
IA010: Principles of Programming Languages

Introduction

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz


Warm-up: A Quiz
What does this program do?

++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+++++++

..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Prints “HelloWorld!”

Brainfuck (1993)
▸ Turing-complete programming language
▸ tape containing numbers (inc/dec), a data pointer (l/r),

input/output, conditional jump
▸ compiler of size 100 bytes known to exist



Warm-up: A Quiz
What does this program do?

++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+++++++

..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Prints “HelloWorld!”

Brainfuck (1993)
▸ Turing-complete programming language
▸ tape containing numbers (inc/dec), a data pointer (l/r),

input/output, conditional jump
▸ compiler of size 100 bytes known to exist



Warm-up: A Quiz
What does this program do?

++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+.+++++++

..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.>.

Prints “HelloWorld!”

Brainfuck (1993)
▸ Turing-complete programming language
▸ tape containing numbers (inc/dec), a data pointer (l/r),

input/output, conditional jump
▸ compiler of size 100 bytes known to exist



Before high-level programming languages …



Now …

C
C++
Java
C#
Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#
Scheme
…

Scala
Rust
Go
Swift

A zoo of programming languages

Can we somehow categorise them?

How do we choose one?



Now …

C
C++
Java
C#
Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#
Scheme
…

Scala
Rust
Go
Swift

A zoo of programming languages

Can we somehow categorise them?

How do we choose one?



Now …

C
C++
Java
C#
Ada

Python
PHP
JavaScript
VisualBasic
Perl

Haskell
OCaml
F#
Scheme
…

Scala
Rust
Go
Swift

A zoo of programming languages

Can we somehow categorise them?

How do we choose one?



Profanity is the one language all programmers know best.
Anon.



Language popularity
TIOBE index, January 2017, www.tiobe.com

www.tiobe.com


Language popularity



Desirable language features

▸ simplicity
▸ orthogonality
▸ clear (and defined)

semantics
▸ ease of use
▸ easy to learn
▸ clean and readable syntax
▸ expressive power
▸ support for many paradigms

and coding styles
▸ strong safety guarantees
▸ produces fast code
▸ compilation speed

▸ reduced memory usage
▸ good library and tool chain

support
▸ standardisation and

documentation
▸ interoperability with other

languages
▸ hardware and system

independence
▸ support for hardware and

system programming
▸ usability by

non-programmers
▸ …



Desirable language features

▸ simplicity
▸ orthogonality
▸ clear (and defined)

semantics
▸ ease of use
▸ easy to learn
▸ clean and readable syntax
▸ expressive power
▸ support for many paradigms

and coding styles
▸ strong safety guarantees
▸ produces fast code
▸ compilation speed

▸ reduced memory usage
▸ good library and tool chain

support
▸ standardisation and

documentation
▸ interoperability with other

languages
▸ hardware and system

independence
▸ support for hardware and

system programming
▸ usability by

non-programmers
▸ …



Kinds of software

▸ business applications
▸ office software, graphics software
▸ server software
▸ video games
▸ number crunching
▸ phone apps
▸ control software for embedded devices
▸ scripts, utilities



Kinds of software
▸ business applications
▸ office software, graphics software
▸ server software
▸ video games
▸ number crunching
▸ phone apps
▸ control software for embedded devices
▸ scripts, utilities



Programming paradigms

▸ procedural: program is structured as a collection of
procedures/functions

▸ imperative: list of commands
▸ functional: expressions that compute a value
▸ declarative: describe what you want to compute, not how
▸ object-oriented: objects communicating via messages
▸ data-oriented: layout of your data in memory
▸ reactive: network of components that react to events



Programming paradigms
▸ procedural: program is structured as a collection of

procedures/functions
▸ imperative: list of commands
▸ functional: expressions that compute a value
▸ declarative: describe what you want to compute, not how
▸ object-oriented: objects communicating via messages
▸ data-oriented: layout of your data in memory
▸ reactive: network of components that react to events



Which language/paradigm/coding style is the best?

Choose the right tools for the job!

⇒ the more tools available, the better
⇒ need to be familiar with many styles and paradigms

Multi-paradigm languages

The more paradigms your language support, the more tools you have
in your toolbox.



