectangles are constructed from a pair of points (bottom left and upper
right corner) and provide methods: width, height and diagonalwhich
all return a double, and a method centerwhich returns a point.

class rectangle;

Part 1.6: contacts

Wewill look at using collections of objects. We only know one type of
collection: a dynamic array, so that’s what we will use. The objects we
will consider are simple entries in a contact list: they have a name and
a phone number (both stored as strings).

#include <vector>

#include <string>

We need contact to posses a two-parameter constructor (which initial-
izes both its fields) and two getters (methods), name and phone.

class contact;

using contacts = std::vector< contact >; /* type alias */

Let’s write a helper function which checks whether the string small is
a prefix of the string big.

bool is_prefix(const std::string &small, const std::string &big);

And finally, a function to return all contacts whose names start with
the given prefix (use is_prefix in a loop).

contacts search(const contacts &list, const std::string &prefix);

Part 1.7: sieve

Implement the Sieve of Eratosthenes for quickly finding the largest
prime smaller than or equal to a given bound.

#include <vector>

int sieve(int bound);

Part 1.8: bsearch

Implement binary search on a vector. In this case, we will use a non-
const reference to pass the vector, because we don’t know yet how to
deal with const iterators properly. We also don’t know how to write
generic algorithms (we will see that at the end of this course), so we
use a vector of integers.
It is customary to return the end iterator if an element is not found.
A pair of iterators in C++, by convention, denotes a left-closed / right-
open interval, like this: [begin, end).

#include <vector>

std::vector< int >::iterator bsearch(std::vector< int > &vec, int

val);

Part 2: References and Lambdas
There will be 6 exercises again, but the focus will shift a little: in the
first part, we will work with references (both constant and mutable)
and in the second, we will look at writing higher-order functions in
C++.

1. rewrap.cpp – word wrapping redux, this time in-place
2. fib.cpp – basic uses of output parameters
3. divisors.cpp – collections as in/out parameters
4. midpoints.cpp – in/out parameters of custom types
5. higher.cpp – higher-order function primer: map and zip

6. approx.cpp – generalize the approximation routine from fib.cpp

And again, there are 2 bonus exercises:

1. solve.cpp – a very simple game solver (fits in 20 lines of code)
2. newton.cpp – even more general form of numeric approximation

Part 2.1: rewrap

A different take on word-wrapping. The idea is very similar to last
week – break lines at the first opportunity after you ran out of space
in your current line. The twist: do this by modifying the input string.
Additionally, undo existing line breaks if they are in the wrong spot.

#include <string>

void rewrap(std::string &str, int cols);

Part 2.2: fib

#include <cmath>

The function next_fib should behave like this:

• given: a == fib(i) and b == fib(i + 1)

• execute: next_fib(a, b)

• to get: a == fib(i + 1) and b == fib(i + 2).

void next_fib(int &a, int &b);

Optional: Compute the n-th Fibonacci number using next_fib. Make
it so that: fib(1) == 1, fib(2) == 1, fib(3) == 2. This is just to
practice working with next_fib in case you aren’t sure.

int fib(int n);

Approximate the golden ratio as the ratio of two consecutive Fibonacci
numbers. The precision argument gives an upper bound on the ap-
proximation error. The number rounds is an output parameter and
gives us the number of iterations (calls to next_fib) that were required
to satisfy the precision requirement.
Notice that:

• the golden mean φ = 1.618...
• fib(2) / fib(1) = 1 / 1 = 1 is a lower bound
• fib(3) / fib(2) = 2 / 1 = 2 is an upper bound
• fib(4) / fib(3) = 3 / 2 = 1.5 is a lower bound
• fib(5) / fib(4) = 5 / 3 = 1.667 is an upper bound

and so on. Surely the error – distance from φ itself – in any given
round is smaller than its distance from the previous round.

double golden(double precision, int &rounds);

Part 2.3: divisors

#include <vector>

PB161 Programming in C++ 6/33 March 31, 2020

#include <algorithm>

Take a number, find all its prime divisors and add them into divs, unless
they are already there. Be sure to do this in time proportional (linear)
to the input number.
Bonus: If you assume that divs is sorted in ascending order when you
get it, you can make add_divisors a fair bit more efficient. Can you
figure out how?

void add_divisors(int num, std::vector< int > &divs);

Part 2.4: midpoints

#include <vector>

#include <cmath>

A familiar class: add a 2-parameter constructor and x(), y() accessors.

class point;

Consider a closed shape made of line segments. Replace each segment
A with one that starts at the midpoint of A and ends at the midpoint
of B, the segment that comes immediately after A. The input is given
as a sequence of points (each point shared by two segments). The last
segment goes from the last point to the first point (closing the shape).

void midpoints(std::vector< point > &pts);

helper functions for floating-point almost-equality

bool near(double a, double b) { return std::fabs(a - b) < 1e-8;

}

bool near(point a, point b) { return near(a.x(), b.x()) &&

near(a.y(), b.y()); }

Part 2.5: higher

#include <vector>

Write a map function, which takes a function f and a vector v and
returns a new vector w such that w[i] = f(v[i]) for any valid index
i. We will need to use the ‘lambda’ syntax for this, since we don’t
yet know any other way to write functions which accept functions as
arguments.

// static auto map = [](...) { ... };

Similar, but f is a binary function, and there are two input vectors of
equal length. You do not need to check this.

// static auto zip = [](...) { ... };

You can assume that the output vector is of the same type as the input
vector (i.e. f is of type a→ a in map, and of type a→ b→ a for zip.

Part 2.6: approx

Remember fib.cpp? We can do a bit better. Let’s decompose our
golden() function differently this time.

#include <cmath>

The approx function is a higher-order one. What it does is it calls f()
repeatedly to improve the current estimate, until the estimates are
sufficiently close to each other (closer than the given precision). The
init argument is our initial estimate of the result.

// auto approx = [](auto f, double init, double prec) { ... };

Use approx to compute the golden mean. Note that you don’t need

to use the previous estimate in your improvement function. Use by-
reference captures to keep state between iterations if you need some.

double golden(double prec);

The Babylonian (Heron) method to compute square roots. Please take
note, you may find it helpful later. This is how approx is supposed to be
used.

double sqrt(double n, double prec)

{

auto improve = [=](double last)

{

double next = n / last;

return (last + next) / 2;

};

return approx(improve, 1, prec);

}

Part 2.7: solve

Consider a single-player game that takes place on a 1D playing field
like this:

The player starts at the leftmost cell and in each round can decide
whether to jump left or right. The number of cells to jump in the
chosen direction in each round is given in the input vector jumps. The
objective is to visit each cell. The size of the field is jumps.size() + 1.

#include <vector>

bool solve(std::vector< int > jumps);

Part 2.8: newton

This exercise is as far as we’ll venture with regards to numeric approx-
imation. We will implement the Newton-Raphson method. This can
be used for finding all kinds of roots (zeroes of functions) numerically
and for solving ‘hard’ (transcendental) equations.
The input to Newton’s method is a function f and its derivative, df.
A single improvement step then takes the current estimate x₀ and
subtracts f(x)/df(x) from it. It is actually quite simple.

#include <cmath>

// auto newton = [](auto f, auto df, double init, double prec)

double sqrt(double x, double prec) /* square root */

{

return newton([=](double z) { return z * z - x; },

[=](double z) { return 2 * z; }, 1, prec);

}

double cbrt(double n, double prec) /* cube root */

{

return newton([=](double z) { return z * z * z - n; },

[=](double z) { return 3 * z * z; }, 1, prec);

}

Compute nth root of x, generalizing sqrt and cbrt above.

double root(int n, double x, double prec);

Scroll to the end to see the test cases. The following code computes π
using only basic arithmetic and the Newton method... It’s all a bit fast
and loose, but it works. Enjoy.
Approximate a function using its truncated Taylor expansion.

PB161 Programming in C++ 7/33 March 31, 2020

auto taylor = [](auto coeff, double x, double prec)

{

double r = 0, pow = 1, fact = 1;

int i = 0;

for (; pow / fact > prec / 10; fact *= ++i, pow *= x)

r += coeff(i) * pow / fact;

return r;

};

Shorthand for 4-periodic Taylor coefficients (like those that appear in
trigonometric functions).

auto trig_coeff(int a, int b, int c, int d)

{

return [=](int i) { return i % 4 == 0 ? a : i % 4 == 1 ? b :

i % 4 == 2 ? c : d; };

}

Sine and cosine, to feed into Newton.

double sine(double x, double prec)

{

return taylor(trig_coeff(0, 1, 0, -1), x, prec);

}

double cosine(double x, double prec)

{

return taylor(trig_coeff(1, 0, -1, 0), x, prec);

}

Compute π/2 as the root of cosine.

double pi(double prec)

{

auto f = [=](double x) { return cosine(x, prec); };

auto df = [=](double x) { return -sine(x, prec); };

return 2 * newton(f, df, 1, prec);

}

Part 3: Containers
This week will be about containers (collections). Exercises:

1. freq.cpp – a word frequency histogram
2. dfs.cpp – reachability using recursive depth-first search
3. dag.cpp – check whether a graph is acyclic (dfs again)
4. rel.cpp – a tiny bit of relational algebra
5. numbers.cpp – a slightly enriched set of numbers
6. bfs.cpp – bipartiteness checking using BFS

And the bonus exercises:

7. magic.cpp – solve 4x4 semimagic squares
8. (tbd)

Part 3.1: freq

Build up a histogram of word appearances. Should be default-
constructible and provide 2 methods: process, which adds each word
that appears in its argument to the histogram, and count, which takes
a single-word string as an argument and returns how many times it
has been encountered by process.

#include <string>

class freq;

Part 3.2: dfs

#include <vector>

#include <map>

using edges = std::vector< int >;

using graph = std::map< int, edges >;

Check whether to can be reached by following one or more edges if
we start at from.

bool is_reachable(const graph &g, int from, int to);

Part 3.3: dag

#include <map>

using graph = std::multimap< int, int >;

bool is_dag(const graph &g); /* false iff ‹g› contains a cycle */

Part 3.4: rel

#include <tuple>

#include <set>

#include <string>

First a bunch of type aliases: item and its variants each represent a
single row, while rel and its variants represent an entire relation.

using item = std::tuple< std::string, int, double >;

using item_dbl = std::tuple< std::string, double >;

using item_int = std::tuple< std::string, int >;

using rel = std::set< item >;

using rel_dbl = std::set< item_dbl >;

using rel_int = std::set< item_int >;

Projections: keep a subset of columns, in this case the string and either
of the numeric columns.

rel_int project_int(const rel &);

rel_dbl project_dbl(const rel &);

Selection: keep a subset of rows – those thatmatch on the given column.
Throw away all the rest.

rel select_str(const rel &, const std::string &n);

rel select_int(const rel &, int n);

Part 3.5: numbers

The class represents a set of integers; operations:

• add – adds a number, returns true if it was new
• del – removes a number, returns true if it was present
• del_range – removes numbers within given bounds (inclusive)
• merge – adds all numbers from another instance
• has – returns true if the given number is in the set

Complexity requirements:

• del_range and mergemust run in O(n) time
• everything else in O(logn) time */

#include <initializer_list>

class numbers;

PB161 Programming in C++ 8/33 March 31, 2020

Part 3.6: bfs

#include <map>

#include <vector>

using edges = std::vector< int >;

using graph = std::map< int, edges >;

Check whether a given graph is bipartite. The graph is undirected, i.e.
its adjacency relation is symmetric.

bool is_bipartite(const graph &g);

Part 3.7: magic

A semi-magic square is an n × n grid of natural numbers 1–n², such
that all rows and columns add up to a fixed ‘magic constant’ and each
number appears exactly once. Solving the square means filling in all
empty cells in a manner that gives the full square the semi-magic
property. In this exercise, we will only deal with 4x4 squares (which
have magic constant 34).
The interface is as follows: set takes 3 arguments: the x/y coordinates
and the value of the designated cell, get takes the x/y coordinates and
returns the cell value and solve fills in any unset cells.

class magic;

Returns true if the square is magic. Assumes that get returns 0 if the
value has not been set. Feel free to re-use this in your solver. If strict
is false, only returns false if the square has no hope of becoming magic
by filling in more zeroes.

bool check(const magic &m, bool strict)

{

auto sum = [&](int c, int r, bool dir, int s = 0)

{

for (int i = 0; i < 4; ++i)

s += m.get(dir ? c : i, dir ? i : r);

return s;

};

for (bool dir : { true, false })

for (int x = 0; x < 4; ++x)

if (int s = sum(x, x, dir);

(strict && s != 34) || s > 34)

return false;

return true;

}

#include <vector>

Part 4: Object Lifecycle, Function Overloading
This week, we will practice writing constructors and destructors and
we will see a few cases of function (and constructor) overloading. The
basic exercise set is as follows:

1. format.cpp – method overloading 101
2. loan.cpp – banking with simple constructors and destructors
3. area.cpp – geometry with function and ctor overloads
4. zipper.cpp – const method overloading on a zipper
5. rpn.cpp – postfix arithmetic with more overloading
6. radix.cpp – smart references, ownership and destructors

Bonus exercises:

1. eval.cpp – infix evaluation with more ownership

Part 4.1: format

In this exercise, we will implement a very simple ‘string builder‘: a
class that will help us create strings from smaller pieces. It will have a
single overloaded method called add, in 3 variants: it will accept either
a string, an integer or a floating-point number (use std::to_string for
conversions).
To make it easier to use, add should return a reference to the instance it
was called on. See below for examples. The method get should return
the constructed string.

class string_builder;

Part 4.2: loan

Let us revisit the bank account story from first week. We will have
2 classes this time: an account, which has the usual methods: deposit,
withdraw, balance; to simplify things, we will only add a default con-
structor, which sets the initial balance to 0.
The other class will be called loan, and its constructor will take a refer-
ence to an account and the amount loaned (an int). Constructing a loan
object will deposit the loaned amount to the referenced account. It will
also have a method called repay which takes an integer, which with-
draws the given amount from the associated account and reduces the

amount owed by the same sum. Make sure that we can’t accidentally
destroy a loanwithout repaying it first. Does it make sense to make a
copy of a loan?

