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1 Introduction

The first high-level programming languages where designed at the end of the 1950s. Since then
a large number has been created and every year even more are released. Each of them supports
different programming paradigms and styles, and thus provides the programmer with different
ways to approach algorithmic problems and to express herself. Given this wealth of approaches,
programmers today face the problem of which languages to learn, which of them to choose for a
given project, and how to use the various features a given language provides.

Unfortunately, there are no easy answers to such questions. In addition to personal preferences,
the choice of a language and coding style also very much depends on the project in question. It
makes quite a difference whether you are writing an office program, an application for mobile
phones, a first-person shooter, or a network server. A competent programmer therefore has to be
familiar with many paradigms, coding styles, and ways to solve problems, so that she can always
choose the most appropriate tool for the task at hand.

This course is meant to help you with this choice. Instead of discussing individual languages,
we will study their features in the abstract. We will define a minimal language (we call it the toy
language) that exhibits the features under consideration in as pure a way as possible, so we can
study them and their ramifications in isolation. Our focus will not be on what these features are
and how they work, but on how and when to use them for programming and on the trade-offs
involved.

To prevent our discussions from becoming too abstract and vague, we will also present imple-
mentations of the kernel languages. This helps to better understand each feature and allows you
to experiment with them. Note that these implementations are chosen for clarity and pedago-
gical merits, not to teach compiler technology. Hence, they are fairly inefficient and naïve. I have
chosen Haskell as the programming language for these implementations, mainly as it allows for
very concise code without unnecessary clutter. (Although sometimes Haskell’s insistence on be-
ing pure makes the code more involved than it needs to be.) As the goal is clarity of presentation
and in order to help readers unfamiliar with Haskell, I have decided against the use of the more
advanced features of the language. Everything is written in the most elementary way possible.

Ultimately, this course is meant to help you become better programmers. Of course, like riding
a bike, you cannot learn programming by just listening to lectures. To improve, you need a lot of
practice. So ideally every part of this course should be accompanied by coding exercises where
you can get familiar with the features under discussion. As this course does not have exercise
classes, we have to do without. In order to get the most out of the course, I therefore recommend
that you get into the habit of

• paying attention to which language features you use in the programs you write, and

• trying to think of alternative ways you could have written the code in.
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1 Introduction

For instance, ask questions like: ‘How would this piece of code look like if I had written it in a
functional style? Would that be better or worse than the code I have now?’

This raises the question of what constitutes ‘better’ code. Does ‘better‘ mean higher perform-
ance, higher reliability, better maintainability, the code being more readable, less security prob-
lems, lower compile times, better portability, reduced development time,…? Many of these goals
contradict each other, so one has to prioritise. Consequently, there is no one best way to program.
Every approach comes with its own trade-offs,whichmeans that in each case the programmer has
to choose the right approach to solve the problem at hand. For instance, for many video games
performance is of utmost importance whereas security concerns are secondary. The opposite is
the case for server software.

For these reasons we will refrain from giving strict rules of how to write programs. At most we
might present some rules of thumb that the reader is encouraged to ignore in situations they do
not work out. Instead we will try to present each approach impartially and discuss its advantages
and disadvantages, so the reader can decide for herself when and how to apply it. This is inmarked
contrast to the usual situation in software engineering, which is all to often permeated by ideo-
logy and dogma with very little empirical data to back it up. (‘Object-oriented programming is
superior!’ ‘You have to write unit tests!’ ‘You always should use pair programming!’…) Frequently
rules like these arise when someone notices a problem with a particular way of doing things and
then gives the workaround they develop the status of an absolute principle, while ignoring the
fact that their solution comes with its own set of problems or that there might be cases where it
performs badly. For instance, unit tests were developed to cope with the error proneness of writ-
ing substantial applications in dynamically typed languages. While they can drastically reduce
the number of bugs in such projects, people often forget that their maintenance places additional
burdens on the developers and that they offer little advantages whenworking with statically typed
languages.

General principles

Before getting started, let me make a few general remarks related to code quality and language
design.

Readability

What makes code easy or hard to understand? Let us mention several aspects that influence
readability.

Howself-contained is a piece of code? A piece of code is the harder to understand themore
other parts of the program you need to know in order to understand it.

Howexplicit is the code? There is the question of how many aspects of the code are explicitly
written down and how many are left implicit for the reader to figure out by herself. For instance,
type annotations make the types of variables explicit, while relying on type inference means that
the reader has to work them out each time she looks at the code. For another example, a deeply
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nested expression can be harder to understand than a sequence of simpler expressions where each
intermediate value is stored in a named variable. Usually, the more is left implicit, the harder it is
to read the code. But note that explicitness can be overdone: if there are toomany annotations the
reader has to read and understand them, which can be overwhelming (see also the next point).

