IA010: Principles of Programming Languages Constraints

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Declarative programming

Describe what you want to compute, not how (no side-effects, no state)

Advantages

- easier to reason about
- write separately and compose

Logic programming
write set of constraints and search for solution

Single-assignment variables

$$
\langle\operatorname{expr}\rangle::=\ldots \mid \operatorname{let}\langle i d\rangle ;\langle\operatorname{expr}\rangle
$$

```
let x;
let y;
x := 1;
x := 1; // ok
x := 2; // error
y := x+1;
```

let $\operatorname{add}(x, y, z)$ \{
$z:=x+y ;$
\};
let u;
$\operatorname{add}(1,2, u)$;

```
let reverse(lst, ret) {
    let iter(lst, acc, ret) {
        case lst
            | [] => ret := acc
            | [x|xs] => iter(xs, [x|acc], ret)
    };
    iter(lst, [], ret)
};
```


Unification

$$
\begin{array}{ll}
\langle\operatorname{expr}\rangle::=\ldots \mid & \langle\operatorname{expr}\rangle:=:\langle\operatorname{expr}\rangle \\
& \\
1:=: x & x:=1 \\
x:=: y & \text { identifies } x \text { and } y \\
{[x, 2]:=:[1, y]} & x:=1 \text { and } y:=2
\end{array}
$$

Unification algorithm

solve $u:=: v$

- If u is an uninitialised variable, set it to v.
- If v is an uninitialised variable, set it to u.
- If $u=m$ and $v=n$ are numbers, check that $m=n$.
- If $u=c\left(s_{0}, \ldots, s_{m-1}\right)$ and $v=d\left(t_{0}, \ldots, t_{n-1}\right)$ are constructors, check that $c=d, m=n$, and $s_{i}:=: t_{i}$, for all i.
- If $u=\left[l_{0}=s_{0}, \ldots, l_{m-1}=s_{m-1}\right]$ and $v=\left[k_{0}=t_{0}, \ldots, k_{n-1}=t_{n-1}\right]$ are records, find bijection $\varphi: m \rightarrow n$ such that $l_{i}=k_{\varphi(i)}$ and $s_{i}:=: t_{\varphi(i)}$, for all i.
- In all other cases, fail.
(In particular, we cannot unify function values.)

Unification algorithm

solve $u:=: v$

- If u is an uninitialised variable, set it to v.
- If v is an uninitialised variable, set it to u.
- If $u=m$ and $v=n$ are numbers, check that $m=n$.
- If $u=c\left(s_{0}, \ldots, s_{m-1}\right)$ and $v=d\left(t_{0}, \ldots, t_{n-1}\right)$ are constructors, check that $c=d, m=n$, and $s_{i}:=: t_{i}$, for all i.
- If $u=\left[l_{0}=s_{0}, \ldots, l_{m-1}=s_{m-1}\right]$ and $v=\left[k_{0}=t_{0}, \ldots, k_{n-1}=t_{n-1}\right]$ are records, find bijection $\varphi: m \rightarrow n$ such that $l_{i}=k_{\varphi(i)}$ and $s_{i}:=: t_{\varphi(i)}$, for all i.
- In all other cases, fail.
(In particular, we cannot unify function values.)

Notes

- two kinds of uninitialised values: unknown value, equal to other variable
- need to prevent infinite loops

Backtracking

```
<expr\rangle::=...| choose|\langleexpr\rangle...|\langleexpr\rangle| fail
let is_one_or_two(x) {
    choose
    | x := 1
    | x := 2
};
is_one_or_two(1); // ok
is_one_or_two(3); // fail
```


Primitive operations

checkpoint k

- stores the current continuation and machine state rewind
- fetches the continuation associated with the last checkpoint,
- restores the machine state to its previous state (deleting the last checkpoint),
- and calls the fetched continuation.

Primitive operations

checkpoint k

- stores the current continuation and machine state rewind
- fetches the continuation associated with the last checkpoint,
- restores the machine state to its previous state (deleting the last checkpoint),
- and calls the fetched continuation.

```
choose | e e < < e
choose | e e | e_ ... | en }\Longrightarrow\mathrm{ letcc k {
        checkpoint
        fun () {
            k(choose | e e _.. | en)
        };
        e
            }
fail
rewind
```


Implementation

- store stack of checkpoints
- each checkpoint contains: continuation, list of modified variables
- checkpoint k puts k on the stack
- when we set a variable x, we add \times to the top list
- rewind pops the stack, unsets all variables in the top list, and calls the stored continuation

Example

```
edge(a,b).
edge(b,c).
trans(X,Y) :- edge(X,Y).
trans(X,Y) :- edge(X,Z), trans(Z,Y).
let edge(x,y) {
    choose
    | { x := a; y := b; }
    | { x := b; y := c; }
}
let trans(x,y) {
    choose
    | edge(x,y)
    | { let z; edge(x,z); trans(z,y); }
}
```