class account;

class loan;

Part 4.3: area

Implement 2 classes which represent 2D shapes: polygon and circle.
Each of the shapes has 2 constructors:

• circle takes either 2 points (center and a point on the circle) or a
point and a number (radius) /* C */

• polygon takes an integer (the number of sides ≥ 3) and either two
points (center and a vertex) or a single point and a number (the
major diameter)

Add a toplevel function areawhich can compute the area of either. */

struct point;

struct polygon;

struct circle;

Part 4.4: zipper

In this exercise, we will implement a simple data structure called a
zipper – a sequence of items with a single focused item. Since we can’t
write class templates yet, we will just make a zipper of integers. Our
zipper will have these operations:

• (constructor) constructs a singleton zipper from an integer
• shift_left and shift_rightmove the point of focus, in O(1), to the

nearest left (right) element; they return true if this was possible,
otherwise they return false and do nothing

• insert_left and insert_right add a new element just left (just right)
of the current focus, again in O(1)

• focus access the current item (read and write)
• bonus: add erase_left and erase_right to remove elements around

PB161 Programming in C++ 9/33 March 31, 2020

the focus (return true if this was possible), in O(1)

class zipper;

Part 4.5: rpn

Write a simple stack-based evaluator for numeric expressions in an
RPN form. The opertions: push takes a number and pushes it onto
the working stack. The apply operation accepts an instance of one of
the three operator classes defined below. Like with the string builder
earlier, both those methods should return a reference to the evaluator.
And likewith the zipper, a topmethod should give access to the current
top of the stack, including the possibility of changing the value. Finally,
add popwhich also returns the popped value and emptywhich returns
a bool.

struct add {}; /* addition */

struct mul {}; /* multiplication */

struct dist {}; /* absolute value of difference */

class eval;

Part 4.6: radix

In this exercise, we will implement a non-lookup variant of a radix
tree: a data structure where a single key (string) is stored along the
entire path from the root to one of the leaves. The radix class will own
all the data and provide a rootmethod and a makemethod (see below),

while the node class will ensure that node storage is freed up when
nodes go out of scope. Make sure node cannot be copied or assigned. A
node has a const method keywhich retrieves the entire key.

#include <forward_list>

struct node_storage

{

const node_storage *parent = nullptr;

std::string key;

};

using radix_storage = std::forward_list< node_storage >;

class node;

class radix_tree

{

radix_storage _nodes;

node _root;

public:

radix_tree();

const node &root() const;

node make(const node &parent, std::string key);

bool empty() const

{

return std::next(_nodes.begin()) == _nodes.end();

}

};

Part 5: Operators and Exceptions
Welcome to PB161, Covid-19 edition. To make up for missing (live)
lectures and seminar narration, the next four weeks (at minimum) will
use extended self-study materials. The files in directories 05 through
08 or maybe 09 will contain additional explanations and examples and
it is recommended that you follow them carefully. This should be your
primary material: lecture slides and lecture videos from an earlier
run of the subject will be supplementary. The homework schedule is
unaffected, and all constructs that will be required in assignments that
fall into the quarantine month will be explained in these notes.
That said, the main topics for week 5 are operator overloading (which
will build on what we learned about function and method overloading
in week 4) and exceptions. The first set of files to look at are annotated
sources that introduce the concepts for this week:

1. arithmetic.cpp – introduction to operator overloading,
2. relational.cpp – implementing equality and ordering,
3. access.cpp – dereference, indexing and other access ops,
4. exceptions.cpp – throwing and catching exceptions.
5. convert.cpp – conversion and assignment,

Now that we have explained the new concepts, let’s try a couple warm-
up exercises. For these, you can compare your solution to a reference
implementation, which is always in a file called x.sol.cpp, or in the
PDF version at the end of the section.

6. cartesian.cpp – complex numbers in algebraic form,
7. force.cpp – composing and scaling forces.

Then comes the usual block of 6 exerciseswith basic test-cases included
(you have to work out these for yourself, no reference solutions will
be provided):

8. polar.cpp – complex numbers in polar form,
9. rational.cpp – rational numbers with ordering,
10. set.cpp – a set of integers with set operators,
11. nibble.cpp – a pointer-like class for sub-byte access,

12. invest.cpp – we further stretch the banking story,
13. fixnum.cpp – more numbers, this time with a parser.

Bonus exercises (more difficult, also no solutions):

14. poly.cpp – polynomials with addition and multiplication
15. pretty.cpp – construct strings from expressions

Part 5.1: arithmetic

Operator overloading allows instances of classes to behave more like
built-in types: it makes it possible for values of custom types to appear
in expressions, as operands. Before we look at examples of how this
looks, we need to define a class with some overloaded operators. For
binary operators, it is customary to define them using a ‘friends trick’,
which allows us to define a top-level function inside a class.
As a very simple example, we will implement a class which represents
integral values modulo 7 (this happens to be a finite field, with addition
and multiplication).

class gf7

{

int value;

public:

The constructor is trivial, it simply constructs a gf7 instance from an
integer. Wemark it explicit to avoid surprising automatic conversions
of integers into gf7 instances.

explicit gf7(int v) : value(v % 7) {}

This is the ‘friend trick’ syntax for writing operators, and for binary
operators, it is often the preferred one (because of its symmetry). The
function is not really a part of the class in this case – the trick is that
we can write it here anyway.

PB161 Programming in C++ 10/33 March 31, 2020

friend gf7 operator+(gf7 a, gf7 b)

{

return gf7(a.value + b.value); // [a]₇ + [b]₇ = [a + b]₇

}

For multiplication , we will use the more ‘orthodox‘ syntax, where the
operator is a constmethod: the left operand is passed into the opera-
tor as this, the right operand is the argument. In general, operators-
as-methods have one explicit argument less (unary operators take 0
arguments, binary take 1 argument).

gf7 operator*(gf7 b) const

{

return gf7(value * b.value); // [a]₇ * [b]₇ = [a * b]₇

}

Values of type gf7 cannot be directly compared (we did not define
the required operators) – instead, we provide this method to convert
instances of gf7 back into int’s.

int to_int() const { return value; }

};

Operators can be also overloaded using ‘normal’ top-level functions,
like this unary minus (which finds the additive inverse of the given
element). Notice that we cannot access private fields (attributes) of the
class here:

gf7 operator-(gf7 x) { return gf7(7 - x.to_int()); }

Now that we have defined the class and the operators, we can look at
how is the result used.

int main() /* demo */

{

gf7 a(3), b(4), c(0), d(5);

Values a, b and so forth can be now directly used in arithmetic expres-
sions, just as we wanted.

gf7 x = a + b;

gf7 y = a * b;

Let us check that the operations work as expected:

assert(x.to_int() == c.to_int()); /* [3]₇ + [4]₇ = [0]₇ */

assert(y.to_int() == d.to_int()); /* [3]₇ * [4]₇ = [5]₇ */

assert((-a + a).to_int() == c.to_int()); /* unary minus */

}

That was arithmetic operator overloading. Let’s now look at relational
(ordering) operators, in relational.cpp.

Part 5.2: relational

In this example, we will show relational operators, which are very
similar to the arithmetic operators from previous example, except for
their return types, which are bool values.

#include <cstdint>

The example which we will use in this case are sets of small natural
numbers (1-64) with inclusion as the order. We will implement the full
set of comparison operators, which is still required in C++17 but will
no longer be needed in C++20 (with the spaceship operator).
NB. Standard ordered containers like std::set and std::map require the
operator less-than to define a linear order. The comparison operators
in this example do not define a linear order.

class set

{

Each bit of the below number indicates the presence of the correspond-

ing integer (the index of that bit) in the set.

uint64_t bits;

public:

Like before, we add an explicit constructor that takes an initial value.
We use a default argument to say that the constructor can be used as
a default constructor (without arguments), in which case it will create
an empty set.

explicit set(uint64_t to_set = 0) : bits(to_set) {}

We also define a few methods to add and remove numbers from the
set, to test for presence of a number and an emptiness check.

void add(int i) { bits |= 1ul << i; }

void del(int i) { bits &= ~(1ul << i); }

bool has(int i) const { return bits & (1ul << i); }

bool empty() const { return !bits; }

We will use the method syntax here, because it is slightly shorter. We
start with (in)equality, which is very simple (the sets are equal when
they have the same members):

bool operator==(set b) const { return bits == b.bits; }

bool operator!=(set b) const { return bits != b.bits; }

It will be quite useful to have set difference to implement the compar-
isons below, so let us also define that:

set operator-(set b) const { return set(bits & ~b.bits); }

Since the non-strict comparison (ordering) operators are easier to im-
plement, we will do that first. Set b is a superset of set a if all elements
of a are also present in b, which is the same as the difference a - b

being empty.

bool operator<=(set b) const { return (*this - b).empty(); }

bool operator>=(set b) const { return (b - *this).empty(); }

};

And finally the strict comparison operators, which are more conve-
niently written using top-level function syntax:

bool operator<(set a, set b) { return a <= b && a != b; }

bool operator>(set a, set b) { return a >= b && a != b; }

int main() /* demo */

{

set a; a.add(1); a.add(7); a.add(13);

set b; b.add(1); b.add(6); b.add(13);

In each pair of assertions below, the two expressions are not quite
equivalent. Do you understand why?

assert(a != b); assert(!(a == b));

assert(a == a); assert(!(a != a));

The two sets are incomparable, i.e. neither is less than the other, but
as shown above they are not equal either.

assert(!(a < b)); assert(!(b < a));

a.add(6); // let's make ‹a› a superset of ‹b›

And check that the ordering operators work on ordered sets.

assert(a > b); assert(a >= b); assert(a != b);

assert(b < a); assert(b <= a); assert(b != a);

b.add(7); /* let's make the sets equal */

assert(a == b); assert(a <= b); assert(a >= b);

}

That’s all regarding relational operators, you will have a chance to

PB161 Programming in C++ 11/33 March 31, 2020

implement your own in one of the exercises later. In the meantime,
let us move on to ‘access’ operators: dereference, indirect access and
indexing, in access.cpp.

Part 5.3: access

This set of operators will be slightly more difficult. Surely, you re-
member the unary * operator from C, where it is used to dereference
pointers. We haven’t seen much of that in C++, except perhaps with
iterators. We will now see how to implement a class which can be
dereferenced like a pointer. We will also add indexing to the mix (like
with plain C arrays, or std::vector or even std::map).

#include <vector>

Let us revisit the zipper class from last week. We will add indexing
(relative to the focus), use a dereference operator to access the focus
and we will not store integers, but points in a plane. Cue our favourite
class, a point:

struct point

{

double x, y;

point(double x, double y) : x(x), y(y) {}

We know equality comparison from previous examples. We will need
it later on for writing test cases for zipper.

bool operator==(point o) { return x == o.x && y == o.y; }

};

Now for the zipper. We will need to use std::vector to be able to index
elements, but we will still use left and right like stacks.

class zipper

{

using stack = std::vector< point >;

stack left, right;

point focus;

public:

zipper(double x, double y) : focus(x, y) {}

Inserting points into the zipper.

zipper &emplace_left(double x, double y)

{

left.emplace_back(x, y);

return *this;

}

zipper &emplace_right(double x, double y)

{

right.emplace_back(x, y);

return *this;

}

A helper method, so we don’t repeat ourselves in the increment/decre-
ment operators below. The trick is to pass the left/right stacks by
reference, since moving left and right is symmetric with regards to
those (i.e. the code to move left is the same as to move right, with all
occurrences of left and right swapped).

void shift(stack &a, stack &b)

{

b.push_back(focus);

focus = a.back();

a.pop_back();

}

First the pre-increment operators, i.e. ++x and --x. Here, we use those
operators in the manner of C pointer arithmetic (you may want to

review that topic).

zipper &operator++() { shift(right, left); return *this; }

zipper &operator--() { shift(left, right); return *this; }

Now the post-increment: x++ and x--. In this particular data structure,
they are expensive and should not be used. They are here just to
demonstrate the syntax and a common implementation technique.
The difference is that post-increment needs to make a copy, since the
value of the expression is the object before the increment/decrement
was applied to it.

zipper operator++(int) { auto r = *this; ++*this; return r; }

zipper operator--(int) { auto r = *this; ++*this; return r; }

The dereference (unary *) and indirect member access operators (mu-
table, i.e. non-const overloads first, then the const overloads). Those
operators allow us to treat zipper as if it was a pointer to a point in-
stance (the one that is in focus). See main below to see how this works
when used.

point &operator*() { return focus; }

point *operator->() { return &focus; }

const point &operator*() const { return focus; }

const point *operator->() const { return &focus; }

And finally an indexing operator. We will not bother with the const

version at this time: it would be certainly possible, but ugly and/or
repetitive.

point &operator[](int i)

{

if (i == 0) return focus;

if (i < 0) return left[left.size() + i];

if (i > 0) return right[right.size() - i];

assert(false);

}

};

int main() /* demo */

{

zipper z(0, 0); // [0,0]

Notice the correspondence between *x and x[0] that we carried over
from C pointers.

assert(z[0] == point(0, 0));

assert(*z == point(0, 0));

Wewill add a few items to the zipper, so that we can demonstrate the
other operators.

z.emplace_left(1, 1); // (1,1) [0,0]

z.emplace_right(2, 1); // (1,1) [0,0] (2,1)

Check that the indexing operators behave as expected: negative indices
give us items on the left and positive indices give us items on the right.

assert(z[-1] == point(1, 1));

assert(z[1] == point(2, 1));

Let us check that indexing also works further out.

z.emplace_left(2, 2); // (1,1) (2,2) [0,0] (2,1)

assert(z[-2] == point(1, 1));

assert(z[-1] == point(2, 2));

The pre-decrement operator moves the focus of the zipper tho the left.
Let’s check that (and demonstrate the correspondence between z[0]

and *z again, for a good measure).