How verbose is the code? The more verbose the code is, i.e., the higher the ratio is between
the size of the code and the information contained in it, the more code the programmer has to
read. In a concise language a piece of code might fit on a single screen and be taken in all at
once by the reader,while in a more verbose version the programmer might have to scroll through
several pages and laboriously extract the meaning. For instance,

1 + (2 * 3)

is much faster to read then

Take the number two, multiply it by the number three, and then

add the number one.

As usual, conciseness can be overdone. If you have one of the famous single-lineHaskell functions
involving a deeply nested expression containing several higher-order functions and a few user-
defined binary operators, you might need a few minutes to recall how each of the operators was
defined and then to figure out what the expression is doing.

How large is the code? The more code there is, the more code you have to understand.

How complex is the code? Obviously, the more complex a piece of code the harder it is to
understand. For instance, if you have several versions of some data structure, it might be better
to write separate implementations instead of a single one. An implementation for a special case
is usually simpler than one for the general case.

Note that there are two aspects to code complexity: the inherent complexity of a piece of code in
itself, and the complexity of its interactionswith other parts of the program. For instance,breaking
a large function into several smaller ones, reduces their inherent complexity, but increases the
interaction complexity. The same goes for breaking a program into several modules.

Principle of Local Reasoning. Let us isolate a general principle which is quite useful to un-
derstand issues of readability. Ideally one would like each piece of code to be intelligible by just
looking at it in isolation without having to read other parts of the program. We call this local
reasoning. If, on the other hand, one has to look at the whole program to see what is going on, we
speak of global reasoning.

Let us give a few examples where the Principle of Local Reasoning comes into play.
(1) Communication via (mutable) global variables requires global reasoning since you have to

look at every part of the program that modifies the variable in question. A pure functional style
where communication is done solely via function parameters is local instead.

(2)Using abstraction violates the principle since one cannot understand a piece of codewithout
knowing the definitions of the functions and variables appearing in it. One canmitigate this effect
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1 Introduction

a little by using meaningful names for variables and functions, that make it easier to remember
their definitions.

Control

In language design there is a trade-off between the degree of automation and the amount of con-
trol offered to the programmer. Certain routine tasks, like memorymanagement for instance, can
be automated by a language or a library.

This can save the programmer a lot of tedium, making the language more convenient to use
and reducing development time. Furthermore, it prevents bugs: the more the programmer has
to do herself, the more opportunities she has to make mistakes.

But automation also means giving up control, which can make it very hard, or even impossible
to do things, in a non-standard way. For instance, for performance reasons it might be import-
ant to specify the precise point in a program where certain memory is freed. In languages with
garbage collection, this is usually not possible.

In addition, automation can lead to surprising behaviour of the program. For instance, if a
language supports implicit type conversions, type errors might go unnoticed. Another example is
automatic memory management in languages with lazy evaluation where it can be very hard for
the programmer to figure out how much memory is used and when it is deallocated again.

Code reuse

Reusing code is usually considered a good thing. Someof the obvious advantages are the following
ones.

• The programmer has to write less code.

• Readers have to understand less code.

• The code is already tested and therefore contains fewer bugs.

• Having less code means there are fewer places that can be incorrect.

But note that there is also a downside: reusing code usually requires to make the old code more
general in order to handle more cases. This can make the code more complicated and also less
efficient.

As a rule of thumb I recommend not to be too general at first. Instead, implement a specialised
solution for the problem at hand. Once you have at least, say, three similar pieces of code, you can
try to (fully or partially) combine them into a general one, but only if that does not increase code
complexity.
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2 Expressions and Functions

2.1 Arithmetic expressions

In one form or other expressions are present in nearly every programming language. In the ab-
stract, an expression can be defined as a program construct that computes a value. A prototypical
example are arithmetical expressions in mathematics. In so-called functional languages, expres-
sions form the central construct around which the whole language is build. In this chapter we will
introduce a functional toy language, starting with arithmetical expressions.

⟨expr⟩ ∶∶= ⟨num⟩ ∣ ( ⟨expr⟩ ) ∣ ⟨expr⟩ + ⟨expr⟩ ∣ ⟨expr⟩ * ⟨expr⟩

Theevaluation strategy for such expressions is obvious: we recursively evaluate all subexpressions
and then combine their results using the operation at the current position. For instance,

1+2*3

=> 1+6

=> 7

Let us see how to implement this in Haskell. First, we need a data type for syntax trees. We
need to distinguish three different cases: numbers, sums, and products. Hence, we can write

1 data Expr = ENum Integer | EPlus Expr Expr | ETimes Expr Expr

Evaluation of such a syntax tree is done by a simple recursion.

