
 www.crcs.cz/rsa @CRoCS_MUNI

PV204 Security technologies

Rootkits, reverse engineering of binary applications

Petr Švenda svenda@fi.muni.cz @rngsec

Centre for Research on Cryptography and Security, Masaryk University

 www.crcs.cz/rsa @CRoCS_MUNI

What is planned for this lecture?

• Rootkits (and defences)

• Reverse engineering (of binary applications)

| PV204: Rootkits, RE 2

 www.crcs.cz/rsa @CRoCS_MUNI

K. Thompson – Reflections on Trusting Trust

• Subverted C compiler (Turing Award Lecture, 1983)

– Adds additional functionality for selected compiled programs

– E.g., login cmd: log password or allow user with specific name

• Inspection of login’s source code will not reveal any issues

• Adds malicious functionality of compiler into binary of compiler compiled with

already subverted compiler

– Inspection of source code of compiler will not reveal any problem

• How can we detect modified login binary?

– Expected hash, digital signatures, deterministic build…

– What if signature verification tool is also modified?

• W32/Induc-A infected compiler for Delphi (2009)

– Active at least a year before discovery
| PV204: Rootkits, RE 3

 www.crcs.cz/rsa @CRoCS_MUNI

ROOTKITS

| PV204: Rootkits, RE 4

 www.crcs.cz/rsa @CRoCS_MUNI

Rootkit definition

• Root-kit

– root user *nix systems

– kit set of tools to operate/execute commands

• Rootkit is piece or collection of software

– Designed to enable access where it would be otherwise denied

– Tries to hide(“cloak”) its presence in system

• Installed after obtaining privileged access

– Privileged escalation, credentials compromise, physical access…

• Rootkit != exploit (rootkit usually installed after exploit)

• Rootkit is usually accompanied with additional payload

– Payload does the actual (potentially malicious) work

| PV204: Rootkits, RE 5

 www.crcs.cz/rsa @CRoCS_MUNI

Protection rings

• Idea: introduce separate runtime levels

– Crash in level X causes issue only in levels >=X

– Direct support provided by CPU architectures (0/3)

• Instructions which can be executed only in given ring

• Ring 3: unprivileged user programs

• Ring 2/1: device drivers (currently sparsely used)

• Ring 0: kernel programs

• Performance penalty associated with ring switching

– In practice, only 3 and 0 are commonly used

• 0-3 Captures only rings/levels starting with OS

– Levels -1/-2/-3 introduced for layers below OS

| PV204: Rootkits, RE

S
v
e
n

,
L
ic

e
n
s
e
d

 u
n

d
e

r
C

C
 B

Y
-S

A
 3

.0
 v

ia
 C

o
m

m
o
n

s

6

 www.crcs.cz/rsa @CRoCS_MUNI

Rootkit

| PV204: Rootkits, RE

Ring -3

Ring -2 System Management Mode, BIOS

Firmware, hardware

Ring -1 Hypervisory-level (VT-x, AMD-V)

Ring 0 OS kernel, device drivers

Ring 1,2 Device drivers

Ring 3 User-mode

Ring “3+” Managed code (runtime, JVM)

SMM abuse, bootkits

FW/HW rootkits

Hypervisory-level rootkits

Kernel rootkits

User-mode rootkits

Managed code rootkits

Ring level

7

 www.crcs.cz/rsa @CRoCS_MUNI

Principal ways of detection of rootkits

1. Detection running inside system, same or higher level

– Flaws in rootkit cloaking, use of some side-channel leakage (of rootkit)

2. Detection running inside system, lower level

– Not controlled by rootkit, rootkit cannot cloak itself

3. Detection via (offline) image of system / memory

– Rootkit is not running => cannot cloak itself

| PV204: Rootkits, RE 8

 www.crcs.cz/rsa @CRoCS_MUNI

User-mode rootkits (Ring 3)

• Injects payload into other user applications

– Injection of modified dlls (user app will use different CreateFile)

– Modification of applications (modification of CreateFile)

• Interception of messages

– RegisterWindowMessage()

• Function hooking

– More generic hooks (SetWindowsHookEx()) – window manager

– User application-specific hooks (plugins, example browser hook)

• File-system filters

– Detect access to files by user application

| PV204: Rootkits, RE 11

 www.crcs.cz/rsa @CRoCS_MUNI

Managed code rootkits (MCR) (Ring 3)