-- z; // (1,1) [2,2] (0,0) (2,1)

PB161 Programming in C++ 12/33 March 31, 2020

assert(z[-1] == point(1, 1));

assert(z[0] == point(2, 2));

assert(*z == point(2, 2));

Finally the indirect access operators let us look at x and y of the focused
point in a nice, succinct way. The syntax is the same that you used to
access structmembers via a pointer to the struct in C.

assert(z->x == 2);

assert(z->y == 2);

Move the zipper twice to the right and do a final check.

++ z; ++ z; // (1,1) (2,2) (0,0) [2,1]

assert(z->x == 2);

assert(z->y == 1);

}

Next: quick introduction to exceptions, in exceptions.cpp.

Part 5.4: convert

In this example, wewill implement a classwhich behaves like a nullable
reference to an integer. Taking a hint from Java, we will throw an
exception when the user attempts to use a null reference.
We first define the type which we will use to indicate an attempt to
use an invalid (null) reference.

class null_pointer_exception {};

Now for the reference-like class itself. We need two basic ingredients
to provide simple reference-like behaviours: we need to be able to
(implicitly) convert a value of type maybe_ref to a value of type int.
The other part is the ability to assign new values of type int to the
referred-to variable, via instances of the class maybe_ref.

class maybe_ref

{

We hold a pointer internally, since real references in C++ cannot be
null.

int *_ptr;

Wewill also define a helper (internal, private) method which checks
whether the reference is valid. If the reference is null, it throws the
above exception.

void _check() const

{

if (!_ptr)

throw null_pointer_exception();

}

public:

Constructors: the default-constructed maybe_ref instances are nulls,
they have nowhere to point. Like real references in C++, we will allow
maybe_ref to be initialized to point to an existing value. We take the
argument by reference and convert that reference into a pointer by
using the unary & operator, in order to store it in _ptr.

maybe_ref() : _ptr(nullptr) {}

maybe_ref(int &i) : _ptr(&i) {}

As mentioned earlier, we need to be able to (implicitly) convert
maybe_ref instances into integers. The syntax to do that is operator

type, without mentioning the return type (in this case, the return type
is given by the name of the operator, i.e. int here). It is also possible
to have reference conversion operators, by writing e.g. operator const

int &(). However, we don’t need one of those here because int is small,
and we can’t have both since that would cause a lot of ambiguity.

operator int() const

{

_check();

return *_ptr;

}

The final part is assignment: as you have learned in the lecture, oper-
ator= should return a reference to the assigned-to instance. It usually
takes a const reference as an argument, but again we do not need to do
that here. Below in the demo, we will point out where the assignment
operator comes into play.

maybe_ref &operator=(int v)

{

_check();

*_ptr = v;

return *this;

}

};

int main() /* demo */

{

int i = 7;

When initializing built-in references, we use int &i_ref = i. We can
do the same with maybe_ref, but we need to keep in mind that this
syntax calls the maybe_ref(int) constructor, not the assignment op-
erator.

maybe_ref i_ref = i;

Let us check that the reference behaves as expected.

assert(i_ref == 7); /* uses conversion to ‹int› */

i_ref = 3; /* uses the assignment operator */

assert(i_ref == 3); /* conversion to ‹int› again */

Check that the original variable has changed too.

assert(i == 3);

Let’s also check that null references behave as expected.

bool caught = false;

maybe_ref null;

Comparison will try to convert the reference to int, but that will fail
in _checkwith an exception.

try { assert(null == 7); }

catch (null_pointer_exception) { caught = true; }

Make sure that the exception was thrown and caught.

assert(caught);

caught = false;

Same but with assignment into the null referenc.

try { null = 2; }

catch (null_pointer_exception) { caught = true; }

assert(caught);

}

Part 5.5: exceptions

Exceptions are, as their name suggests, a mechanism for handling
unexpected or otherwise exceptional circumstances, typically error
conditions. A canonic example would be trying to open a file which
does not exist, trying to allocatememorywhen there is no freememory
left and the like. Another common circumstance would be errors
during processing user input: bad format, unexpected switches and so

PB161 Programming in C++ 13/33 March 31, 2020

on.
NB.Donot use exceptions for ‘normal’ control flow, e.g. for terminating
loops. That is a really bad idea (even though try blocks are cheap,
throwing exceptions is very expensive).

#include <stdexcept>

#include <new>

This example will be somewhat banal. We start by creating a class
which has a global counter of instances attached to it: i.e. the value of
counter tells us how many instances of counted exist at any given time.
Fair warning, do not do this at home.

int counter = 0;

struct counted

{

counted() { ++ counter; }

~counted() { -- counter; }

};

A few functions which throw exceptions and/or create instances of
the counted class above. Notice that a throw statement immediately
stops the execution and propagates up the call stack until it hits a try

block (shown in the main function below). The same applies to a func-
tion call which hits an exception: the calling function is interrupted
immediately.

int f() { counted x; return 7; }

int g() { counted x; throw std::bad_alloc(); assert(0); }

int h() { throw std::runtime_error("h"); }

int i() { counted x; g(); assert(0); }

int main() /* demo */

{

bool caught = false;

A try block allows us to detect that an exception was thrown and react,
based on the type and attributes of the exception. Otherwise, it is a
regular block with associated scope, and behaves normally.

try

{

counted x;

assert(counter == 1);

f();

assert(counter == 1);

}

One or more catch blocks can be attached to a try block: those describe
what to do in case an exception of a matching type is thrown in one
of the statements of the try block. The catch clause behaves like a
prototype of a single-argument function – if it could be ‘called’ with
the thrown exception as an argument, it is executed to handle the
exception.
This particular catch block is never executed, because nothing in the
associated try block above throws a matching exception (or rather, any
exception at all):

catch (std::bad_alloc &) { assert(false); }

The counted instance x above went out of scope:

assert(counter == 0);

Let’s write another try block. This time, the i call in the try block
throws, indirectly (via g) an exception of type std::bad_alloc.

try { i(); }

To demonstrate how catch blocks are selected, we will first add one
for std::runtime_error, which will not trigger (the ‘prototype’ does not

match the exception type that was thrown):

catch (std::runtime_error &) { assert(false); }

As mentioned above, each try block can have multiple catch blocks, so
let’s add another one, this time for the bad_alloc that is actually thrown.
If the catchmatches the exception type, it is executed and propagation
of the exception is stopped: it is now handled and execution continues
normally after the end of the catch sequence.

catch (std::bad_alloc &) { caught = true; }

Execution continues here. We check that the catch block was actually
executed:

assert(caught);

assert(counter == 0); // no ‹counted› instances were leaked

}

And finally the last example: conversion operators and the assignment
operator, in convert.cpp.

Part 5.6: cartesian

In this exercise, we will implement complex numbers with addition,
subtraction, unary minus and equality.
The class should be called cartesian (unfortunately for us, complex is a
keyword in C). The constructor should take 2 real numbers (the real
and imaginary parts).

class cartesian;

Part 5.7: force

In this example, we will define a class that represents a (physical) force
in 3D. Forces are vectors (in the mathematical sense): they can be
added and multiplied by scalars (scalars are, in this case, real numbers).
Forces can also be compared for equality (wewill use fuzzy comparison
because floating point computations are inexact).
Hint: Itmay be useful to know thatwhen overloading binary operators,
the operands do not need to be of the same type.

class force;

Part 5.8: polar

The first thing we will do is implement a simple class which represents
complex numbers using their polar form. This form makes multipli-
cation and division easier, so that is what we will do here (see also
cartesian.cpp for definition of addition).

• the constructor takes the modulus and the argument (angle)
• add abs and argmethods to access the attributes
• implement multiplication and division on polar

• implement equality for polar; keep in mind that if the modulus is
zero, the argument (angle) is irrelevant

NB. The argument is periodic: either normalize it to fall within [0,
2π), or otherwise make sure that polar(1, x) == polar(1, x + 2π).
The equality operator you implement should be tolerant of imprecision:
use std::fabs(x - y) < 1e-10 instead of x == y when dealing with
real numbers.

class polar; /* reference implementation: 29 lines */

Part 5.9: rational

In this exercise, we will represent rational numbers (fractions) with
addition and ordering. The constructor of rat should take the numer-

PB161 Programming in C++ 14/33 March 31, 2020

ator and the denominator (in this order), which are both integers. It
should be possible to compare rat instances for equality and inequality
(in this exercise, it is enough to implement the less-than operator , i.e.
a < b).
NB. Recall how fractions with different denominators are compared
(and added). Your implementation does not need to be very efficient,
or work for very large numbers.

class rat; /* reference implementation: 9 lines */

Part 5.10: set

In this exercise, we will implement a set of arbitrary integers, with the
following operations: union using |, intersection using &, difference
using - and inclusion using <=. Use efficient algorithms for the oper-
ations (check out what’s available in the standard header algorithm).
Provide methods add and has to add elements and test their presence.

class set; /* reference implementation: 36 lines */

Part 5.11: nibble

In this exercise, we will implement a class that represents an array of
nibbles (half-bytes) stored compactly, using a byte vector as backing
storage. Wewill need 3 classes: one to represent reference-like objects:
nibble_ref, another for pointer-like objects: nibble_ptr and finally the
container to hold the nibbles: nibble_vec. NB. In this exercise, we will
not consider const-ness: treat everything as mutable.
The nibble_ref class needs to remember a reference or a pointer to the
byte which contains the nibble that we refer to, and whether it is the
upper or the lower nibble. With that information (which should be
passed to it via a constructor), it needs to provide:

• an assignment operator which takes an uint8_t as an argument,
but only uses the lower half of that argument to overwrite the
pointed-to nibble,

• a conversion operator which allows implicit conversion of a nib-

ble_ref to an uint8_t.

class nibble_ref; /* reference implementation: 17 lines */

The nibble_ptr class works as a pointer. Dereferencing a nibble_ptr

should result in a nibble_ref. There is no indirect access, because the
target (pointed-to) type does not have any fields. To make nibble_ptr

more useful, it should also have:

• a pre-increment operator, which shifts the pointer to thenext nibble
in memory. That is, if it points at a lower nibble, after ++x, it should
point to an upper half of the same byte, and after another ++x, it
should point to the lower half of the next byte,

• an equality comparison operator, which checks whether two nib-

ble_ptr instances point to the same place in memory.

class nibble_ptr; /* reference implementation: 18 lines */

And finally the nibble_vec: this class should provide 4 methods:

• push_back, which adds a nibble at the end,
• begin, which returns a nibble_ptr to the first stored nibble (lower

half of the first byte),
• end, which returns a nibble_ptr past the last stored nibble (i.e. the

first nibble that is not in the container), and finally
• indexing operator, which returns a nibble_ref. */

class nibble_vec; /* reference implementation: 16 lines */

Part 5.12: invest

We will revisit (again) our familiar example of a bank account. This

time, we add exceptions to the story: withdrawals that would exceed
the overdraft limit will throw. Wewill also add a class dual to loan from
the last time: an investment, which will deduct money from an account
upon construction, accrue interest, and upon destruction, deposit the
money into the original account.
We will use this class as the exception type. It is okay to keep it empty.

class insufficient_funds;

First the account class, which has the usual methods: balance, deposit
and withdraw. The starting balance is 0. The balance must be non-
negative at all times: an attempt to withdraw more money than avail-
able should throw an exception of type insufficient_funds.

class account; /* reference implementation: 13 lines */

And finally the class investment, which has a three-parameter construc-
tor: it takes a reference to an account, the sum to invest and a yearly
interest rate (in percent, as an integer). Upon construction, it must
withdraw the sum from the account, and upon destruction, deposit
the original sumplus the interest. Themethod next_year should update
the accrued interest.

class investment; /* reference implementation: 15 lines */

Part 5.13: fixnum

In this exercise, we will implement fixed-precision numbers, with 2
fractional digits and up to 6 integral digits (both decimal), i.e. numbers
of the form ‘123456.78’.
This is the class which we will use for indicating that parsing of the
fixnum has failed (i.e. this class will be thrown as an exception in that
case).

class bad_format;

The fixnum class should provide following operations: addition, sub-
traction and multiplication. It should have explicit constructors which
construct the number from an integers or from a string. The latter
constructor should throw an exception if the string is ill-formed (it is
okay to only handle positive numbers in string form). Finally, it should
be possible to compare fixnum instances for equality. All operations
should round toward zero, to the nearest representable number.

class fixnum; /* reference implementation: 32 lines */

Part 5.14: poly

Goal: implement polynomials with addition (easy) and multiplication
(less easy). A polynomial is a term of the form 7𝑥4 + 0𝑥3 + 0𝑥2 +

3𝑥 + 𝑥0 – i.e. a sum of non-negative integral powers of 𝑥, with each
power carrying a fixed (constant) coefficient. Adding two polynomials
will simply give us a polynomial where coefficients are sums of the
coefficients of the two addends. The case of multiplication is more
complicated, because:

• each term of the first polynomial has to be multiplied by each term
of the second polynomial

• some of those products give equal powers of 𝑥 and hence their
coefficients need to be summed

For each polynomial, there is some 𝑛, such that all powers higher than
𝑛 have a zero coefficient. This is important when you want to store
the polynomials in a computer.
The default constructor of the class poly should generate a polynomial
which has all coefficients set to 0. Besides addition and multiplication
(which are implemented as operators), also implement equality and a
method set, which takes an exponent (power of 𝑥) and a coefficient,
both integers.

PB161 Programming in C++ 15/33 March 31, 2020

class poly; /* reference implementation is 45 lines */

Part 5.15: pretty

TBD

Part 5.16: Exercise Solutions
Sample solutions for the warm-up exercises follow.

5.16.1 cartesian (solution)

This is a solution that uses the friend syntax. For a solutionwhich uses
the method syntax, see cartesian.alt.cpp.

class cartesian

{

double real, imag;

public:

cartesian(double r, double i) : real(r), imag(i) {}

friend cartesian operator+(cartesian a, cartesian b)

{

You may not know this syntax yet. In a return statement, braces
without a type name call the constructor of the return type. I.e. {

a, b } in this context is the same as cartesian(a, b).

return { a.real + b.real, a.imag + b.imag };

}

friend cartesian operator-(cartesian a, cartesian b)

{

return { a.real - b.real, a.imag - b.imag };

}

friend cartesian operator-(cartesian a)

{

return { -a.real, -a.imag };

}

friend bool operator==(cartesian a, cartesian b)

{

return a.real == b.real && a.imag == b.imag;

}

};

To avoid having a copy of the tests, we #include the original .cpp file
here. You won’t be able to compile this solution if you add your imple-
mentation to the original .cpp file, but you can probably trust us that
the solution above works.