2 eval :: Expr -> Integer

3 eval (ENum n) = n

4 eval (EPlus e1 e2) = eval e1 + eval e2

5 eval (ETimes e1 e2) = eval e1 * eval e2

If we want to add further operations, we can either add them as a new category to the syntax
tree, or we can define them as syntactic sugar, i.e., we express it in terms of the operations the core
language already provides. For instance, we can define subtraction by

expr - expr Ô⇒ expr + (-1) * expr ,

that is, after parsing, but before any further analysis, we replace every occurrence of subtraction
by its definition. Of course, this only works if we can express the new feature in terms of the old
ones.

Expression. A part of the program that denotes a value.

5



2 Expressions and Functions

Abstraction. Naming a part of the program.

2.2 Local definitions

One central mechanism to improve the readability and maintainability of code is the ability to
name a given program construct like an expression, a type, etc. and to refer to that construct using
its newname. This process is called abstraction. It is vital in breaking a program into smaller, easier
to understand parts. We can use it to hide unimportant details and thereby decrease complexity
of our code. In addition abstraction also facilitates code reuse. Of course, abstraction can also be
misused: the more names one introduces the more definitions one has to remember. A good rule
of thumb here is to only move code into its own function if you can summarise in one sentence
what the code is doing. Using long and descriptive names also helps.

At the moment our toy language has only one construct: expressions. To name an expression,
we introduce local definitions.

⟨expr⟩ ∶∶= . . . ∣ ⟨id⟩ ∣ let ⟨id⟩ = ⟨expr⟩ ; ⟨expr⟩

A remark on terminology: in our current setting without side-effects, we refer to these names as
identifiers, instead of using the more common term ‘variables’. We reserve the latter for mutable
identifiers, which we will introduce in Chapter 4.

Examples:

1 let x = 1; let pi = 3; // the integer version ;-)

2 let y = 2; 2*pi*5

3 x + 2*y => 30

4 => 5

5
6 let x = (let y = 2; 2*y); (let x = 2; x * x) - (let x = 1; x+4)

7 x + 3 => -1

8 => 7

Apart from making code more readable and easier to write, local definitions can also be used
to improve performance. If a complicated expression is used in several places, we can use a let-
binding to evaluate the expression only once and then refer to its value via the corresponding
identifier. For instance, if we want to rotate a vector, we only need to compute the sine and cosine
once.

1 let s = ... compute the sine ...

2 let c = ... compute the cosine ...

3 u = c * x - s * y;

4 v = s * x + c * y;

To support let-statements in our implementation we first have to add two new categories to our
definition for syntax trees.

6



2.2 Local definitions

Scope. Part of a program where a certain name binding is valid.

Binding. Association of a name to a program entity.

1 data Expr =

2 ENum Integer

3 | EId Symbol

4 | EPlus Expr Expr

5 | ETimes Expr Expr

6 | ELet Symbol Expr Expr

When we try to add the corresponding cases to the eval function, we face a problem of how to
determine the value of a variable we want to evaluate. We need some kind of lookup table to store
the variables values when they are defined so we can retrieve these values when the variables are
used. Such a table is commonly called an environment. So we need a data type

7 type Environment = Table Integer

where Table a is some data type supporting the operations

lookup_variable :: Table a -> Symbol -> a

bind_variable :: Table a -> Symbol -> a -> Table a

Then we can write the evaluation function as

8 eval :: Environment -> Expr -> Integer

9 eval env (ENum n) = n

10 eval env (EId x) = lookup_variable env x

11 eval env (EPlus e1 e2) = eval env e1 + eval env e2

12 eval env (ETimes e1 e2) = eval env e1 * eval env e2

13 eval env (ELet x e b) = eval (bind_variable env x (eval env e)) b

When introducing let-bindings a new phenomenon arises called scoping. Theproblem is,when
we try to evaluate an expression and come upon an identifier x, which of the possibly several
definitions for x do we use? The part of the code where a particular definition of x is in effect
is called the scope of the definition. In our case, the scope of a definition let x = e; e′ is the
expression e′. That is, every occurrence of x inside e′ refers to the value e. Other occurrences
of x (for instance, those in e or in other parts of the program) refer to other definitions. We also
say that this definition of x is local to e′ and that the variable x is bound (to the value e) by this
definition. In general the association of names in a program with the entities they refer to is called
binding. The characteristic property of a local variable is that it can be renamed without changing
the meaning of the program. (The technical term for such a renaming is α-conversion.)

let x = 2; x*x ⇐⇒ let y = 2; y*y

7



2 Expressions and Functions

In most languages scopes can be nested, but they cannot partially overlap. Therefore, they are
usually implemented using a stack.

1 let x = 2;

2 let y = x-1; } scope of x
3 x+y } scope of y

2.3 Functions

Next we add function definitions to our language. Function definitions are one of themainmech-
anisms for control abstraction in programming languages. They facilitate code reuse and they can
increase the readability of code by hiding low-level details and thereby revealing the logical struc-
tures of the code. But note that overuse of this feature can degrade readability again, if function-
ality is split over too many places of the code. (This is a common problem with inheritance in
object-oriented programming.)