• Ring 3 (level for runtime / VM)

• Targets runtime environments for interpreted code

– .NET VM, Java VM and Dalvik runtime…

• Large attack surface for MCR

– Attacking runtime class libraries

– Attacking JIT compiler

– Abusing runtime instrumentation features

– Extending language with malware API

– Object-oriented malware (inside OO runtime)

• E. Metula: Managed Code Rootkits (Syngress)

 | PV204: Rootkits, RE 12

 www.crcs.cz/rsa @CRoCS_MUNI

Kernel-mode rootkits (Ring 0)

• Runs with highest system privileges

– Usually device drivers and loadable modules

– Device drivers in MS Windows

– Loadable kernel modules in Linux

• Direct kernel object manipulation

– Data structures like list of processes…

– System Service Descriptor Table (SSDT) hook [Microsoft]

– System call table hook [Linux]

• Operating system may require mandatory drivers signing

– More difficult to insert malicious driver

– Still possible (compromised private keys: Stuxnet & Realtek’s keys)

| PV204: Rootkits, RE 13

 www.crcs.cz/rsa @CRoCS_MUNI

ROOTKITS BELOW OS LEVEL

| PV204: Rootkits, RE 14

 www.crcs.cz/rsa @CRoCS_MUNI

Hypervisory-level rootkits (Ring -1)

• Virtual-machine based rootkit (VMBR)

– Type II hypervisors (VM on ordinary OS host)

• Based on CPU hardware virtualization features

– Intel VT or AMD-V

• Rootkit hosts original system as virtual machine

– And intercepts all relevant hardware calls

• Examples: SubVirt, BluePill (AMD-V, Intel VT-x)

| PV204: Rootkits, RE 15

 www.crcs.cz/rsa @CRoCS_MUNI

| PV204: Rootkits, RE

King et al: SubVirt: Implementing malware with virtual machines

Hypervisory-level rootkits (Ring -1)

16

 www.crcs.cz/rsa @CRoCS_MUNI

Defense against hypervisory-level rootkits

• Run detection/prevention on lower level

• Detect by timing differences of operations

– System is emulated => side-channel info (timings…)

• Read and analyze HDD physical memory

– After physical removal from (infected) computer

• Boot from safe medium (CD, USB, network boot)

– inspect before VMBR loads

– But VMBR can emulate shutdown / reboot

• Physical power unplug recommended

• Trusted boot (based on TPM, lecture 07)

| PV204: Rootkits, RE 17

 www.crcs.cz/rsa @CRoCS_MUNI

System Management Mode abuse (R.-2)

• System Management Mode (SMM)

– x86 feature since Intel 386, all normal execution is suspended

– Used for power management, memory errors, hardware-assisted debugger…

– High-privilege mode (Ring -2)

• SMM entered via system management interrupt (SMI)

– System cannot override or disable the SMI

• Target for rootkits

– Modify memory, loaders, MBR…

| PV204: Rootkits, RE 18

 www.crcs.cz/rsa @CRoCS_MUNI

SMM Example: SOUFFLETROUGH implant

• https://en.wikipedia.org/wiki/NSA_ANT_catalog

• http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-

hardware-firmware/

| PV204: Rootkits, RE 19

https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
https://en.wikipedia.org/wiki/NSA_ANT_catalog
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/
http://leaksource.info/2013/12/30/nsas-ant-division-catalog-of-exploits-for-nearly-every-major-software-hardware-firmware/

 www.crcs.cz/rsa @CRoCS_MUNI

Bootkit rootkits (Ring -2)

• Bootkit = Rootkit + Boot capability

• Infect startup code

– Master Boot Record (MBR)

– Volume Boot Record (VBR)

– Boot sector, BIOS routines…

• “Evil maid” attack

– Can be used to attack full disk encryption

– Assumption: user will left device physically unattended

– Legitimate bootloader replaced (+ key capture)

| PV204: Rootkits, RE 20

 www.crcs.cz/rsa @CRoCS_MUNI

Full-disk encryption compromise

1. Full-disk encryption used to encrypt all data

2. Laptop powered down to prevent Coldboot or FireWire-based attacks (read

key from memory)

3. Laptop left unattended (“Evil maid” enters)

– USB used to read part of first sector of disk

– If TrueCrypt/Bitlocker loader, then insert malicious bootloader

4. User is prompted with forged bootloader

– Password is stored

• How to transfer saved password / data to attacker?