#include "cartesian.cpp"

5.16.2 cartesian (alternate solution)

This is a solution that uses the friend syntax. For a solutionwhich uses
the method syntax, see cartesian.alt.cpp.

class cartesian

{

double real, imag;

public:

cartesian(double r, double i) : real(r), imag(i) {}

cartesian operator+(cartesian b) const

{

return { real + b.real, imag + b.imag };

}

cartesian operator-(cartesian b)

{

return { real - b.real, imag - b.imag };

}

cartesian operator-()

{

return { -real, -imag };

}

bool operator==(cartesian b) const

{

return real == b.real && imag == b.imag;

}

};

#include "cartesian.cpp"

5.16.3 force (solution)

#include <cmath>

class force

{

double x, y, z; /* cartesian components of the force */

public:

force(double x, double y, double z)

: x(x), y(y), z(z) {}

We only define multiplication by a scalar (double) from left, since we
only need that here, but it would be equally valid to flip the operand
types (and define scalar multiplication on the right).

friend force operator*(double s, force f)

{

return { s * f.x, s * f.y, s * f.z };

}

Bog-standard vector addition.

friend force operator+(force a, force b)

{

return { a.x + b.x, a.y + b.y, a.z + b.z };

}

Fuzzy vector equality. Two vectors are equal when all their compo-
nents are equal.

friend bool operator==(force a, force b)

{

return std::fabs(a.x - b.x) < 1e-10 &&

std::fabs(a.y - b.y) < 1e-10 &&

std::fabs(a.z - b.z) < 1e-10;

}

};

#include "force.cpp"

Part 6: Memory, IO
So far, we have managed to almost entirely avoid thinking about mem-
ory management: standard containers manage memory behind the

scenes. We sometimes had to think about copies (or rather avoiding
them), because containers could carry a lot of memory around and

PB161 Programming in C++ 16/33 March 31, 2020

copying all that memory without a good reason is rather wasteful (this
is why we often pass arguments as const references and not as values).
This week, we will look more closely at how memory management
works and what we can do when standard containers are inadequate
to deal with a given problem. In particular, we will look at building our
own pointer-based data structures and how we can retain automatic
memory management in those cases using std::unique_ptr.
The second half of the seminar will be about IO: we will look at format-
ted input and output and at reading and writing files. That said, here
are some introductory examples:

1. queue.cpp – a queue with stable references
2. files.cpp – opening files, reading and writing strings
3. streams.cpp – from values to strings and back
4. format.cpp – overloading formatting operators

Exercises with solutions:

5. circular.cpp – a singly-linked circular list
6. csv.cpp – parse comma-separated numeric data

Standard exercises:

7. unrolled.cpp – a linked list of arrays
8. bittrie.cpp – bitwise tries (radix trees)
9. force.cpp – vectors redux, this time with IO
10. grep.cpp – print matching lines
11. solid.cpp – efficient storage of optional data
12. tmpfile.cpp – an auto-erasing temporary file

Bonus exercises:

13. chartrie.cpp – binary tree for holding string keys
14. parser.cpp – parse a very simple lisp-like language

Part 6.1: queue

In this example, wewill demonstrate the use of std::unique_ptr, which
is an RAII class for holding (owning) values dynamically allocated from
the heap. We will implement a simple one-way, non-indexable queue.
We will require that it is possible to erase elements from the middle in
O(1), without invalidating any other iterators. The standard containers
which could fit:

• std::deque fails the erase in the middle requirement,
• std::forward_list does not directly support queue-like operation,

hence using it as a queue is possible but awkward; wrapping
std::forward_listwould be, however, a viable approach to this task,
too,

• std::list works well as a queue out of the box, but has twice the
memory overhead of std::forward_list.

As usual, since we do not yet understand templates, we will only im-
plement a queue of integers, but it is not hard to imagine we could
generalize to any type of element.

#include <memory>

Since we are going for a custom, node-based structure, we will need
to first define the class to represent the nodes. For sake of simplicity,
we will not encapsulate the attributes.

struct queue_node

{

We do not want to handle all the memory management ourselves. To
rule out the possibility of accidentally introducing memory leaks, we
will use std::unique_ptr to manage allocated memory for us. When-
ever a unique_ptr is destroyed, it will free up any associated memory.
An important limitation of unique_ptr is that each piece of memory
managed by a unique_ptrmust have exactly one instance of unique_ptr
pointing to it. When this instance is destroyed, the memory is deallo-
cated.

std::unique_ptr< queue_node > next;

Besides the structure itself, we of course also need to store the actual
data. We will store a single integer per node.

int value;

};

We will also need to be able to iterate over the queue. For that, we
define an iterator, which is really just a slightly generalized pointer
(you may remember nibble_ptr from last week). We need 3 things:
pre-increment, dereference and inequality.

struct queue_iterator

{

queue_node *node;

The queuewill need to create instances of a queue_iterator. Let’s make
that convenient.

queue_iterator(queue_node *n) : node(n) {}

The pre-increment operator simply shifts the pointer to the next

pointer of the currently active node.

queue_iterator &operator++()

{

node = node->next.get();

return *this;

}

Inequality is very simple (we need this because the condition of itera-
tion loops is it != c.end(), including range for loops):

bool operator!=(const queue_iterator &o) const

{

return o.node != node;

}

And finally the dereference operator. This should be familiar by now
(perhaps notice the const overload). Depending on element type, the
const overload would in many cases return a const reference instead
of a value.

int &operator*() { return node->value; }

int operator*() const { return node->value; }

};

This class represents the queue itself. We will have push and pop to add
and remove items, empty to check for emptiness and begin and end to
implement iteration.

class queue

{

We will keep the head of the list in another unique_ptr. An empty
queue will be represented by a null head. Also worth noting is that
when using a list as a queue, the head is where we remove items. The
end of the queue (where we add new items) is represented by a plain
pointer because it does not own the node (the node is owned by its
predecessor).

std::unique_ptr< queue_node > first;

queue_node *last = nullptr;

public:

As mentioned above, adding new items is done at the ‘tail’ end of the
list. This is quite straightforward: we simply create the node, chain
it into the list (using the last pointer as a shortcut) and point the last

pointer at the newly appended node. We need to handle empty and
non-empty lists separately because we chose to represent an empty
list using null head, instead of using a dummy node.

PB161 Programming in C++ 17/33 March 31, 2020

void push(int v)

{

if (last) /* non-empty list */

{

last->next = std::make_unique< queue_node >();

last = last->next.get();

}

else /* empty list */

{

first = std::make_unique< queue_node >();

last = first.get();

}

last->value = v;

}

Reading off the value from the head is easy enough. However, to
remove the corresponding node, we need to be able to point first at
the next item in the queue.
Unfortunately, we cannot use normal assignment (because copying
unique_ptr is not allowed). We will have to use an operation that is
called move assignment and which is written using a helper function
in from the standard library, called std::move.
Operations which move their operands invalidate the moved-from
instance. In this case, first->next is the moved-from object and the
movewill turn it into a null pointer. In any case, the next pointerwhich
was invalidated was stored in the old head node and by rewriting first,
we lost all pointers to that node. This means two things:

1. the old head’s next pointer, now null, is no longer accessible /* C */
2. memory allocated to hold the old head node is freed */

int pop()

{

int v = first->value;

first = std::move(first->next);

Do not forget to update the last pointer in case we popped the last
item.

if (!first) last = nullptr;

return v;

}

The emptiness check is simple enough.

bool empty() const { return !last; }

Now the begin and endmethods. We start iterating from thehead (since
we have no choice but to iterate in the direction of the next pointers).
The end method should return a so-called past-the-end iterator, i.e.
one that comes right after the last real element in the queue. For an
empty queue, both begin and end should be the same. Conveniently,
the next pointer in the last real node is nullptr, so we can use that as
our end-of-queue sentinel quite naturally. You may want to go back
to the pre-increment operator of queue_iterator just in case.

queue_iterator begin() { return { first.get() }; }

queue_iterator end() { return { nullptr }; }

And finally, erasing elements. Since this is a singly-linked list, to erase
an element, we need an iterator to the element before the one we are
about to erase. This is not really a problem, because erasing at the head
is done by pop. We use the same move assignment construct that we
have seen in pop earlier.

void erase_after(queue_iterator i)

{

assert(i.node->next);

i.node->next = std::move(i.node->next->next);

}

};

int main() /* demo */

{

We start by constructing an (empty) queue and doing some basic op-
erations on it. For now, we only try to insert and remove a single
element.

queue q;

assert(q.empty());

q.push(7);

assert(!q.empty());

assert(q.pop() == 7);

assert(q.empty());

Now that we have emptied the queue again, we add a few more items
and try erasing one and iterating over the rest.

q.push(1);

q.push(2);

q.push(7);

q.push(3);

We check that erase works as expected. We get an iterator that points
to the value 2 from above and use it to erase the value 7.

queue_iterator i = q.begin();

++ i;

assert(*i == 2);

q.erase_after(i);

We can use instances of queue in range for loops, because they have
begin and end, and the types those methods return (i.e. iterators) have
dereference, inequality and pre-increment.

int x = 1;

for (int v : q)

assert(v == x++);

That went rather well, let’s just check that the order of removal is the
same as the order of insertion (first in, first out). This is how queues
should behave.

assert(q.pop() == 1);

assert(q.pop() == 2);

assert(q.pop() == 3);

assert(q.empty());

}

Part 6.2: files

This example will be brief: we will show how to open a file for reading
and fetch a line of text. We will then write that line of text into a new
file and read it back again to check that things worked.

#include <fstream>

We will split up the example into functions for 2 reasons: first, to
make it easier to follow, and second, to take advantage of RAII: the file
streams will close the underlying resource when they are destroyed.
In this case, that will be at the end of each function.

std::string read(const char *file)

{

The default method of doing IO in C++ is through streams. Reading
files is done through a stream of type std::ifstream, which is short for
input file stream. The constructor of ifstream takes the name of the
file to open. We will use a file given to us by the caller.

std::ifstream f(file);

The simplest method to read text from a file is using std::getline,
which will fetch a single line at a time, into an std::string. We need

PB161 Programming in C++ 18/33 March 31, 2020

to prepare the string in advance, since it is passed into std::getline as
an output argument.

std::string line;

The std::getline function returns a reference to the stream that was
passed to it. Additionally, the stream can be converted to bool to find
out whether everything is okay with it. If the reading fails for any
reason, it will evaluate to false. The newline character is discarded.

if (!std::getline(f, line))

In real code, we would of course want to handle errors, because open-
ing files is something that can fail for a number of reasons. Here, we
simply assume that everything worked.

assert(false);

return line;

}

Next comes a function which demonstrates writing into files.

void write(const char *file, std::string line)

{

To write data into a file, we can use std::ofstream, which is short for
output file stream. The output file is created if it does not exist.

std::ofstream f(file);

Writing into a file is typically done using operators for formatted out-
put. We will look at those in more detail in the next section. For now,
all we need to know that writing an object into a stream is done like
this:

f << line;

We will also want to add the newline character that getline above
chomped. We have two options: either use the "\n" string literal, or
std::endl – a so-called stream manipulator which sends a newline
character and asks the stream to send the bytes to the operating system.
Let’s try the more idiomatic approach, with the manipulator:

f << std::endl;

At this point, the file is automatically closed and any outstanding data
is sent to the operating system.

}

int main() /* demo */

{

We first use read to get the first line of this file.

std::string line = read("files.cpp");

And we check that the line we got is what we expect. Remember the
stripped newline.

assert(line == "/* This example will be brief:"

" we will show how to open a file for");

Now we write the line into another file. After you run this example,
you can inspect files.outwith an editor. It should contain a copy of
the first line of this file.

write("files.out", line);

Finally, we use read again to read "file.out" back, and check that the
same thing came back.

std::string check = read("files.out");

assert(check == line);

}

Part 6.3: streams

File streams are not the only kind of IO streams that are available
in the standard library. There are 3 ‘special’ streams, called std::cout,
std::cerr and std::cin. Those are not types, but rather global variables,
and represent the standard output, the standard error output and the
standard input of the program. However, the first two are instances
of std::ostream and the third is an instance of std::istream.
We don’t know about class inheritance yet, but it is probably not a
huge stretch to understand that instances of std::ofstream (output file
stream) are also at the same time instances of std::ostream (general out-
put stream). The same story holds for std::ifstream (input file stream)
and std::istream (general input stream).
There is another pair of classes: std::ostringstream and
std::istringstream. Those streams are not attached to OS resources,
but to instances of std::string: in other words, when you write to an
ostringstream, the resulting bytes are not sent to the operating system,
but are instead appended to the given string. Likewise, when you
read from an istringstream, the data is not pulled from the operating
system, but instead come from an std::string. Hopefully, you can
see the correspondence between files (the content of which are byte
sequences stored on disk) and strings (the content of which are byte
sequences stored in RAM).
In any case, string streams are ideal for playing around, because we
can use the same tools as we always do: create some simple instances,
apply operations and use assert to check that the results are what we
expect. String-based streams are defined in the header sstream.