For efficiency reasons,many languages (like C++ and Java) only support non-nested functions.
In this case, a program is of the form

1 let f(x) { ⟨expr⟩ };

2 ...

3 let fn(x) { ⟨expr⟩ };

4 ⟨expr⟩
The implementation is straightforward. We extend our data type for the syntax tree by one more
clause.

1 data Expr =

2 ENum Integer

3 | EId Symbol

4 | EPlus Expr Expr

5 | ETimes Expr Expr

6 | EApp Symbol Expr

7 | ELet Symbol Expr Expr

The eval function takes an additional argument of type

8 type FunDefs = Table (Symbol, Expr)

containing the function definitions. This is a table that, for each function, contains the name of
the parameter and the function body.

9 eval :: FunDefs -> Environment -> Expr -> Integer

10 eval fdefs env (ENum n) = n

11 eval fdefs env (EId x) = lookup_variable env x

12 eval fdefs env (EPlus e1 e2) = eval fdefs env e1 + eval fdefs env e2

13 eval fdefs env (ETimes e1 e2) = eval fdefs env e1 * eval fdefs env e2

8



2.3 Functions

14 eval fdefs env (EApp f a) = let val = eval fdefs env a in

15 let (p, b) = lookup_variable fdefs f in

16 eval fdefs (bind_variable empty_env p val) b

17 eval fdefs env (ELet x e b) =

18 eval fdefs (bind_variable env x (eval fdefs env e)) b

Aswe have seen when implementing non-nested functions,we can evaluate the body of a glob-
ally defined function in the empty environment. When allowing nested functions, we have to use
the environment of the function definition instead. This complicates the implementation since
we have to store this environment somewhere. We extend our language as follows.

⟨expr⟩ ∶∶= . . . ∣ ⟨id⟩ ( ⟨expr⟩ ) ∣ let ⟨id⟩ ( ⟨id⟩ ) { ⟨expr⟩ }; ⟨expr⟩

For the implementation, it is convenient to store the function definitions inside the environment.
To do so, we have to modify the eval function to support two kinds of values: integers and
functions. We introduce the following data type for this.

1 data Value =

2 VNum Integer

3 | VFun Symbol Environment Expr

Then we add one new clause for function definitions to the syntax tree

4 data Expr =

5 ...

6 | ELetFun Symbol Symbol Expr Expr

and we modify the eval function as follows. Besides adding a clause for the new construct, there
are mainly two changes to the code: (i) we can remove the argument for the function definitions
again and (ii) we have to add a few case distinctions that check for values of the correct type.

7 eval :: Environment -> Expr -> Value

8 eval env (ENum n) = VNum n

9 eval env (EId x) = lookup_variable env x

10 eval env (EPlus e1 e2) =

11 case (eval env e1, eval env e2) of

12 (VNum x1, VNum x2) -> VNum (x1 + x2)

13 _ -> error "addition of non-numbers"

14 eval env (ETimes e1 e2) =

15 case (eval env e1, eval env e2) of

16 (VNum x1, VNum x2) -> VNum (x1 * x2)

17 _ -> error "multiplication of non-numbers"

18 eval env (EApp f a) =

19 let val = eval env a in

20 case eval env f of

21 VFun p e b -> eval (bind_variable e p val) b

22 _ -> error "application to non-function"

9



2 Expressions and Functions

Static scoping. A function’s body is evaluated in the scope of the function’s definition.

Dynamic scoping. A function’s body is evaluated in the scope of the function call.

23 eval env (ELet x e b) =

24 eval (bind_variable env x (eval env e)) b

25 eval env (ELetFun f arg body e) =

26 eval (bind_variable env f (VFun arg env body)) e

2.4 Static and dynamic scoping

When invoking a function, static scoping evaluates the function body in the scope of the function’s
definition, while dynamic scoping uses the scope of the function’s caller.

Examples:

1 let x = 1; let x = 1; let x = 1;

2 let f(y) { x+y }; let g(y) { x+y }; let g(y) { x+y };

3 let x = 2; let f(y) { g(y) }; let f(x) { g(0) };

4 f(3) let x = 2; let x = 2;

5 f(3) f(3)

Dynamic scoping Examples of languages using dynamic scope are: the original Lisp, Emacs
Lisp, TeX, Perl, and many scripting languages including early versions of Python and JavaScript.

Today, dynamic scoping is generally considered to be a mistake. The main problem is that
dynamic scoping is not robust: changing local variables in some part of the program can have
drastic influences on other parts. Hence, with dynamic scoping bound variables are not local
in the sense defined above since renaming them can change the meaning of the program. This
means that understanding code with dynamic scoping requires global reasoning about the pro-
gram, which violates one of the fundamental principles of code readability.