Which language/paradigm/coding style is the best?
Choose the right tools for the job!

⇒ the more tools available, the better
⇒ need to be familiar with many styles and paradigms

Multi-paradigm languages

The more paradigms your language support, the more tools you have
in your toolbox.



Which language/paradigm/coding style is the best?
Choose the right tools for the job!

⇒ the more tools available, the better

⇒ need to be familiar with many styles and paradigms

Multi-paradigm languages

The more paradigms your language support, the more tools you have
in your toolbox.



Which language/paradigm/coding style is the best?
Choose the right tools for the job!

⇒ the more tools available, the better
⇒ need to be familiar with many styles and paradigms

Multi-paradigm languages

The more paradigms your language support, the more tools you have
in your toolbox.



Which language/paradigm/coding style is the best?
Choose the right tools for the job!

⇒ the more tools available, the better
⇒ need to be familiar with many styles and paradigms

Multi-paradigm languages

The more paradigms your language support, the more tools you have
in your toolbox.



State of the art
▸ functional programming, dependent types: Idris
▸ linear types, borrow checker: Rust
▸ imperative programming, error handling: Zig
▸ imperative programming, design by contract: Dafny,Whiley
▸ module system: SML,Ocaml
▸ declarative programming: Mercury
▸ object-oriented programming: Scala
▸ concurrency: Go, Pony

(list somewhat biased and certainly incomplete)



Why study programming languages and paradigms?
The study of language features and programming styles helps you to
▸ choose a language most appropriate for a given task
▸ think about problems in new ways
▸ learn new ways to express your ideas and structure your code

(⇒more tools in your toolbox)
▸ read other peoples code
▸ learn new languages faster (you only need to learn a new syntax)
▸ understand the design/implementation decisions and limitations

of a given language, so you can use it better:
▸ You can choose between alternative ways of expressing things.
▸ You understand more obscure features.
▸ You can simulate features not available in this particular

language.



Aspects of programming languages
Syntax the structure of programs.

Describes how the various constructs (statements, expressions,…) can
be combined into well-formed programs.

PA008 Compiler Construction, PA037 Compiler Project,
IB005/IA006 Formal Languages

Semantics the meaning of programs.

Tells us what behaviour we can expect from a program.

IA011 Programming Language Semantics, IA014 Advanced Functional Programming

Pragmatics the use of programming languages.

In which way is the language intended to be used in practice?
What are the various language constructions good for?

this course



Aspects of programming languages
Syntax the structure of programs.

Describes how the various constructs (statements, expressions,…) can
be combined into well-formed programs.
PA008 Compiler Construction, PA037 Compiler Project,
IB005/IA006 Formal Languages

Semantics the meaning of programs.

Tells us what behaviour we can expect from a program.
IA011 Programming Language Semantics, IA014 Advanced Functional Programming

Pragmatics the use of programming languages.

In which way is the language intended to be used in practice?
What are the various language constructions good for?
this course



Course organisation
Lectures
▸ Wednesday, 16:00, A318
▸ language: English
▸ slides, lecture notes, and source code can be found in IS
▸ video recordings will also be made available there

Examination
▸ final written exam, in English
▸ k and z completion possible

Prerequisites
▸ no formal requirements
▸ knowledge of at least one programming language
▸ some basic knowledge of Haskell helpful
▸ the more languages you know the better



Study materials
Books (only somewhat relevant)
▸ P. V. Roy, S. Haridi,Concepts, Techniques, and Models of

Computer Programming, 1st ed.,MIT Press, 2004.
▸ R.W. Sebesta,Concepts of Programming Languages, 10th ed.,

Addison-Wesley, 2012.
▸ Programming language pragmatics, (Ed. M. L. Scott) 3rd ed.

Oxford, Elsevier Science, 2009.

Additional resources
▸ Crafting Interpreters, www.craftinginterpreters.com

www.craftinginterpreters.com


Topics covered
▸ a brief history of programming languages
▸ expressions and functions
▸ types, type checking, type inference
▸ state and side-effects
▸ modules
▸ control-flow
▸ declarative programming
▸ object-oriented programming
▸ concurrency