#include <sstream>

#include <cmath>

Everything that we will do with string streams applies to other types
of streams too (i.e. the 3 special streams mentioned earlier, and all file
streams).
Like in the previous example, we will split up the demonstration into
a few sections, mainly to avoid confusion over variable names. We
will first demonstrate reading from streams. We have already seen
std::getline, so let’s start with that. It is probably noteworthy that it
works on any input stream, not just std::ifstream.

void getline_1()

{

std::istringstream istr("a string\nwith 2 lines\n");

std::string s;

assert(std::getline(istr, s));

assert(s == "a string");

assert(std::getline(istr, s));

assert(s == "with 2 lines");

assert(!std::getline(istr, s));

assert(s.empty());

}

We can also override the delimiter character for std::getline, to ex-
tract delimited fields from input streams.

void getline_2()

{

std::istringstream istr("colon:separated fields");

std::string s;

assert(std::getline(istr, s, ':'));

assert(s == "colon");

assert(std::getline(istr, s, ':'));

assert(s == "separated fields");

assert(!std::getline(istr, s, ':'));

PB161 Programming in C++ 19/33 March 31, 2020

}

So far so good. Our other option is so-called formatted input. The
standard library doesn’t offer much in terms of ready-made overloads
for such inputs: there is one for strings, which extracts individual
words (like the scanf specifier %s, if you remember that from C, but
the C++ version is actually safe and it is okay to use it). Then there is
an instance for char, which extracts a single character (regardless of
whether it is a whitespace character or not) and a bunch of overloads
for various numeric types.

void formatted_input()

{

std::istringstream istr("integer 123 float 3.1415 s t");

std::string s, t;

int i; float f;

istr >> s; assert(s == "integer");

istr >> i; assert(i == 123);

istr >> s; assert(s == "float");

Notice that float numbers are not very exact. They are usually just
32 bits, which means 24 bits of precision, which is a bit less than 8
decimal digits.

istr >> f; assert(std::fabs(f - 3.1415) < 1e-7);

The last thing we want to demonstrate with regards to the formatted
input operators is that we can chain them. The values are taken from
left to right (behind the scenes, this is achieved by the formatted input
operator returning a reference to its left operand.

istr >> s >> t;

assert(s == "s" && t == "t");

When we reach the end of the stream (i.e. the end of the buffer, or of
the file), the stream will indicate an error. A stream in error condition
converts to false in a bool context.

assert(!(istr >> s));

}

Output is actually quite a bit simpler than input. It is almost always
reasonable to use formatted output, since strings are simply copied to
the output without alterations.

void formatted_output()

{

std::ostringstream a, b, c;

a << "hello world";

To read the buffer associated with an output string stream, we use its
method str. Of course, this method is not available on other stream
types: in those cases, the characters are written to files or to the termi-
nal and we cannot access them through the stream anymore.

assert(a.str() == "hello world");

Like with formatted input, output can be chained.

b << 123 << " " << 3.1415;

assert(b.str() == "123 3.1415");

Whenwriting delimited values to an output stream, it is often desirable
to only put the delimiter between items and not after each item: this
is an endless source of headaches. Here is a trick to do it without too
much typing:

int i = 0;

for (int v : { 1, 2, 3 })

c << (i++ ? ", " : "") << v;

assert(c.str() == "1, 2, 3");

}

Part 6.4: format

We have seen the basics of input and output, and that formatted input
and output is realized using operators. Like many other operators in
C++, those operators can be overloaded. We will show how that works
in this example.

#include <cmath>

#include <sstream>

Wewill revisit the cartesian class from last week, to represent complex
numbers in algebraic form, i.e. as a sum of a real and an imaginary
number. We do not care about arithmetic this time: we will only
implement a constructor and the formatted input and output operators.
We will, however, need equality so that we can write test cases.

class cartesian

{

double real, imag;

public:

We have seen default arguments before: those are used when no
value is supplied by the caller. This also allows instances to be default-
constructed.

cartesian(double r = 0, double i = 0) : real(r), imag(i)

{}

The comparison is fuzzy, due to the limited precision available in dou-

ble.

friend bool operator==(cartesian a, cartesian b)

{

return std::fabs(a.real - b.real) < 1e-10 &&

std::fabs(a.imag - b.imag) < 1e-10;

}

Now the formatted output, which is a little easier than the input. Since
the first operand of this operator is not an instance of cartesian, the
operator cannot be implemented as a method. It must either be a
function outside the class, or use the ‘friend trick’. Sincewewill need to
access private attributes in the operator, we will use the friend syntax
here. The return type and the type of the first argument are pretty
much given and are always the same. You could consider them part
of the syntax. The second argument is an instance of our class (this
would often be passed as a const reference).

friend std::ostream &operator<<(std::ostream &o, cartesian c)

{

We will use 27.3±7.1*i as the output format. We can use ‘simpler’
overloads of the << operator to build up ours: this is a fairly common
practice. We write to the ostream instance given to us in the argument.
We must not forget to return that instance to our caller.

o << c.real;

if (c.imag >= 0)

o << "+";

return o << c.imag << "*i";

}

The input operator is similar. It gets a reference to an std::istream as
an argument (and has to pass it along in the return value). The main
difference is that the object intowhichwe read the datamust be passed
as a non-constant (i.e. mutable) reference, since we need to change it.

friend std::istream &operator>>(std::istream &i, cartesian &c)

{

Like above, we will build up our implementation from simpler over-

PB161 Programming in C++ 20/33 March 31, 2020

loads of the same operator (which all come from the standard library).
The formatted input operators for numbers do not require that the
number is followed by whitespace, but will stop at a character which
can no longer be part of the number. A + or - character in the middle
of the number qualifies.

i >> c.real;

Wewill slightly abuse the flexibility of the formatted input operator for
double values: it accepts numbers startingwith an explicit + sign, hence
we do not need to check the sign ourselves. Just read the imaginary
part.

i >> c.imag;

We do need to deal with the trailing *i though.

char ch;

When formatted input fails, it should set a failbit in the input stream.
This is how the if (stream >> value) construct works.

if (!(i >> ch) || ch != '*' ||

!(i >> ch) || ch != 'i')

i.setstate(i.failbit);

And as mentioned above, we need to return a reference to the input
stream.

return i;

}

};

int main() /* demo */

{

std::ostringstream ostr;

ostr << cartesian(1, 1);

We first check that the output behaves as we expected.

assert(ostr.str() == "1+1*i");

Wewrite a fewmore complex numbers into the stream, using operator
chaining.

ostr << " " << cartesian(3, 0) << " " << cartesian(1, -1)

<< " " << cartesian(0, 0);

assert(ostr.str() == "1+1*i 3+0*i 1-1*i 0+0*i");

We now construct an input stream from the string which we created
above, and check that the values can be read back.

std::istringstream istr(ostr.str());

cartesian a, b, c;

Let’s read back the first number and check that the result makes sense.

assert(istr >> a);

assert(a == cartesian(1, 1));

We can also check that chaining works as expected, using the remain-
ing numbers in the string.

assert(istr >> a >> b >> c);

assert(a == cartesian(3, 0));

assert(b == cartesian(1, -1));

assert(c == cartesian(0, 0));

We can reset an istringstream by calling its str method with a new
buffer. We want to demonstrate that trying to read an ill-formatted
complex number will fail.

std::istringstream bad1("7+3*j");

assert(!(bad1 >> a));

std::istringstream bad2("7");

assert(!(bad2 >> a));

}

Part 6.5: circular

In this exercise, we will implement a slightly unusual data structure:
a circular linked list, but instead of the usual access operators and
iteration, it will have a rotatemethod, which rotates the entire list. We
require that rotation does not invalidate any references to elements in
the list.
If you think of the list as a stack, you can think of the rotate operation
as taking an element off the top and putting it at the bottom of the
stack. It is undefined on an empty list.
To add and remove elements, we will implement push and popwhich
work in a stack-like manner. Only the top element is accessible, via
the topmethod. This method should allow both read and write access.
Finally, we also want to be able to check whether the list is empty. As
always, we will store integers in the data structure.

class circular;

Part 6.6: csv

In this exercise, we will deal with CSV files: we will implement a class
called csv which will read data from an input stream and allow the
user to access it using the indexing operator.

#include <sstream>

The exception to throw in case of format error.

class bad_format;

The constructor should accept a reference to std::istream and the
expected number of columns. In the input, each line contains inte-
gers separated by value. The constructor should throw an instance of
bad_format if the number of columns does not match.
Additionally, if x is an instance of csv, then x[3][1] should return
the value in the third row and first column.

class csv;

Part 6.7: unrolled

Another exercise, another data structure. This time we will look at
so-called unrolled linked lists. We will need the data structure itself,
with begin, end, empty and push_backmethods. As usual, we will store
integers. The difference between a ‘normal’ singly-linked list and an
unrolled list is that in the latter, each node stores more than one item.
In this case, wewill use 4 items per node. Of course, the last nodemight
only be filled partially. The iterator that begin and end return should at
least implement dereference, pre-increment and inequality, as usual.
We will not provide an interface for erasing elements, because that is
somewhat tricky.

struct unrolled_node; /* ref: 6 lines */

struct unrolled_iterator; /* ref: 22 lines */

class unrolled; /* ref: 36 lines */

Part 6.8: bittrie

More data structures. A bit trie (or a bitwise trie, or a bitwise radix
tree) is a binary tree for encoding a set of binary values, with quick

PB161 Programming in C++ 21/33 March 31, 2020

insertion and lookup. Each edge in the tree encodes a single bit (i.e. it
carries a zero or a one). To make our life easier, we will represent the
keys using a vector of booleans.

#include <vector>

The key is a sequence of bits: iteration order (left to right) corresponds
to a path through the trie starting from the root. I.e. the leftmost bit
decides whether to go left or right from the root, and so on. A key is
present in the trie iff it describes a path to a leaf node.

using key = std::vector< bool >;

struct trie_node; /* ref: 5 lines */

For simplicity, we will not have a normal insertmethod. Instead, the
trie will expose its root node via root and allow explicit creation of
new nodes via make, which accepts the parent node and a boolean
as arguments (the latter indicating whether the newly created edge
represents a 0 or a 1). Both root and make should return node references.
Finally, add a has method which will check whether a given key is
present in the trie.

class trie; /* ref: 21 lines */

Part 6.9: force

This week in the physics department, we will deal with formatting and
parsing vectors (forces, just to avoid confusion with std::vector... for
now).

#include <sstream>

The class will be called force, and it should have a constructor which
takes 3 values of type double and a default constructor which con-
structs a 0 vector. In addition to that, it should have a (fuzzy) compari-
son operator and formatting operators, both for input and for output.
Use the following format: [F_x F_y F_z], that is, a left square bracket,
then the three components of the force separated by spaces, and a
closing square bracket. Do not forget to set failbit in the input stream
if the format does not match expectations.

class force;

Part 6.10: grep

To practice working with IO streams a little, we will write a two simple
functions which reads lines from an input stream, process them a little
and possibly print them out or their part into an output stream.

#include <sstream>

#include <string>

The grep function checks, for every line on the input, whether it
matches a given pattern (i.e. the pattern is a substring of the line)
and if it does (and only if it does) copies the line to the output stream.

void grep(std::string pattern, std::istream &, std::ostream &);

The other function to add is called cut and it will process the lines
differently: it splits each line into fields separated by the character
delim and only prints the column given by col. Unlike the cut program,
index columns starting at 0. If there are not enough columns on a
given line, print an empty line.

void cut(char delim, int col, std::istream &, std::ostream &);

Part 6.11: solid

In this exercise, we will focus on building objects that have optional

data attached to them. The idea is that if the optional data is sufficiently
big and there are enough instances which do not use this data, it makes
sense to split the object into two. Of course, logically (in the interface),
the object should still act like a single unit.

#include <vector>

To make testing easier, we declare a global counter for matrices. It
will be adjusted by the constructor and destructor of transform_matrix
below. This is not a design pattern that you should normally use (but
it is okay in a small demo).

int matrix_counter = 0;

The two pieces will be, in this case, a general description of a 3D object
(a solid) and a 3D transformation matrix with 9 entries (3 rows and
3 columns). The matrix is represented by the class declared below.
Make the class default-constructible and do not forget to implement
the book-keeping for matrix_counter. The class should store the matrix
entries inline (i.e. they should be part of the object, not managed in a
separate heap allocation).

struct transform_matrix;

We don’t know about inheritance yet, but the below class could be
considered a base class in a simple inheritance hierarchy: it will only
have properties common to different object types, but will not describe
a complete solid in itself. It should have the following methods:

• pos_x, pos_y and pos_z to give the position of the solid
• transform_entry(int r, int c) gives the entry in the transforma-

tion matrix at row r and column c

• transform_set(int r, int c, double v) sets the corresponding
entry in the transformation matrix

• a constructor which takes 3 arguments of type double (the x, y and
z position coordinates)

The default transformation matrix is the identity matrix (1’s on the
main diagonal, 0’s everywhere else). Memory should only be allocated
for the transformation matrix if it changes from the default.

class solid;

Part 6.12: tmpfile

Wewill implement a simple wrapper around std::fstream that will act
as a temporary file. When the object is destroyed, use std::remove to
unlink the file. Make sure the stream is closed before you unlink the
file.

#include <fstream> /* fstream */

#include <cstdio> /* remove */

#include <unistd.h> /* access */

The tmpfile class should have the following interface:

• a constructor which takes the name of the file
• method writewhich takes a string and replaces the content of the

file with that string; this method should flush the data to the oper-
ating system (e.g. by closing the stream)

• method readwhich returns the current content of the file
• method stream which returns a reference to an instance of

std::fstream (i.e. suitable for both reading and writing)

Calling both stream and write on the same object is undefined behav-
iour. The readmethod should return all data sent to the file, including
data written to stream() that was not yet flushed by the user.

class tmpfile;

PB161 Programming in C++ 22/33 March 31, 2020

Part 6.13: Exercise Solutions
Sample solutions for the warm-up exercises follow.

6.13.1 circular (solution)

The solution proceeds along the lines of queue.cpp: we use a singly-
linked list. The solution is simpler because we do not need iteration
(which was replaced by rotate.