For instance, consider a GUI library that provides an event-loop where the program can install
call-backs to react to user input. If the event-loop and the user code happen to share a variable,
the call-back will get the event-loop’s variable instead of its own. Problems of dynamic scoping
include:

• As seen in the above example,with dynamic scoping, every 3rd party library needs to docu-
ment the names of all local variables it uses. Thismakes librarymaintenancemore difficult,
as new versions cannot introduce new local variables.

• Dynamic scoping also presents a security risk as it enables other parts of the code to access
and modify sensitive information stored in local variables.

10



2.5 Higher-order and first-class functions

Let us conclude with an example of a programming idiom that is enabled by dynamic scope:
one can use it to simulate default parameters for functions. If a certain function parameter has
nearly always the same value, one can use a variable instead. For example, if we write a function
converting numbers to strings we might want to support other bases than decimal. The code
could look like this.

1 let base = 10;

2 let num_to_string(n) {

3 ... convert n into base base ...

4 };

5
6 let f(x) {

7 ...

8 let base = 16;

9 let str = num_to_string(137);

10 ...

11 };

Of course, with languages supporting default parameters one could simply write:

1 let num_to_string(n, base=10) {

2 ... convert n into base base ...

3 };

4
5 let f(x) {

6 ...

7 let str = num_to_string(137,16);

8 ...

9 };

Static scoping While static scoping is clearly superior to dynamic scoping, it is not without its
problems. The way it is usually implemented, the scoping structure of a program is determined
by its syntactic structure. This is a very simplistic way to specify scoping rules, which is not al-
ways adequate. Sometimes one would like to have more fine-grained control over scoping, say, by
specifying which parts of the program are allowed to see a given identifier. Some languages have
therefore tried to untie scoping from the syntactic structure by making it explicit. One example
is the concept of namespaces in C++, which allows complete control over scoping. Slightly less
general are modules or packages which are supported by most modern languages.

2.5 Higher-order and first-class functions

In many languages, functions are not values. You cannot assign them to variables or pass them as
arguments to functions. Some languages, like C and C++, allow passing functions as arguments,
but not returning them as results. This can be used for example to implement call-backs in GUI
frameworks. Such languages support what is called higher-order functions.

11



2 Expressions and Functions

Higher-order function. A function that takes other functions as arguments or that returns
a function.

First-class functions. Functions are treated as values.

1 let f(x) { x+1 };

2 let g(s) { s(1) };

3 g(f)

4 => 2

In some languages, like Lisp, ML, or JavaScript, functions are values like any others. In this case
we speak of first-class function. In such languages, we need an operation to create new functions.
This is called a lambda abstraction.

⟨expr⟩ ∶∶= . . . ∣ fun ( ⟨id⟩ ) { ⟨expr⟩ }

Example

1 let adder(n) { fun(x) { x + n } };

2 let add3 = adder(3);

3 add3(4)

4 => 7

First-class functions are frequently used, for instance, in GUI frameworks where they are called
call-backs.

1 let mouse_button(button,x,y) {

2 ...

3 react to a mouse button being pressed
4 ...

5 };

6 register_call_back(MouseDown, mouse_button);

In functional programming, first-class functions are one of the main concepts used for reduce
dependencies between different parts of the code. They allow the separation of the action to be
performed on some data structure from the traversal of said data structure. For instance,

map(update, lst) applies update to every element of lst
fold(sum, 0, lst) adds all elements of lst

There is not much to do to add support for first-class functions to our interpreter. We add a
clause for lambda abstraction to our syntax tree and we also remove the special let-binding for
functions, as we can now use the usual one for both integers and functions.

1 data Expr =

2 EId Symbol

3 | ENum Integer

4 | EPlus Expr Expr

12



2.6 Function parameters

5 | ETimes Expr Expr

6 | EFun Symbol Expr

7 | EApp Expr Expr

8 | ELet Symbol Expr Expr

In the definition of the eval function we have to add one line for EFun and we can remove the
code for ELetFun.

9 eval :: Environment -> Expr -> Value

10 ...

11 eval env (EFun arg body) = VFun arg env body

12 ...

When using dynamic scoping first-class functions cause additional problems. Traditionally
there are two possible ways to implement dynamic scoping for such functions: shallow binding
and deep binding. Thequestion is,which environment is used when calling a function value.With
deep binding it is the environment where the function was declared, i.e., the same as when using
static scoping. With shallow binding it is the environment of the function call instead, which is
more in the spirit of dynamic scoping.

