
IA010: Principles of Programming Languages

Constraints

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Declarative programming
Describe what you want to compute, not how
(no side-effects, no state)

Advantages
• easier to reason about
• write separately and compose

Logic programming
write set of constraints and search for solution

Single-assignment variables

⟨expr⟩ ∶∶= . . . ∣ let ⟨id⟩ ; ⟨expr⟩

let x;

let y;

x := 1;

x := 1; // ok

x := 2; // error

y := x+1;

let add(x,y,z) {

z := x+y;

};

let u;

add(1,2,u);

let reverse(lst, ret) {

let iter(lst, acc, ret) {

case lst

| [] => ret := acc

| [x|xs] => iter(xs, [x|acc], ret)

};

iter(lst, [], ret)

};

Unification

⟨expr⟩ ∶∶= . . . ∣ ⟨expr⟩ :=: ⟨expr⟩

1 :=: x x := 1

x :=: y identifies x and y

[x,2] :=: [1,y] x := 1 and y := 2

Unification algorithm
solve u ∶=∶ v
• If u is an uninitialised variable, set it to v.
• If v is an uninitialised variable, set it to u.
• If u = m and v = n are numbers, check thatm = n.
• If u = c(s0, . . . , sm−1) and v = d(t0, . . . , tn−1) are constructors,
check that c = d,m = n, and si ∶=∶ ti, for all i.

• If u = [l0 = s0, . . . , lm−1 = sm−1] and v = [k0 = t0, . . . , kn−1 = tn−1]
are records, find bijection φ ∶ m→ n such that li = kφ(i) and
si ∶=∶ tφ(i), for all i.

• In all other cases, fail.

(In particular, we cannot unify function values.)

Notes
• two kinds of uninitialised values: unknown value, equal to other
variable

• need to prevent infinite loops

Unification algorithm
solve u ∶=∶ v
• If u is an uninitialised variable, set it to v.
• If v is an uninitialised variable, set it to u.
• If u = m and v = n are numbers, check thatm = n.
• If u = c(s0, . . . , sm−1) and v = d(t0, . . . , tn−1) are constructors,
check that c = d,m = n, and si ∶=∶ ti, for all i.

• If u = [l0 = s0, . . . , lm−1 = sm−1] and v = [k0 = t0, . . . , kn−1 = tn−1]
are records, find bijection φ ∶ m→ n such that li = kφ(i) and
si ∶=∶ tφ(i), for all i.

• In all other cases, fail.

(In particular, we cannot unify function values.)

Notes
• two kinds of uninitialised values: unknown value, equal to other
variable

• need to prevent infinite loops

Backtracking

⟨expr⟩ ∶∶= . . . ∣ choose| ⟨expr⟩ . . . | ⟨expr⟩ ∣ fail

let is_one_or_two(x) {

choose

| x := 1

| x := 2

};

is_one_or_two(1); // ok

is_one_or_two(3); // fail

Primitive operations
checkpoint k
• stores the current continuation and machine state

rewind
• fetches the continuation associated with the last checkpoint,
• restores the machine state to its previous state (deleting the last
checkpoint),

• and calls the fetched continuation.

choose | e1 Ô⇒ e1
choose | e1 | e2 ... | en Ô⇒ letcc k {

checkpoint

fun () {

k(choose | e2 ... | en)
};

e1
}

fail Ô⇒ rewind

Primitive operations
checkpoint k
• stores the current continuation and machine state

rewind
• fetches the continuation associated with the last checkpoint,
• restores the machine state to its previous state (deleting the last
checkpoint),

• and calls the fetched continuation.
choose | e1 Ô⇒ e1
choose | e1 | e2 ... | en Ô⇒ letcc k {

checkpoint

fun () {

k(choose | e2 ... | en)
};

e1
}

fail Ô⇒ rewind

Implementation
• store stack of checkpoints
• each checkpoint contains: continuation, list of modified variables
• checkpoint k puts k on the stack
• when we set a variable x, we add x to the top list
• rewind pops the stack, unsets all variables in the top list, and calls
the stored continuation

Example
edge(a,b).

edge(b,c).

trans(X,Y) :- edge(X,Y).

trans(X,Y) :- edge(X,Z), trans(Z,Y).

let edge(x,y) {

choose

| { x := a; y := b; }

| { x := b; y := c; }

}

let trans(x,y) {

choose

| edge(x,y)

| { let z; edge(x,z); trans(z,y); }

}