#include <memory>

A node of the data structure, bog standard.

struct circular_node

{

using pointer = std::unique_ptr< circular_node >;

pointer next;

int value;

};

Like before, we remember the head of the list (as a unique_ptr) and a
pointer to the last node, which we need to implement rotate.

class circular

{

std::unique_ptr< circular_node > head;

circular_node *last = nullptr;

public:

bool empty() const { return !last; }

In this case, the pushmethod works at the head, since we use the list
in a stack-like order. We have already seen move assignment, using
the std::move helper function.

void push(int v)

{

auto new_head = std::make_unique< circular_node >();

new_head->value = v;

new_head->next = std::move(head);

head = std::move(new_head);

if (!last) last = head.get();

}

Popping items at the head is quite simple.

void pop()

{

head = std::move(head->next);

if (!head) last = nullptr;

}

Access to the top element.

int top() const { return head->value; }

int &top() { return head->value; }

And the rotate operation: we pop a node off the head and chain it to
the list at the tail end. Must not forget to update the last pointer. Does
not work on empty list.

void rotate()

{

auto next_head = std::move(head->next);

last->next = std::move(head);

last = last->next.get();

head = std::move(next_head);

}

};

#include "circular.cpp"

6.13.2 csv (solution)

It is probably easiest to implement this using std::getline to fetch both
lines and individual cells. Other approaches are certainly possible
though.

#include <sstream>

#include <iostream>

#include <vector>

class bad_format {};

class csv

{

std::vector< std::vector< int > > data;

public:

Process a single line, with some rudimentary format validation. The
std::stoi call will throw if the number cannot be parsed, but will not
complain about trailing garbage.

void process_line(const std::string &line, int cols)

{

std::istringstream i_line(line);

std::string cell;

data.emplace_back();

for (int i = 0; i < cols; ++i)

{

if (!std::getline(i_line, cell, ','))

throw bad_format();

data.back().push_back(std::stoi(cell));

}

i_line.get();

if (!i_line.eof())

throw bad_format();

}

The constructor, fetches lines until it reaches the end of the file and
processes each of them using the above.

csv(std::istream &i, int cols)

{

std::string line;

while (std::getline(i, line))

process_line(line, cols);

}

The indexing operator. Since we want [x][y] to work, we need
to return something with an indexing operator of its own here. The
easiest thing to do is to return the underlying vector in which we store
the row. It would be possible to return a proxy object too.

std::vector< int > &operator[](int i)

{

return data[i];

}

};

#include "csv.cpp"

PB161 Programming in C++ 23/33 March 31, 2020

Part 7: Inheritance and Polymorphism
This week will be about objects in the OOP (object-oriented program-
ming) sense and about inheritance-based polymorphism. In OOP,
classes are rarely designed in isolation: instead, new classes are de-
rived from an existing base class (the derived class inherits from the
base class). The derived class retains all the attributes (data) and meth-
ods (behaviours) of the base (parent) class, and usually adds something
on top, or at least modifies some of the behaviours.
So far, we have worked with composition (though we rarely called
it that). We say objects (or classes) are composed when attributes of
classes are other classes (e.g. standard containers). The relationship
between the outer class and its attributes is known as ‘has-a’: a circle
has a center, a polynomial has a sequence of coefficients, etc.
Inheritance gives rise to a different type of relationship, known as ‘is-a’:
a few stereotypical examples:

• a circle is a shape,
• a ball is a solid, a cube is a solid too,
• a force is a vector (and so is velocity).

This is where polymorphism comes into play: a function which doesn’t
care about the particulars of a shape or a solid or a vector can accept
an instance of the base class. However, each instance of a derived class
is an instance of the base class too, and hence can be used in its place.
This is known as the Liskov substitution principle.
An important caveat: this does notworkwhen passing objects by value,
because in general, the base class and the derived class do not have the
same size. Languages like Python or Java side-step this issue by always
passing objects by reference. In C++, we have to do that explicitly if
we want to use inheritance-based polymorphism. Of course, this also
works with pointers (including smart ones, like std::unique_ptr).
With this bit of theory out of the way, let’s look at some practical ex-
amples: the rest of theory (late binding in particular) will be explained
in comments:

1. account.cpp – a simple inheritance example
2. shapes.cpp – polymorphism and late dispatch
3. expr.cpp – dynamic and static types, more polymorphism
4. destroy.cpp – virtual destructors
5. factory.cpp – polymorphic return values

As usual, we will continue with a couple exercises with solutions:

6. bom.cpp – polymorphism and collections
7. circuit.cpp – calling virtual methods within the class

The basic set of exercises:

8. prisoner.cpp – the famous dilemma
9. bexpr.cpp – boolean expressions with variables
10. sexpr.cpp – a tree made of lists (lisp style)
11. network.cpp – a network of counters
12. filter.cpp – filter items from a data source
13. geometry.cpp – shapes and visitors

Bonus exercises:

14. loops.cpp – circuits with loops
15. intersect.cpp – a different take on geometry

Part 7.1: account

In this example, we will demonstrate the syntax and most basic use
of inheritance. Polymorphism will not enter the picture yet (but we
will get to that very soon: in the next example). We will consider bank
accounts (a favourite subject, surely).
We will start with a simple, vanilla account that has a balance, can
withdraw and deposit money. We have seen this before.

class account

{

The first new piece of syntax is the protected keyword. This is related
to inheritance: unlike private, it lets subclasses (or rather subclass
methods) access the members declared in a protected section. We also
notice that the balance is signed, even though in this class, that is not
strictly necessary: we will need that in one of the subclasses (yes, the
system is already breaking down a little).

protected:

int _balance;

public:

We allow an account to be constructed with an initial balance. We also
allow it to be default-constructed, initializing the balance to 0.

account(int initial = 0)

: _balance(initial)

{}

Standard stuff.

bool withdraw(int sum)

{

if (_balance > sum)

{

_balance -= sum;

return true;

}

return false;

}

void deposit(int sum) { _balance += sum; }

int balance() const { return _balance; }

};

With the base class in place, we can define a derived class. The syntax
for inheritance adds a colon, :, after the class name and a list of classes
to inherit from, with access type qualifiers. We will always use public

inheritance. Also, did you know that naming things is hard?

class account_with_overdraft : public account

{

The derived class has, ostensibly, a single attribute. However, all the
attributes of all base classes are also present automatically. That is,
there already is an int _balance attribute in this class, inherited from
account. We will use it below.

protected:

int _overdraft;

public:

This is another new piece of syntax that we will need: a constructor of
a derived class must first call the constructors of all base classes. Since
this happens before any attributes of the derived class are constructed,
this call comes first in the initialization section. The derived-class
constructor is free to choose which (overloaded) constructor of the
base class to call. If the call is omitted, the default constructor of the
base class will be called.

account_with_overdraft(int initial = 0, int overdraft = 0)

: account(initial), _overdraft(overdraft)

{}

The methods defined in a base class are automatically available in the
derived class as well (same as attributes). However, unlike attributes,

PB161 Programming in C++ 24/33 March 31, 2020

we can replace inherited methods with versions more suitable for the
derived class. In this case, we need to adjust the behaviour of withdraw.

bool withdraw(int sum)

{

if (_balance + _overdraft > sum)

{

_balance -= sum;

return true;

}

return false;

}

};

Here is another example based on the same language features.

class account_with_interest : public account

{

protected:

int _rate; /* percent per annum */

public:

account_with_interest(int initial = 0, int rate = 0)

: account(initial), _rate(rate)

{}

In this case, all the inherited methods can be used directly. However,
we need to add a new method, to compute and deposit the interest.
Since naming things is hard, we will call it next_year. The formula is
also pretty lame.

void next_year()

{

_balance += (_balance * _rate) / 100;

}

};

The way objects are used in this exercise is not super useful: the goal
was to demonstrate the syntax and basic properties of inheritance. In
modern practice, code re-use through inheritance is frowned upon
(except perhaps for mixins, which are however out of scope for this
subject). The main use-case for inheritance is subtype polymorphism,
which we will explore in the next unit, shapes.cpp.

int main() /* demo */

{

We first make a normal account and check that it behaves as expected.
Nothing much to see here.

account a(100);

assert(a.balance() == 100);

assert(a.withdraw(50));

assert(!a.withdraw(100));

a.deposit(10);

assert(a.balance() == 60);

Let’s try the first derived variant, an accountwith overdraft. Wenotice
that it’s possible to have a negative balance now.

account_with_overdraft awo(100, 100);

assert(awo.balance() == 100);

assert(awo.withdraw(50));

assert(awo.withdraw(100));

awo.deposit(10);

assert(awo.balance() == -40);

And finally, let’s try the other account variant, with interest.

account_with_interest awi(100, 20);

assert(awi.balance() == 100);

assert(awi.withdraw(50));

assert(!awi.withdraw(100));

awi.deposit(10);

assert(awi.balance() == 60);

awi.next_year();

assert(awi.balance() == 72);

}

Part 7.2: shapes

The inheritance model in C++ is an instance of a more general notion,
known as subtyping. The defining characteristic of subtyping is the
Liskov substitution principle: a value which belongs to a subtype (a
derived class) can be used whenever a variable stores, or a formal
argument expects, a value that belongs to a supertype (the base class).
As mentioned earlier, in C++ this only extends to values passed by
reference or through pointers.

#include <cmath>

#include <utility>

Wewill first define a couple useful type aliases to represent points and
bounding boxes.

using point = std::pair< double, double >;

using bounding_box = std::pair< point, point >;

Subtype polymorphism is, in C++, implemented via late binding: the
decision which method should be called is postponed to runtime (with
normal functions and methods, this happens during compile time).
The decision whether to use early binding (static dispatch) or late bind-
ing (dynamic dispatch) is made by the programmer on a method-by-
method basis. In other words, some methods of a class can use static
dispatch, while others use dynamic dispatch.

class shape

{

public:

To instruct the compiler to use dynamic dispatch for a given method,
put the keyword virtual in front of that method’s return type. Unlike
normal methods, a virtualmethod may be left unimplemented: this is
denoted by the = 0 at the end of the declaration. If a class has amethod
like this, it is marked as abstract and it becomes impossible to create
instances of this class: the only way to use it is as a base class, through
inheritance. This is commonly done to define interfaces. In our case,
we will declare two such methods.

virtual double area() const = 0;

virtual bounding_box box() const = 0;

A class which introduces virtualmethods also needs to have a destruc-
tor marked as virtual. We will discuss this in more detail in a later
unit. For now, simply consider this to be an arbitrary rule.

virtual ~shape() = default;

};

As soon as the interface is defined, we can start workingwith arbitrary
classes which implement this interface, even those that have not been
defined yet. We will start by writing a simple polymorphic function
which accepts arbitrary shapes and computes the ratio of their area to
the area of their bounding box.

double box_coverage(const shape &s)

{

Hopefully, you remember structured bindings (if not, revisit e.g.
03/rel.cpp).

auto [ll, ur] = s.box();

PB161 Programming in C++ 25/33 March 31, 2020

auto [left, bottom] = ll;

auto [right, top] = ur;

return s.area() / ((right - left) * (top - bottom));

}

Another function: this time, it accepts two instances of shape. The
values it actually receives may be, however, of any type derived from
shape. In fact, a and bmay be each an instances of a different derived
class.

bool box_collide(const shape &sh_a, const shape &sh_b)

{

A helper function (lambda) to decide whether a point is inside (or on
the boundary) of a bounding box.

auto in_box = [](const bounding_box &box, const point &pt)

{

auto [x, y] = pt;

auto [ll, ur] = box;

auto [left, bottom] = ll;

auto [right, top] = ur;

return x >= left && x <= right && y >= bottom && y <= top;

};

auto [a, b] = sh_a.box();

auto box = sh_b.box();

The two boxes collide if either of the corners of one is in the other box.

return in_box(box, a) || in_box(box, b);

}

Wenowhave the interface and two functions that are defined in terms
of that interface. Tomake some use of the functions, however, we need
to be able to make instances of shape, and as we have seen earlier, that
is only possible by deriving classes which provide implementations of
the virtual methods declared in the base class. Let’s start by defining a
circle.

class circle : public shape

{

point _center;

double _radius;

public:

The base class has a default constructor, so we do not need to explicitly
call it here.

circle(point c, double r) : _center(c), _radius(r) {}

Now we need to implement the virtualmethods defined in the base
class. In this case, we can omit the virtual keyword, but we should
specify that this method overrides one from a base class. This informs
the compiler of our intention to provide an implementation to an inher-
ited method and allows it (the compiler) to emit a warning in case we
accidentally hide the method instead, by mistyping the signature. The
most common mistake is forgetting the trailing const. Please always
specify overridewhere it is applicable.

double area() const override

{

return 4 * std::atan(1) * std::pow(_radius, 2);

}

Now the other virtualmethod.

bounding_box box() const override

{

auto [x, y] = _center;

double r = _radius;

return { { x - r, y - r }, { x + r, y + r } };

}

};

And a second shape type, so we can actually make some use of poly-
morphism. Everything is the same as above.

class rectangle : public shape

{

point _ll, _ur; /* lower left, upper right */

public:

rectangle(point ll, point ur) : _ll(ll), _ur(ur) {}

double area() const override

{

auto [left, bottom] = _ll;

auto [right, top] = _ur;

return (right - left) * (top - bottom);

}

bounding_box box() const override

{

return { _ll, _ur };

}

};

int main() /* demo */

{

Wecannot directly construct a shape, since it is abstract, i.e. it has unim-
plemented pure virtual methods. However, both circle and rectangle

provide implementations of those methods which we can use.

rectangle square({ 0, 0 }, { 1, 1 });

assert(square.area() == 1);

assert(square.box() == bounding_box({ 0, 0 }, { 1, 1 }));

assert(box_coverage(square) == 1);

circle circ({ 0, 0 }, 1);

Check that the area of a unit circle is π, and the ratio of its area to its
bounding box is π / 4.

double pi = 4 * std::atan(1);

assert(std::fabs(circ.area() - pi) < 1e-10);

assert(std::fabs(box_coverage(circ) - pi / 4) < 1e-10);

The two shapes quite clearly collide, and if they collide, their bounding
boxes must also collide. A shape should always collide with itself, and
collisions are symmetric, so let’s check that too.

assert(box_collide(square, circ));

assert(box_collide(circ, square));

assert(box_collide(square, square));

assert(box_collide(circ, circ));

Let’s make a shape a bit further out and check the collision detection
with that.

circle c1({ 2, 3 }, 1), c2({ -1, -1 }, 1);

assert(!box_collide(circ, c1));

assert(!box_collide(c1, c2));

assert(!box_collide(c1, square));

assert(box_collide(c2, square));

}

Part 7.3: expr

To better understand polymorphism, we will need to set up some ter-
minology, particularly:

• the notion of a static type, which is, essentially, the type written

PB161 Programming in C++ 26/33 March 31, 2020

down in the source code, and of a
• dynamic type (also known as a runtime type), which is the actual

type of the value that is stored behind a given reference (or pointer).