1 let f(x) { fun(y) { x } };

2 let x = 3;

3 f(1)(2)

Finally, note that, once we have first-class functions, we can simplify our toy language by re-
moving the let-construct and implementing it as syntactic sugar instead.

let x = expr; expr Ô⇒ (fun (x) { expr })(expr)

Discussion First-class functions provide a powerfulmethod to decouple various parts of a pro-
gram from each other: if some code requires functions from other parts, one can pass them as
parameters instead of referring to them directly. For instance, many frameworks to build user
interfaces make heavy use of call-backs, which are a poor man’s version of first-class functions.
Another advantage of supporting first-class functions is that they facilitate code reuse: instead of
writing several versions of a procedure, one can factor out the general logic and parametrise it by
functions doing the specific work. For instance, in functional languages data types often provide
a general traversal procedure which takes as parameter a function containing the actual work to
be performed for each entry.

The main disadvantage of using first-class functions is that they are less efficient since, in their
presence, the activation records of functions do not follow a stack regime anymore. This leads to
poor cache behaviour of such programs.

2.6 Function parameters

Multipleparameters As function application is one of themost frequently usedmechanism in
programming,many languages provide featuresmaking it more convenient. The first such feature

13



2 Expressions and Functions

Currying. Converting a function with multiple arguments into one with only a single one
that returns another function taking the rest.

we consider are functions with multiple arguments. There are two ways to add such functions to
our language. The first one implements them as syntactic sugar in terms of first-class functions.
This is called currying. It is present inmany functional languages like OCaml or Haskell. The idea
is simple. We view a function with two parameters as a function that take the first argument and
returns a function taking the second argument and returning the result.

fun (x,y) { x*x + y*y }

Ô⇒ fun (x) { fun(y) { x*x + y*y }}

In our toy language, we can implement currying as syntactic sugar. We translate

let f(x,y,...,z) { body }; expr

Ô⇒ let f(x) { fun (y) { ... fun (z) { body } ... }};

expr

and

f(a,b,...,c) Ô⇒ f(a)(b)...(c)

Note that this syntactic sugar allows us to use partially applied functions, that is, expressions
like the following one.

1 let f(x,y) { ... };

2 f(1)

If we do not want to allow this,we have to add a pass for arity checks before doing the desugaring.
The other way of implementing functions with multiple parameters does not require first-class

functions, but uses a tuple datatype instead. Instead of passing several arguments to a function,
we pass a single tuple containing them. This is done for example in Standard ML.

fun (x,y) { x*x + y*y }

Ô⇒ fun (p) { p.x * p.x + p.y * p.y }

Keyword parameters One such feature are named parameters or keyword parameters. Ordin-
arily, arguments are passed to a function by position, that is, the i-th argument will be bound to
the i-th formal parameter of the function. If a function takes many arguments, it becomes hard
to remember the correct order of the parameters. In many languages it is therefore possible to
assign names to the parameters and use these names when invoking a function. In this case, the
arguments can be given in any order.

1 let f(serial_number, price, weight) { ... };

2
3 f(serial_number = 83927, weight = 60, price = 120);

14



2.7 Conditionals

To avoid ambiguities, if both positional and keyword parameters are used in the same function
call, one usually requires all positional parameters to be listed first.

Default arguments Another feature are default arguments. When a function is frequently
called with a fixed value for some argument, one can specify this value as the default and allow
the programmer to omit the argument from a function call.

1 let int_to_string(num, base = 10) { ... };

2
3 int_to_string(17)

To avoid ambiguities, if positional parameters are used in a function call where some default ar-
gument is omitted, one usually requires all arguments after the omitted one to be keyword para-
meters.

Variablenumberofarguments Some languages likeC allow the definition of functionswhere
the number of arguments is not fixed. There is a minimal number of arguments, but every func-
tion invocation can use more if needed.

1 let printf(format, ...) { ... };

2
3 printf("f(%d) = %d", x, f(x));

Conceptually what happens is that the first arguments are passed to the function as usual and the
remaining arguments are passed in an array which the function body can inspect.

Implicit arguments Such arguments were invented in Scala. They work similarly to default
arguments. When no argument is specified, some default value is used. But this default value is
not constant. Instead the compiler searchs the current scope for a value of the correct type and
uses that one.

1 let f(x : int, implicit p : bar) {

2 ...

3 f(x-1) // uses p for the second argument

4 ...

5 }

As always when one adds an implicit mechanism like this to the language, implicit parameters
provide some convenience for the programmer,but they canmake the resulting codemuch harder
to understand.

2.7 Conditionals

In preparation for adding recursion, let us implement conditionals first. These are needed to
add a termination condition to a recursive function call. For simplicity, we only support equality
predicates.

⟨expr⟩ ∶∶= . . . ∣ if ⟨expr⟩ == ⟨expr⟩ then ⟨expr⟩ else ⟨expr⟩

15



2 Expressions and Functions

Truthy/Falsy values. Are implicitly converted to true and false in a conditional.

Examples

1 let f(n) {

2 if n == 0 then

3 0

4 else

5 n-1

6 };

The implementation is straightforward. We add one clause to the definition of the syntax trees

1 data Expr =

2 ...

3 | EIf Expr Expr Expr Expr

and a corresponding clause to the eval function.