– Second visit of Evil maid

| PV204: Rootkits, RE

http://theinvisiblethings.blogspot.co.uk/2009/10/evil-maid-goes-after-truecrypt.html

21

 www.crcs.cz/rsa @CRoCS_MUNI

Bootkit defenses

• Prevention of physical access

– Problematic for portable devices

• Trusted boot (static vs. dynamic root of trust)

– Refer to Lecture 07 (Trusted boot)

– But bootloader must authenticate itself to user

• E.g., present image encrypted by key stored in TPM

• Before user enters its password

• Defense by external verification of bootloader integrity

– verify relevant unencrypted parts of disk (external USB)

| PV204: Rootkits, RE 22

 www.crcs.cz/rsa @CRoCS_MUNI

| PV204: Rootkits, RE
http://technet.microsoft.com/en-US/windows/dn168167.aspx 23

 www.crcs.cz/rsa @CRoCS_MUNI

Firmware / hardware rootkits (Ring -3)

• Persistent malware image in hardware

– Network card, router, hard drive…

• Can run even after removal of device from target computer

– Once device is powered again

| PV204: Rootkits, RE 24

 www.crcs.cz/rsa @CRoCS_MUNI

LEGITIMATE USES

| PV204: Rootkits, RE 26

 www.crcs.cz/rsa @CRoCS_MUNI

Legitimate uses of rootkits

• To whom is legitimacy measured?

• Hide true nature of network “honeypots”

• Protection of AV software against termination of inspected malware

• Anti-theft protections

• Digital rights management?

| PV204: Rootkits, RE 27

 www.crcs.cz/rsa @CRoCS_MUNI

Sony BMG Extended copy protection

• Rootkit developed for (and approved) by Sony

– Intended to limit possibility for disk copy

– Users were not notified (silently installed after CD insert)

– Digital rights management for Sony

– To hide itself, any file starting with sys was hidden

• Detected by M. Russinovich’s RootkitRevealer

– After public disclose, other malware started to hide itself by naming its files as sys (user

was already “infected”)

• Sony released patch for removal (web-based uninstaller)

– Even more serious flaw introduced (any visited page can install and run program)

– Resulted in class-action lawsuit against Sony BMG

| PV204: Rootkits, RE 28

 www.crcs.cz/rsa @CRoCS_MUNI

REVERSE ENGINEERING

| PV204: Rootkits, RE 29

 www.crcs.cz/rsa @CRoCS_MUNI

Reverse engineering

• A process of knowledge or design extraction from final product

(usually man-made)

• Engineering:

– Mental model blueprints/source-code product/binary

• Reverse engineering (back engineering):

– From product back to knowledge or design

– Blueprints/source-code might be also recreated

• Not necessary/possible to perfectly recreate design

– Engineering might be loose transformation

– Back engineering might not be perfect/complete

| PV204: Rootkits, RE 30

 www.crcs.cz/rsa @CRoCS_MUNI

Reverse engineering is general process

We will focus on software binaries only

| PV204: Rootkits, RE 31

 www.crcs.cz/rsa @CRoCS_MUNI

Reverse engineering - legal issues

• Reverse engineering is legal when

– Own binary without documentation

– Anti-virus research, Forensics…

– Interoperability, Fair use, education

• Problem with some copyright laws

– not only selling circumvented content, but also attempt to circumvent is illegal (USA’s

DMCA)

• EFF Coders’ Rights Project Reverse Engineering FAQ

– Legal doctrines, Risky aspects, Selected decisions

– https://www.eff.org/issues/coders/reverse-engineering-faq

| PV204: Rootkits, RE 32

https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq
https://www.eff.org/issues/coders/reverse-engineering-faq

 www.crcs.cz/rsa @CRoCS_MUNI

How to start reverse engineering

1. Learn basic concepts (compilers, memory, OS…)

2. See how source-code translates into binary

3. Try tools on simple examples (own code, tuts)

4. Utilize other knowledge (communication logs…)

5. Have fun! 

| PV204: Rootkits, RE 33

 www.crcs.cz/rsa @CRoCS_MUNI

Basics

• Debugger vs. debugger with binary modification

capabilities

– E.g., Visual Studio vs. OllyDbg

• Disassembler vs. debugger

– Static vs. dynamic code analysis

• Disassembler vs. decompiler

– Native code assembler source code

• Native code vs. bytecode

– Different instruction set, different execution model

• Registry-based vs. stack-based execution

 | PV204: Rootkits, RE 34

 www.crcs.cz/rsa @CRoCS_MUNI

Mixed source code/assembler in IDE

• Most current IDE supports mixed source code/assembler instructions mode

(Visual Studio, QT Creator...)