The relationship between the static and dynamic type may be:

• the static and dynamic type are the same (this was always the case
until this week), or

• the dynamic type may be a subtype of the static type (we will see
that in a short while).

Anything else is a bug.

#include <stdexcept>

Wewill use a very simple representation of arithmetic expressions as
our example here. An expression is a tree, where each node carries
either a value or an operation. We will want to explicitly track the
type of each node, and for that, wewill use an enumerated type. Those
work the same as in C, but if we declare them using enum class, the
enumerated names will be scoped: we use them as type::sum, instead
of just sum as would be the case in C.

enum class type { sum, product, constant };

Now for the class hierarchy. The base class will be node.

class node

{

public:

The first thing we will implement is a static_typemethod, which tells
us the static type of this class. The base class, however, does not have
any sensible value to return here, so we will just throw an exception.

type static_type() const

{

throw std::logic_error("bad static_type() call");

}

The ‘real’ (dynamic) type must be a virtual method, since the actual
implementation must be selected based on the dynamic type: this is
exactly what late binding does. Since the method is virtual, we do not
need to supply an implementation if we can’t give a sensible one.

virtual type dynamic_type() const = 0;

The interesting thing that is associated with each node is its value.
For operation nodes, it can be computed, while for leaf nodes (type
constant), it is simply stored in the node.

virtual int value() const = 0;

We also observe the virtual destructor rule.

virtual ~node() = default;

};

We first define the (simpler) leaf nodes, i.e. constants.

class constant : public node

{

int _value;

public:

The leaf node constructor simply takes an integer value and stores it
in an attribute.

constant(int v) : _value(v) {}

Now the interface common to all node instances:

type static_type() const { return type::constant; }

Inmethods of class constant, the static type of this is always¹ either con-

stant * or const constant *. Hence we can simply call the static_type

method, since it uses static dispatch (it was not declared virtual in the
base class) and hence the call will always resolve to the method just
above.

type dynamic_type() const override { return static_type(); }

Finally, the ‘business’ method:

int value() const override { return _value; }

};

¹ As long aswe pretend that the volatile keyword does not exist, which
is an entirely reasonable thing to do. */
The inner nodes of the tree are operations. We will create an interme-
diate (but still abstract) class, to serve as a base for the two operation
classes which we will define later.

class operation : public node

{

const node &_left, &_right;

public:

operation(const node &l, const node &r)

: _left(l), _right(r)

{}

Wewill leave static_type untouched: the version from the base class
works okay for us, since there is nothing better that we could do here.
The dynamic_type and value stay unimplemented.
We are facing a dilemma here, though. We would like to add accessors
for the children, but it is not clearwhether tomake them virtual or not.
Considering that we keep the references in attributes of this class, it
seems unlikely that the implementation of the accessors would change
in a subclass and we can use cheaper static dispatch.

const node &left() const { return _left; }

const node &right() const { return _right; }

};

Now for the two operation classes.

class sum : public operation

{

public:

The base class does not have a default constructor, which means we
need to call the one that’s available manually.

sum(const node &l, const node &r)

: operation(l, r)

{}

Wewant to replace the static_type implementation that was inherited
from node (through operation):

type static_type() const { return type::sum; }

And now the (dynamic-dispatch) interface mandated by the (indirect)
base class node. We can use the same approach thatwe used in constant

for dynamic_type:

type dynamic_type() const override { return static_type(); }

And finally the logic. The static return type of left and right is const
node &, but the method we call on each, value, uses dynamic dispatch
(it is marked virtual in class node). Therefore, the actual method which
will be called depends on the dynamic type of the respective child node.

int value() const override

{

return left().value() + right().value();

}

PB161 Programming in C++ 27/33 March 31, 2020

};

Basically a re-run of sum.

class product : public operation

{

public:

We will use a trick which will allow us to not type out the (boring and
redundant) constructor. If all we want to do is just forward arguments
to the parent class, we can use the following syntax. You do not have
to remember it, but it can save some typing if you do.

using operation::operation;

Now the interface methods.

type static_type() const { return type::product; }

type dynamic_type() const override { return static_type(); }

int value() const override

{

return left().value() * right().value();

}

};

int main() /* demo */

{

Instances of class constant are quite straightforward. Let’s declare
some.

constant const_1(1),

const_2(2),

const_m1(-1),

const_10(10);

The constructor of sum accepts two instances of node, passed by refer-
ence. Since constant is a subclass of node, it is okay to use those, too.

sum sum_0(const_1, const_m1),

sum_3(const_1, const_2);

The product constructor is the same. But now we will also try using
instances of sum, since sum is also derived (even if indirectly) from node

and therefore sum is a subtype of node, too.

product prod_4(const_2, const_2),

prod_6(const_2, sum_3),

prod_40(prod_4, const_10);

Let’s also make a sum instance which has children of different types.

sum sum_9(sum_3, prod_6);

For all variables which hold values (i.e. not references), static type =
dynamic type. To make the following code easier to follow, the static
type of each of the above variables is explicitly mentioned in its name.
Clearly, we can call the valuemethod on the variables directly and it
will call the right method.

assert(const_1.value() == 1);

assert(const_2.value() == 2);

assert(sum_0.value() == 0);

assert(sum_3.value() == 3);

assert(prod_4.value() == 4);

assert(prod_6.value() == 6);

assert(prod_40.value() == 40);

assert(sum_9.value() == 9);

However, the above results should already convince us that dynamic
dispatch works as expected: the results depend on the ability of
sum::value and product::value to call correct versions of the value

method on their children, even though the static types of the refer-

ences stored in operation are const node. We can however explore the
behaviour in a bit more detail.

const node &sum_0_ref = sum_0, &prod_6_ref = prod_6;

Now the static type of sum_0_ref is const node &, but the dynamic type
of the value to which it refers is sum, and for prod_6_ref the static type
is const node & and dynamic is product.

assert(sum_0_ref.value() == 0);

assert(prod_6_ref.value() == 6);

Let us also check the behaviour of left and right.

assert(sum_0.left().value() == 1);

assert(sum_0.right().value() == -1);

The static type through which we call left and right does not matter,
because neither product nor sum provide a different implementation of
the method.

const operation &op = sum_0;

assert(op.left().value() == 1);

assert(op.right().value() == -1);

The final thing to check is the static_type and dynamic_typemethods.
By now, we should have a decent understanding of what to expect.
Please note that sum_0 and sum_0_ref refer to the same instance and
hence they have the same dynamic type, even though their static types
differ.

assert(sum_0.dynamic_type() == type::sum);

assert(sum_0_ref.dynamic_type() == type::sum);

assert(sum_0.static_type() == type::sum);

try { sum_0_ref.static_type(); assert(false); }

catch (std::logic_error &) {}

And the same is true about prod_6 and prod_6_ref.

assert(prod_6.dynamic_type() == type::product);

assert(prod_6_ref.dynamic_type() == type::product);

assert(prod_6.static_type() == type::product);

try { prod_6_ref.static_type(); assert(false); }

catch (std::logic_error &) {}

}

Part 7.4: destroy

In this (entirely synthetic, sorry) example, we will look at object de-
struction, especially in the context of polymorphism.

#include <memory>

We first set up a few counters to track constructor and destructor calls.

static int bad_base_counter = 0, bad_derived_counter = 0,

good_base_counter = 0, good_derived_counter = 0;

class bad_base

{

public:

virtual int bad_dummy() { return 0; }

bad_base() { bad_base_counter ++; }

Wewill knowingly break the virtual destructor rule here, to see why
the rule exists.

~bad_base() { bad_base_counter --; }

};

PB161 Programming in C++ 28/33 March 31, 2020

class good_base

{

public:

virtual int good_dummy() { return 0; }

good_base() { good_base_counter ++; }

Notice the virtual.

virtual ~good_base() { good_base_counter --; }

};

Let’s add some innocent derived classes.

class bad_derived : public bad_base

{

public:

bad_derived() { bad_derived_counter ++; }

~bad_derived() { bad_derived_counter --; }

};

class good_derived : public good_base

{

public:

good_derived() { good_derived_counter ++; }

It is good practice to also add override to destructors of derived classes.
This will tell the compiler we expect the base class to have a virtual

destructor which we are extending. The compiler will emit an error if
the base class destructor is (through some unfortunate accident) not
marked as virtual.

~good_derived() override { good_derived_counter --; }

};

int main() /* demo */

{

For regular variables, everything works as expected: constructors and
destructors of all classes in the hierarchy are called.

{

bad_base bb;

assert(bad_base_counter == 1);

bad_derived bd;

assert(bad_base_counter == 2);

assert(bad_derived_counter == 1);

}

assert(bad_base_counter == 0);

assert(bad_derived_counter == 0);

Same thing with virtual destructors.

{

good_base gb;

assert(good_base_counter == 1);

good_derived gd;

assert(good_base_counter == 2);

assert(good_derived_counter == 1);

}

assert(good_base_counter == 0);

assert(good_derived_counter == 0);

However, problems start if an instance is destroyed through a pointer
whose static type disagrees with the dynamic type. This cannot hap-
pen with references (unless the destructor is called explicitly), but it is
entirely plausible with pointers, including smart pointers. Let’s first
demonstrate the case that works: good_derived.

using good_ptr = std::unique_ptr< good_base >;

Please make good note of the fact, that the static type of the pointer

refers to good_base, but the actual value stored in it has dynamic type
good_derived.

{

good_ptr gp = std::make_unique< good_derived >();

assert(good_base_counter == 1);

assert(good_derived_counter == 1);

}

Since the unique_ptrwent out of scope, the instance stored behind it
was destroyed. The counters should be both zero again.

assert(good_base_counter == 0);

assert(good_derived_counter == 0);

Let’s observe what happens with the bad_base and bad_derived combi-
nation.

using bad_ptr = std::unique_ptr< bad_base >;

{

bad_ptr bp = std::make_unique< bad_derived >();

assert(bad_base_counter == 1);

assert(bad_derived_counter == 1);

}

The pointer went out of scope. Since the destructor was called using
static dispatch, only the base class destructor was called. This is of
course very problematic, since resources were leaked and invariants
broken.

assert(bad_base_counter == 0);

assert(bad_derived_counter == 1);

Please note that some compilers (recent clang versions) will emit a
warning if this happens. Unfortunately, this is not the case with gcc

9.2 which we are using (and which is a rather recent compiler). It
is therefore unadvisable to rely on the compiler to catch this type of
problem. Stay vigilant.

}

Part 7.5: factory

As we have seen, subtype polymorphism allows us to define an inter-
face in terms of virtualmethods (that is, based on late dispatch) and
then create various implementations of this interface.
It is sometimes useful to create instances of multiple different derived
classes based on runtime inputs, but once they are created, to treat
them uniformly. The uniform treatment is made possible by subtype
polymorphism: if the entire interaction with these objects is done
through the shared interface, the instances are all, at the type level,
interchangeable with each other. The behaviour of those instances
will of course differ, depending on their dynamic type.

#include <memory>

#include <sstream>

When a system is designed this way, the entire program uses a sin-
gle static type to work with all instances from the given inheritance
hierarchy – the type of the base class. Let’s define such a base class.

class part

{

public:

virtual std::string description() const = 0;

virtual ~part() = default;

};

Let’s add a simple function which operates on generic parts. Working
with instances is easy, since they can be passed through a reference
to the base type. For instance the following function which formats a

PB161 Programming in C++ 29/33 March 31, 2020

single line for a bill of materials (bom).

std::string bom_line(const part &p, int count)

{

return std::to_string(count) + "x " + p.description();

}

However, creation of these instances poses a somewhat unique chal-
lenge in C++: memory management. In languages like Java or C#, we
can create the instance and return a reference to the caller, and the
garbage collector will ensure that the instance is correctly destroyed
when it is no longer used. We do not have this luxury in C++.
Of course, we could always do memory management by hand, like
it’s 1990. Fortunately, modern C++ provides smart pointers in the
standard library, making memory management much easier and safer.
Recall that a unique_ptr is an owning pointer: it holds onto an object
instance while it is in scope and destroys it afterwards. Unlike objects
stored in local variables, though, the ownership of the instance held
in a unique_ptr can be transferred out of the function (i.e. an instance
of unique_ptr can be legally returned, unlike a reference to a local vari-
able).
This will make it possible to define a factory: a function which con-
structs instances (parts) and returns them to the caller. Of course, to
actually define the function, we will need to define the derived classes
which it is supposed to create.

using part_ptr = std::unique_ptr< part >;

part_ptr factory(std::string);

In the programdesign outlined earlier, the derived classes change some
of the behaviours, or perhaps add datamembers (attributes) to the base
class, but apart from construction, they are entirely operated through
the interface defined by the base class.

class cog : public part

{

int teeth;

public:

cog(int teeth) : teeth(teeth) {}

std::string description() const

{

return std::string("cog with ") +

std::to_string(teeth) + " teeth";

}

};

class axle : public part

{

public:

std::string description() const

{

return "axle";

}

};

class screw : public part

{

int _thread, _length;

public:

screw(int t, int l) : _thread(t), _length(l) {}

std::string description() const

{

return std::to_string(_length) + "mm M" +

std::to_string(_thread) + " screw";

}

};

Now that we have defined the derived classes, we can finally define

the factory function.

part_ptr factory(std::string desc)

{

We will use std::istringstream (first described in 06/streams.cpp) to
extract a description of the instance that we want to create from a
string. The format will be simple: the type of the part, followed by its
parameters separated by spaces.

std::istringstream s(desc);

std::string type;

s >> type; /* extract the first word */

if (type == "cog")

{

int teeth;

s >> teeth;

return std::make_unique< cog >(teeth);

}

if (type == "axle")

return std::make_unique< axle >();

if (type == "screw")

{

int thread, length;

s >> thread >> length;

return std::make_unique< screw >(thread, length);

}

throw std::runtime_error("unexpected part description");

}

int main() /* demo */

{

Let’s first use the factory to make some instances. They will be held
by part_ptr (i.e. unique_ptrwith the static type part.

part_ptr ax = factory("axle"),

m7 = factory("screw 7 50"),

m3 = factory("screw 3 10"),

c8 = factory("cog 8"),

c9 = factory("cog 9");

From the point of view of the static type system, all the parts created
above are now the same. We can call the methods which were defined
in the interface, or we can pass them into functions which work with
parts.

assert(ax->description() == "axle");

assert(m7->description() == "50mm M7 screw");

assert(m3->description() == "10mm M3 screw");

assert(c8->description() == "cog with 8 teeth");

assert(c9->description() == "cog with 9 teeth");

Let’s try using the bom_line function which we have defined earlier.

assert(bom_line(*ax, 3) == "3x axle");

assert(bom_line(*m7, 20) == "20x 50mm M7 screw");

At the end of the scope, the objects are destroyed and all memory is
automatically freed.