4 eval :: Environment -> Expr -> Value

5 ...

6 eval env (EIf c1 c2 t e) =

7 let v1 = eval env c1 in

8 let v2 = eval env c2 in

9 case (v1,v2) of

10 (VNum n1, VNum n2) -> if n1 == n2 then eval env t else eval env e

11 _ -> error "comparison of non-numbers"

There are two approaches to boolean values in programming languages. Languages with a strict
type discipline define a type for boolean values and demand that the condition in an if-statement
is of that type. Languages with a looser type discipline allow the condition to be of a different
type and automatically coerce it to a boolean value. For such languages one uses the terminology
of truthy values (those that are treated as true) and falsy values (those that are treated as false).

Automatic coercions aremore convenient, but alsomore error-prone andmake the type system
much more complicated. (In general, coercions also make the code harder to understand, but for
booleans in conditionals that is not an issue.) While for languages with a simple type system like,
say, C, the rules for boolean conversions are easily understood and remembered. But for languages
with a richer type system like JavaScript, Python, or Ruby, these rules become very complicated.
(Is the empty array false? What about the empty string, or the string "0"? Are "00" and "0.0"

treated the same as "0"?) What makes matters worse is that none of these languages agree on the
precise rules.

2.8 Constructors and patternmatching

So far, our toy language does not support any composite data structures. We only have numbers
and functions. To add composite types like records and arrays, we need operations that create
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2.8 Constructors and pattern matching

new data objects. In imperative languages like Java there are usually two different kinds of such
operations. There is an operation like new that allocates a piece of memory that then has to be ini-
tialised by the programmer. Furthermore, some of the types allow the programmer to write down
values of the type directly. These constructs are called literals or (data) constructors. In a language
without side-effects, we cannot initialise a data structure after it has already been allocated. We
have to do both in one step. Therefore such languages usually only have constructors.

For our toy language we will provide several built-in constructors and also allow user-defined
ones. Each number literal is treated as a constructor. Furthermore, we have constructors for
records, two constructors True and False for the boolean values, constructors () and Pair(x , y)
for the empty tuple and pairs, and two constructors Cons(x,y) and Nil to build lists. Using these
last two constructors, we can represent a list like [1,2,3] in the form

Cons(1, Cons(2, Cons(3, Nil))) .

The more convenient notation [1,2,3] will be provided as syntactic sugar.
We add three new constructs to the language. We can define new constructors, we can call a

constructor to create a data structure, and we can match a given data structure with a template to
extract its fields.

⟨expr⟩ ∶∶= . . . ∣ type ⟨id⟩ = | ⟨variant⟩ . . . | ⟨variant⟩ ; ⟨expr⟩
∣ type ⟨id⟩ = [ ⟨id⟩ = ⟨id⟩ , . . . , ⟨id⟩ = ⟨id⟩ ]; ⟨expr⟩
∣ ⟨ctor⟩ ( ⟨expr⟩ , . . . , ⟨expr⟩ )
∣ [ ⟨id⟩ = ⟨expr⟩ , . . . , ⟨id⟩ = ⟨expr⟩ ]
∣ ⟨expr⟩ . ⟨id⟩
∣ case ⟨expr⟩ | ⟨pattern⟩ => ⟨expr⟩ | . . . | ⟨pattern⟩ => ⟨expr⟩

⟨pattern⟩ ∶∶= ⟨id⟩ ∣ ⟨num⟩ ∣ ⟨ctor⟩ ( ⟨id⟩ , . . . , ⟨id⟩ ) ∣ else
⟨variant⟩ ∶∶= ⟨id⟩ ∣ ⟨id⟩ ( ⟨id⟩ , . . . , ⟨id⟩ )

For instance, we can create a pair and extract its two components again using the following
definitions. (The arguments a and b in the definition of the constructor P are only used to specify
the arity. Later on when we add a type system, these parameters will specify the types of the
constructor arguments.)

1 type int_pair = | P(int, int); type int_pair = [ x : int, y : int ];

2
3 let make_pair(x,y) { P(x,y) }; let make_pair(x,y) { [ x = x, y = y ] };

4
5 let fst(p) { let fst(p) { p.x };

6 case p

7 | P(x,y) => x

8 };

9
10 let snd(p) { let snd(p) { p.y };

11 case p
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2 Expressions and Functions

12 | P(x,y) => y

13 };

Similarly, we can define the following functions to create and traverse lists.

1 let empty_list = Nil;

2 let add_to_list(x,lst) = Cons(x,lst);

3
4 let is_nil(lst) { case lst | Nil => True | else => False };

5 let is_cons(lst) { case lst | Cons(x,xs) => True | else => False };

6 let head(lst) { case lst | Cons(x,xs) => x };

7 let tail(lst) { case lst | Cons(x,xs) => xs };

The implementation of the support for these kinds of data structures is rather straightforward,
but the code is a bit lenghty, in particular the evaluation function for case statements. We will
therefore only highlight a few interesting points. The full implementation can be found in the
accompanying source code. First of all, we need to add two new kinds of values: constructors
and records.

