IA010: Principles of Programming Languages Constraints

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Declarative programming

Describe **what** you want to compute, not **how** (no side-effects, no state)

Advantages

- easier to reason about
- write separately and compose

Logic programming

write set of constraints and search for solution

Single-assignment variables

```
\langle expr \rangle ::= \dots | let \langle id \rangle ; \langle expr \rangle
```

```
let x;
let y;
x := 1; // ok
x := 2; // error
y := x+1;
let add(x,y,z) {
   z := x+y;
};
let w
```

};
let u;
add(1,2,u);

```
let reverse(lst, ret) {
    let iter(lst, acc, ret) {
        case lst
        [ [] => ret := acc
        [ [x|xs] => iter(xs, [x|acc], ret)
    };
    iter(lst, [], ret)
};
```

Unification

 $\langle expr \rangle ::= \dots | \langle expr \rangle :=: \langle expr \rangle$

1	:=:	Х		x := 1
х	:=:	у		identifies x and y
[>	,2]	:=:	[1,y]	x := 1 and y := 2

Unification algorithm

solve u :=: v

- If u is an uninitialised variable, set it to v.
- If v is an uninitialised variable, set it to u.
- If u = m and v = n are numbers, check that m = n.
- If $u = c(s_0, \ldots, s_{m-1})$ and $v = d(t_0, \ldots, t_{n-1})$ are constructors, check that c = d, m = n, and $s_i :=: t_i$, for all *i*.
- If $u = [l_0 = s_0, \dots, l_{m-1} = s_{m-1}]$ and $v = [k_0 = t_0, \dots, k_{n-1} = t_{n-1}]$ are records, find bijection $\varphi : m \to n$ such that $l_i = k_{\varphi(i)}$ and $s_i :=: t_{\varphi(i)}$, for all *i*.
- In all other cases, fail.

(In particular, we cannot unify function values.)

Unification algorithm

solve u :=: v

- If u is an uninitialised variable, set it to v.
- If v is an uninitialised variable, set it to u.
- If u = m and v = n are numbers, check that m = n.
- If $u = c(s_0, \ldots, s_{m-1})$ and $v = d(t_0, \ldots, t_{n-1})$ are constructors, check that c = d, m = n, and $s_i :=: t_i$, for all *i*.
- If $u = [l_0 = s_0, \dots, l_{m-1} = s_{m-1}]$ and $v = [k_0 = t_0, \dots, k_{n-1} = t_{n-1}]$ are records, find bijection $\varphi : m \to n$ such that $l_i = k_{\varphi(i)}$ and $s_i :=: t_{\varphi(i)}$, for all *i*.
- In all other cases, fail.

(In particular, we cannot unify function values.)

Notes

- two kinds of uninitialised values: unknown value, equal to other variable
- need to prevent infinite loops

Backtracking

```
\langle expr \rangle ::= \dots | choose| \langle expr \rangle \dots | \langle expr \rangle | fail
```

```
let is_one_or_two(x) {
    choose
    | x := 1
    | x := 2
};
is_one_or_two(1); // ok
```

```
is_one_or_two(3); // fail
```

Primitive operations

checkpoint k

• stores the current continuation and machine state

rewind

- fetches the continuation associated with the last checkpoint,
- restores the machine state to its previous state (deleting the last checkpoint),
- and calls the fetched continuation.

Primitive operations

checkpoint k

• stores the current continuation and machine state

rewind

- fetches the continuation associated with the last checkpoint,
- restores the machine state to its previous state (deleting the last checkpoint),
- and calls the fetched continuation.

```
choose | e_1 \implies e_1

choose | e_1 | e_2 \dots | e_n \implies letcc k \{

checkpoint

fun () {

k(choose | e_2 \dots | e_n)

};

e_1

}

fail \implies rewind
```

Implementation

- store stack of checkpoints
- each checkpoint contains: continuation, list of modified variables
- checkpoint k puts k on the stack
- when we set a variable x, we add x to the top list
- rewind pops the stack, unsets all variables in the top list, and calls the stored continuation

Example

```
edge(a,b).
edge(b,c).
trans(X,Y) := edge(X,Y).
trans(X,Y) := edge(X,Z), trans(Z,Y).
let edge(x,y) {
  choose
  | { x := a; y := b; }
  | { x := b; y := c; }
}
let trans(x,y) {
  choose
  | edge(x,y)
  | { let z; edge(x,z); trans(z,y); }
}
```