}

Part 7.6: bom

Let’s revisit the idea of a bill of materials that made a brief appearance
in factory.cpp, but in a slightly more useful incarnation.

#include <string>

PB161 Programming in C++ 30/33 March 31, 2020

#include <memory>

Define the following class hierarchy: the base class, part, should have
a (pure) virtual method description that returns an std::string. It
should also keep an attribute of type std::string and provide a getter
for this attribute called part_no() (part number). Then add 2 derived
classes:

• resistor which takes the part number and an integral resistance
as its constructor argument and provides a description of the form
"resistor ?Ω"where ? is the provided resistance,

• capacitor which also takes a part number and an integral capaci-
tance and provides a description of the form "capacitor ?μF"where
? is again the provided value.

class part;

class resistor;

class capacitor;

We will also use owning pointers, so let us define a convenient type
alias for that:

using part_ptr = std::unique_ptr< part >;

That was the mechanical part. Now we will need to think a bit: we
want a class bomwhich will remember a list of parts, along with their
quantities and will own the part instances it holds. The interface:

• a method add, which accepts a part_ptr by value (it will take owner-
ship of the instance) and the quantity (integer)

• a method find which accepts an std::string and returns a const

reference to the part instance with the given part number,
• a method qty which returns the associated quantity, given a part

number.

class bom;

Part 7.7: circuit

In this exercise, we will look at calling virtual methods from within
the class, in an ‘inverted’ approach to inheritance. Most of the imple-
mentation will be part of the base class, in terms of a few (or in this
case one) protected virtualmethods.
We will implement a simple class hierarchy to represent a logical cir-
cuit: a bunch of components connected with wires. Each component
will have at most 2 inputs and a single output (all of which are boolean
values). Implement the following (non-virtual) methods:

• connectwhich takes an integer (0 or 1) and a reference to another
component and connects the output of the given component to the
input of this component

• readwith no arguments, which returns the current output of the
component (this will of course depend on the state of the input
components).

Both inputs start out unconnected. Unconnected inputs always read
out false. Behaviour is undefined if there is a loop in the circuit (but
see also loops.cpp).

class component;

The derived classes should be as follows:

• nand for which the output is the NAND logical function of the two
inputs,

• sourcewhich ignores both inputs and reads out true,
• delay which behaves as follows: first time read is called, it always

returns zero; subsequent read calls return a value that the input 0
had at the time of the previous call to read.

class nand;

class source;

class delay;

Part 7.8: prisoner

Another exercise, another class hierarchy. The abstract base class will
be called prisoner, and the implementations will be different strategies
in the well-known game of (iterated) prisoner’s dilemma.
The prisoner class should providemethod betraywhich takes a boolean
(the decision of the other player in the last round) and returns the
decision of the player for this round. In general, the betray method
should not be const, because strategies may want to remember past
decisions (though we will not implement a strategy like that in this
exercise).

class prisoner;

Implement an always-betray strategy in class traitor, the tit-for-tat
strategy in vengeful and an always-cooperate in benign.

class traitor;

class vengeful;

class benign;

Implement a simple strategy evaluator in function play. It takes two
prisoners and the number of rounds and returns a negative number if
the first one wins, 0 if the game is a tie and a positive number if the
second wins. The scoring matrix:

• neither player betrays 2 / 2
• a betrays, b does not: 3 / 0
• a does not betray, b does: 0 / 3
• both betray 1 / 1 */

int play(prisoner &a, prisoner &b, int rounds);

Part 7.9: bexpr

Boolean expressions with variables, represented as binary trees. In-
ternal nodes carry a logical operation on the values obtained from
children while leaf nodes carry variable references.

#include <map>

To evaluate an expression, we will need to supply values for each of
the variables that appears in the expression. Wewill identify variables
using integers, and the assignment of values will be done through
the type input defined below. It is undefined behaviour if a variable
appears in an expression but is not present in the provided input value.

using input = std::map< int, bool >;

Like earlier in expr.cpp, the base class will be called node, but this time
will only define a single method: eval, which accepts a single input

argument (as a const reference).

class node; /* ref: 6 lines */

Internal nodes are all of the same type, and their constructor takes an
unsigned integer, table, and two node references. Assuming bit zero is
the lowest-order bit, the node operates as follows:

• false false→ bit 0 of table
• false true→ bit 1 of table
• true false→ bit 2 of table
• true true→ bit 3 of table */

class operation; /* ref: 16 lines */

The leaf nodes carry a single integer (passed in through the construc-
tor) – the identifier of the variable they represent.

PB161 Programming in C++ 31/33 March 31, 2020

class variable; /* ref: 7 lines */

Part 7.10: sexpr

An s-expression is a tree in which each node has an arbitrary number
of children. To make things a little more interesting, our s-expression
nodes will own their children.

#include <memory>

The base class will be called node (again) and it will have single (virtual)
method: value, with no arguments and an int return value.

class node;

using node_ptr = std::unique_ptr< node >;

There will be two types of internal nodes: sum and product, and in this
case, they will compute the sum or the product of all their children,
regardless of their number. A sum with no children should evaluate
to 0 and a product with no children should evaluate to 1.
Both will have an additional method: add_child, which accepts (by
value) a single node_ptr and both should have default constructors. It
is okay to add an intermediate class to the hierarchy.

class sum;

class product;

Leaf nodes carry an integer constant, given to them via a constructor.

class constant;

Part 7.11: network

In this exercise, we will define a network of counters, where each
node has its own counter which starts at zero, and events which affect
the counters propagate in the network. Different node types react
differently to the events.
There are three basic eventswhich can propagate through thenetwork:
resetwill set the counter to 0, increment and decrement add and subtract
1, respectively.

enum class event { reset, increment, decrement };

The abstract base class, node, will define the polymorphic interface.
Methods:

• reactwith a single argument of type event,
• connect which will take a reference to another node instance: the

connection thus created starts in this and extends to the node given
in the argument,

• read, a constmethod that returns the current value of the counter.

Think carefully about which methods need to be virtual and which
don’t. The counter is signed and starts at 0. Each node can have an
arbitrary number of both outgoing and incoming connections.

class node;

Now for the node types. Each node type first applies the event to its
own counter, then propagates (or not) some event along all outgoing
connections. Implement the following node types:

• forward sends the same event it has received
• invert sends the opposite event
• gate resends the event if the new counter value is positive

class forward;

class invert;

class gate;

Part 7.12: filter

This exercise will be yet another take on a set of numbers. This time,
we will add a capability to filter the numbers on output. It will be
possible to change the filter applied to a given set at runtime.

#include <set>

#include <memory>

The base class for representing filters will contain a single pure virtual
method, accept. The method should be marked const.

class filter;

The set (which we will implement below) will own the filter instance
and hence will use a unique_ptr to hold it.

using filter_ptr = std::unique_ptr< filter >;

The set should have standardmethods: add and has, the latter of which
will respect the configured filter (i.e. items rejected by the filter will al-
ways test negative on has). The method set_filter should set the filter.
If no filter is set, all numbers should be accepted. Calling set_filter

with a nullptr argument should clear the filter.
Additionally, set should have begin and endmethods (both const) which
return very simple iterators that only provide dereference to an int

(value), pre-increment and inequality. It is a good idea to keep two
instances of std::set< int >::iterator in attributes (in addition to
a pointer to the output filter): you will need to know, in the pre-
increment operator, that you ran out of items when skipping numbers
which the filter rejected.

class set_iterator;

class set;

Finally, implement a filter that only accepts odd numbers.

class odd;

Part 7.13: geometry

We will go back to a bit of geometry, this time with circles and lines:
in this exercise, we will be interested in planar intersections. We will
consider two objects to intersect when they have at least one common
point. On the C++ side, we will use a bit of a trick with virtualmethod
overloading (in a slightly more general setting, the trick is known as
the visitor pattern).

#include <cmath>

First some definitions: the familiar point, but also a helper class slope
which is constructed from two points. Two instances of slope compare
equal if the slopes of the two lines passing through the respective point
pairs are the same.

using point = std::pair< double, double >;

bool close(double a, double b)

{

return std::fabs(a - b) < 1e-10;

}

struct slope : std::pair< double, double >

{

slope(point p, point q)

: point((q.first - p.first) / dist(p, q),

(q.second - p.second) / dist(p, q))

{}

bool operator==(const slope &o) const

PB161 Programming in C++ 32/33 March 31, 2020

{

auto [px, py] = *this;

auto [qx, qy] = o;

return (close(px, qx) && close(py, qy)) ||

(close(px, -qx) && close(py, -qy));

}

bool operator!=(const slope &o) const

{

return !(*this == o);

}

};

Wewill need to use forward declarations in this exercise, sincemethods
of the base class will refer to the derived types.

struct circle;

struct line;

These two helper functions are already defined in this file and may
come in useful (like the slope class above).

double dist(point, point);

double dist(const line &, point);

Now we can define the class object, which will have a virtualmethod
intersectswith two overloads: one that accepts a const reference to a
circle and another that accepts a const reference to a line.

class object;

Put definitions of the classes circle and line here. A circle is given by
a point and a radius (double), while a line is given by two points. NB.
Make the line attributes public and name them p and q to make the
dist helper function work.

struct circle; /* ref: 18 lines */

struct line; /* ref: 18 lines */

Definitions of the helper functions.

double dist(point p, point q)

{

auto [px, py] = p;

auto [qx, qy] = q;

return std::sqrt(std::pow(px - qx, 2) +

std::pow(py - qy, 2));

}

double dist(const line &l, point p)

{

auto [x2, y2] = l.q;

auto [x1, y1] = l.p;

auto [x0, y0] = p;

return std::fabs((y2 - y1) * x0 - (x2 - x1) * y0 +

x2 * y1 - y2 * x1) /

dist(l.p, l.q);

}

Part 7.14: Exercise Solutions
Sample solutions for the warm-up exercises follow.

7.14.1 bom (solution)

#include <memory>

#include <string>

#include <vector>

The base class. It remembers the part number and provides the re-

quired interface: description and part_no. Do not forget the virtual

destructor!

class part

{

std::string _part_no;

public:

part(std::string pn) : _part_no(pn) {}

virtual std::string description() const = 0;

std::string part_no() const { return _part_no; }

virtual ~part() = default;

};

The two derived classes, 80 % boilerplate.

class resistor : public part

{

int _resistance;

public:

resistor(std::string pn, int r)

: part(pn), _resistance(r)

{}

std::string description() const override

{

return std::string("resistor ") +

std::to_string(_resistance) + "Ω";

}

};

class capacitor : public part

{

int _capacitance;

public:

capacitor(std::string pn, int c)

: part(pn), _capacitance(c)

{}

std::string description() const override

{

return std::string("capacitor ") +

std::to_string(_capacitance) + "μF";

}

};

The smart pointer to hold and own instances of part.

using part_ptr = std::unique_ptr< part >;

The bom class itself holds the parts using the above pointer. It would
be possible to use std::map too (and also more efficient for longer part
lists). Here, we use an std::vector of pairs, where the pair holds the
part pointer and the quantity. When the item with the given order
number is not on the list, we throw an exception.

class bom

{

using item = std::pair< part_ptr, int >;

std::vector< item > _parts;

Find the item in the list: the common parts of find and qty.

const item &_find(std::string pn) const

{

for (const auto &part : _parts)

if (part.first->part_no() == pn)

return part;

throw std::runtime_error("part not found");

}

public:

We don’t bother with duplicates. Notice the std::move though – we

PB161 Programming in C++ 33/33 March 31, 2020

have to transfer the ownership of the part instance to the vector (via
the pair).

void add(part_ptr p, int c)

{

_parts.emplace_back(std::move(p), c);

}

const part &find(std::string pn) const

{

return *_find(pn).first;

}

int qty(std::string pn) const { return _find(pn).second; }

};

#include "bom.cpp"

7.14.2 circuit (solution)

The base class. We keep track of the inputs using raw pointers, since
we do not own them. Weuse a protected virtualmethod to implement
the ‘business logic’ that changes from class to class, while the outside
interface is defined entirely using standard (non-virtual) methods.

class component

{

component *left = nullptr,

*right = nullptr;

protected:

virtual bool eval(bool, bool) = 0;

public:

void connect(int n, component &c)

{

(n ? right : left) = &c;

}

bool read()

{

return eval(left ? left->read() : false,

right ? right->read() : false);

}

virtual ~component() = default;

};

The NAND gate and the source component are trivial enough.

class nand : public component

{

bool eval(bool x, bool y) override { return !(x && y); }

};

class source : public component

{

bool eval(bool, bool) override { return true; }

};

The delay component provides one bit of memory. Reading the com-
ponent will cause the value to be updated (read always calls eval in-
ternally). This class is also the reason why eval cannot be marked
const.

class delay : public component

{

bool _value = false;

bool eval(bool x, bool) override

{

bool rv = _value;

_value = x;

return rv;

}

};

#include "circuit.cpp"