– Mode is usually available only during a debugging

– Write simple code (e.g., if then else condition), insert breakpoint and start debugging

• Switch to mixed mode

– Visual Studio RClick Go to disassembly

– QTCreator Debug Operate by Instruction

• Easy way to learn how particular source code is translated into assembler

code

| PV204: Rootkits, RE 36

 www.crcs.cz/rsa @CRoCS_MUNI

| PV204: Rootkits, RE

#include <stdio.h>

int main() {

 FILE* file = NULL;

 file = fopen("values.txt", "r");

 if (file) {

 int value1 = 0;

 int value2 = 0;

 fscanf(file, "%d", &value1);

 fscanf(file, "%d", &value2);

 value1 = value1 + value2;

 printf("Result: %d", value1);

 }

 fclose(file);

}

Original C source code

 Dump of assembler code for function main:

 2 int main() {

0x00401344 <+0>: push %ebp

0x00401345 <+1>: mov %esp,%ebp

0x00401347 <+3>: and $0xfffffff0,%esp

0x0040134a <+6>: sub $0x20,%esp

0x0040134d <+9>: call 0x401a20 <__main>

 3 FILE* file = NULL;

0x00401352 <+14>: movl $0x0,0x1c(%esp)

 4 file = fopen("values.txt", "r");

0x0040135a <+22>: movl $0x402030,0x4(%esp)

0x00401362 <+30>: movl $0x402032,(%esp)

0x00401369 <+37>: call 0x401c90 <fopen>

0x0040136e <+42>: mov %eax,0x1c(%esp)

 ...

 17 }

0x004013f5 <+177>: leave

0x004013f6 <+178>: ret

 End of assembler dump. 37

 www.crcs.cz/rsa @CRoCS_MUNI

Most common instructions/structures

• Most common ASM instructions

– Load/Store from to registers: MOV, LEA

– Arithmetic: ADD, INC…

– Relational: CMP, TEST

– Jumps: JMP, J*

– Functions: CALL, RET

• Example of typical structures (C ASM)

– Conditional jump, for loop, function call…

– Familiarize via mixed source code/assembler in IDE

– Be aware of debug/release differences

| PV204: Rootkits, RE 38

 www.crcs.cz/rsa @CRoCS_MUNI

Compilation to bytecode (Java, C#)

• Source code compiled into intermediate bytecode

– Java bytecode, .NET CLI ...

• Intermediate code interpreted by virtual machine

• Just-in-time compilation

– Intermediate code is compiled by VM into native code

– Improve performance significantly

– Relevant for dynamic analysis, not for static analysis

• Usually easier to understand then assembler code

| PV204: Rootkits, RE 42

 www.crcs.cz/rsa @CRoCS_MUNI

REGISTRY VS. STACK-BASED

EXECUTION

| PV204: Rootkits, RE 47

 www.crcs.cz/rsa @CRoCS_MUNI

Registry-based execution

1. Values loaded (mov) from RAM to CPU registers

2. CPU operation (add, inc, test…) is executed

3. Resulting value is stored back (mov) to RAM

• Name of the registers

– EAX 32bit, AX 16bit, AH/AL 8bit

– EIP ... next address to execute (instruction pointer)

– EBX ... usually loop counter

• Registers

– Z – zero flag, C – carry flag, S – sign flag…

| PV204: Rootkits, RE 48

 www.crcs.cz/rsa @CRoCS_MUNI

Add two numbers from file (HDD)

1. Read values from HDD into RAM memory
 fscanf(file, "%d", &value);

2. Move value from RAM memory to CPU registry
 MOV 0x48(%esp),%eax

 MOV 0x44(%esp),%edx

3. Execute CPU instruction (e.g., ADD)
 ADD %edx,%eax

4. Transfer result from CPU register to RAM memory
 MOV %eax, 0x48(%esp)

5. Save result from RAM memory to file
 fprintf(file, "%d", value);

| PV204: Rootkits, RE

out.txt

"30"

10

20

30

30

20

in.txt

"10 20"

10

v
a
l
u
e

=

v
a
l
u
e

+

v
a
l
u
e
2
;

49

 www.crcs.cz/rsa @CRoCS_MUNI

Stack-based execution

• Bytecode contains sequence of operations

• Bytecode contains constants

• All intermediate values stored on stack

• Interpret:

1. Reads next operation from bytecode

2. Pop operand(s) for next operation from top of stack

3. Executes operation

4. Push result of operation on top of stack

• No registers are used

– all operands for current operation at the top of the stack

| PV204: Rootkits, RE 50

 www.crcs.cz/rsa @CRoCS_MUNI

Example: JavaCard bytecode

| PV204: Rootkits, RE

.method Encrypt(Ljavacard/framework/APDU;)V 129 {
 .stack 6;
 .locals 3;
 .descriptor Ljavacard/framework/APDU; 0.10;
L0: aload_1;
 invokevirtual 30;
 astore_2;
 aload_1;
 invokevirtual 42;
 sstore_3;
 sload_3;
 bspush 8;
 srem;
 ifeq L2;
L1: sspush 26384;
 invokestatic 41;
 goto L2;
L2: getfield_a_this 1;
 aload_2;
 sconst_5;
 sload_3;
 getfield_a_this 10;
 sconst_0;
 invokevirtual 43;
 pop;
 getfield_a_this 10;
 sconst_0;
 aload_2;
 sconst_5;
 sload_3;
 invokestatic 44;
 pop;
 aload_1;
 sconst_5;
 sload_3;
 invokevirtual 45;
 return;
}

Resulting JavaCard bytecode

// ENCRYPT INCOMING BUFFER

 void Encrypt(APDU apdu) {

 byte[] apdubuf = apdu.getBuffer();

 short dataLen = apdu.setIncomingAndReceive();

 short i;

 // CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites)

 if ((dataLen % 8) != 0)

 ISOException.throwIt(SW_CIPHER_DATA_LENGTH_BAD);

 // ENCRYPT INCOMING BUFFER

 m_encryptCipher.doFinal(apdubuf, ISO7816.OFFSET_CDATA, dataLen,

 m_ramArray, (short) 0);

 // COPY ENCRYPTED DATA INTO OUTGOING BUFFER

 Util.arrayCopyNonAtomic(m_ramArray, (short) 0, apdubuf,

 ISO7816.OFFSET_CDATA, dataLen);

 // SEND OUTGOING BUFFER

 apdu.setOutgoingAndSend(ISO7816.OFFSET_CDATA, dataLen);

 }

Original JavaCard source code

51

 www.crcs.cz/rsa @CRoCS_MUNI

DISASSEMBLING

Recovering information from binary executables

| PV204: Rootkits, RE 52

 www.crcs.cz/rsa @CRoCS_MUNI

Disassembling of native binaries

• Reversing process of compilation

– Back from native code to ASM

• Compilation/assembly is loose process:

– Variable/function names

– Unused structures

– Performance optimization applied during compilation

• Wide range of native platforms

– Differences in support and performance of disassemblers

• Bytecode is already on the level of “disassembled” binaries (usually

easier to understand)

| PV204: Rootkits, RE 53

 www.crcs.cz/rsa @CRoCS_MUNI

Structured code vs. sequence of executed ops

1. Structured code contains code for all branches

– runnable binary/bytecode

• Information loss in compiled binary

– Stripped metadata and debugging symbols

– Compiler optimizations

2. Sequence of executed instructions only from the branches taken

– E.g., power analysis of smart card with recognized operations

– If loop was executed, then only linear sequence of instructions is observed

corresponding to the number of loop iterations

| PV204: Rootkits, RE 54

 www.crcs.cz/rsa @CRoCS_MUNI

Structured code vs. sequence of executed ops

| PV204: Rootkits, RE

(source code)

m_ram1[0] = (byte) (m_ram1[0] % 1);

(bytecode)

getfield_a_this 0;

sconst_0;

baload;

sconst_1;

srem;

bastore;

(power trace)

compiler oscilloscope

55

Bytecode reconstruction (partial bytecode)

…; sconst_???; baload; sconst_???; srem; bastore;…

 www.crcs.cz/rsa @CRoCS_MUNI

Tool: OllyDbg

| PV204: Rootkits, RE

• Free disassembler and binary debugger

– Works with Windows 32b binaries only

– OllyDbg 64b version in development (but last update in 2014 )

• Easy to start with, many tutorials

• Designed to make changes in binary easy

– Change of jumps/data (valid PE is recreated)

• http://www.ollydbg.de/

56

http://www.ollydbg.de/

 www.crcs.cz/rsa @CRoCS_MUNI

Tool: IDA Pro

• Interactive Disassembler is legendary full-fledged disassembler with

ability to disassemble many different platforms

• Free version available for non-commercial uses

– http://www.hex-rays.com/idapro/idadownfreeware.htm

• Free version disassemble only Windows binaries

• Very nice visualization and debugger feature (similar as OllyDbg)

| PV204: Rootkits, RE 57

http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.hex-rays.com/idapro/idadownfreeware.htm

 www.crcs.cz/rsa @CRoCS_MUNI

Tool: Online disassembler (ODA)

• https://www.onlinedisassembler.com/odaweb/

| PV204: Rootkits, RE 58

https://www.onlinedisassembler.com/odaweb/

 www.crcs.cz/rsa @CRoCS_MUNI

Tool: Hopper diassembler and debugger

• Linux and OS X reverse engineering tool

– Older version supported Windows, but not anymore

• http://www.hopperapp.com

• Additional support for Objective-C

| PV204: Rootkits, RE 59

http://www.hopperapp.com/

 www.crcs.cz/rsa @CRoCS_MUNI

Radare

• https://www.radare.org/r/

• Multiplatform

• Very good support for multiple

file formats and platforms

• (Unfair ) comparison with

other tools

– https://www.radare.org/r/cmp.html

60 | PV204: Rootkits, RE

https://www.radare.org/r/

 www.crcs.cz/rsa @CRoCS_MUNI

• Graph representation of control flow

• Separated functions/blocks

– connection by jump instructions

Control flow graph

| PV204: Rootkits, RE 61

 www.crcs.cz/rsa @CRoCS_MUNI

Decompilation

• Native code decompilation

– Decompiler produces source code from binary/ASM/bytecode code

– Decompiler needs to do disassembling first and then try to create code that will in turn

produce binary code you have at the beginning

– Resulting code will NOT contain information removed during compilation (comments,

function names, formatting...)

• Bytecode decompilation

– usually much easier (more information preserved)

– Mapping between source code and bytecode is less ambiguous

– Compilation of decompiled bytecode produces similar bytecode

| PV204: Rootkits, RE 62

 www.crcs.cz/rsa @CRoCS_MUNI

Decompiler tools

• C/C++

– IDA

– REC Studio 4.0, http://www.backerstreet.com/rec/rec.htm

– Retargetable Decompiler, https://retdec.com/

– Ghidra – diassembler by NSA https://github.com/NationalSecurityAgency/ghidra

• Java bytecode

– DJ Java Decompiler, http://neshkov.com/dj.html

– Java Decompiler, http://jd.benow.ca/

• .Net bytecode

– dotPeek, https://www.jetbrains.com/decompiler/

– ILSpy, http://ilspy.net/

 | PV204: Rootkits, RE 63

http://www.backerstreet.com/rec/rec.htm
https://retdec.com/
https://github.com/NationalSecurityAgency/ghidra
http://neshkov.com/dj.html
http://jd.benow.ca/
https://www.jetbrains.com/decompiler/
http://ilspy.net/

 www.crcs.cz/rsa @CRoCS_MUNI

Summary

• Several levels where rootkit can be placed (CPU rings)

• Rootkits cloaks itself and run malicious functionality

– Detection on higher/same level difficult (but possible if cloaking is not perfect)

– Try to detect on lower level (root is not “running”)

– Trusted boot (TPMs…) attempts to prevent/detect rootkit execution

• Reverse engineering of binaries

– Compilation is lossy process (debug symbols, optimizations…)

– Different platforms have different binaries (registry/stack-based execution,

instructions, function calling conventions…)

– Disassembling: binary -> assembler

– Decompilation: assembler -> source code
65 | PV204: Rootkits, RE