1 data Value =

2 VNum Integer

3 | VCtor Symbol Int [Value]

4 | VRec (Table.T Symbol Value)

5 | VFun Symbol Environment Expr

For constructors we store (i) its name, (ii) its arity, and (iii) the value of all the arguments that
were already provided. So, the expressions

Pair Pair(4) Pair(4,7)

evaluate to the values

VCtor "Pair" 2 [] VCtor "Pair" 1 [4] VCtor "Pair" 0 [4, 7]

respectively. For records, we simply store a table mapping field names to their values.
We also need to add a few more cases to the data type for expressions.

6 data Expr =

7 ...

8 | ERecord [(Symbol, Expr)]

9 | EMember Expr Symbol

10 | ETypeVar [(Symbol, Int)] Expr

11 | ECase Expr [(Pattern, Expr)]

The implementation of the eval function is straightforward. The only interesting point is that, for
function applications,we knowhave to distinguishwhether the first expression denotes a function
or a constructor.

18



2.9 Recursion

12 eval env (EApp f a) =

13 let val = eval env a in

14 case eval env f of

15 VFun p e b -> eval (bind_variable e p val) b

16 VCtor ctor 0 args -> error "constructor applied to too many arguments"

17 VCtor ctor ar args -> VCtor ctor (ar-1) (args ++ [val])

18 _ -> error "application of non-function"

With the case-construct we can now implement if- and (non-recursive) let-statements as syn-
tactic sugar.

if c == c then t else e Ô⇒ case c - c | 0 => t | else => e
let x = e; e′ Ô⇒ case e | x => e′

In fact, we can now define the equality predicate explicitly and introduce a version of the if-
statement that uses an arbitrary predicate.

e == e′ Ô⇒ case e - e′ | 0 => True | else => False

if c then t else e Ô⇒ case c | True => t | False => e

Exercise Use case statements to define syntactic sugar for and and or operations that evaluate
their arguments only as needed (short-circuit evaluation).

e and e -> case e | True => e | False => False

e or e -> case e | True => True | False => e

Exercise Introduce syntactic sugar for lists.

[e,...,en] -> Cons(e, Cons(..., Cons(en, Nil)...))

[e,...,en|e] -> Cons(e, Cons(..., Cons(en, e)...))

Introduction and elimination forms Let us conclude this section with a remark on introduc-
tion and elimination constructs. In many aspects of a programming language, we can observe
a duality between constructs introducing a certain object and ones eliminating it again. For in-
stance,with data typeswe have (I) constructors to assemble a structure and (E) the case-statement,
the array indexing operation, etc. to disassemble it into its components again. Similarly, for func-
tions we have (I) lambda abstractions which create new functions and (E) function applications
which turn functions into their return value.

2.9 Recursion

Every serious programming language needs a mechanism for unbounded recursion or iteration.
For instance, we would like to define recursive functions like the following one.

let fac(n) { if n == 0 then 1 else n * fac(n-1) };
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2 Expressions and Functions

Recursion. Defining a name in terms of itself.

(Which is, in fact, a bounded (by n) recursion.) Implementing recursion is rather straightforward:
in let-bindings let x = e; e′ we just have to extend the scope of x to include e.

Note that, while straightforward, the addition of recursion does change the language consider-
ably. In particular, it is now very easy to write non-terminating programs. (Strictly speaking, this
is also possible in our old language with non-recursive let-bindings, but it requires some tricks
and a lot of effort to do so, see below.)

From a theoretical perspective, this addition is much more involved, and books on program-
ming language theory usually devote quite some space to the topic. The problem is how to imple-
ment recursionwithout using recursion. (We cheated in our implementation by using the built-in
recursion of Haskell.) There are two ways to get around this problem.

The first one requires mutable state. When defining a recursive function f , we first allocate a
variable for it (initialised with some dummy value), then we write the actual function into the
variable using an assignment.

1 let f = fun (x) { x }; // dummy value

2 let f' = fun (x) { ... body using f ... }

3 f := f'

This is what most real language implementations do.
The second solution is much cleaner from a theoretical point of view. We add a recursion oper-

ator (also called a fixed-point operator) to the language which is defined by

rec(f) = f(rec(f))

(Of course, this is a recursive definition itself.) Then we can write

1 let fac_body(f) {

2 fun (n) { if n == 0 then 1 else n * f(n-1) }

3 };

4 let fac = rec(fac_body);

fac_body(f) is the body of the factorial function where we have replaced the recursive call by a
call to the function f. Then we tie the knot by defining

fac = rec(fac_body) = fac_body(rec(fac_body)) = fac_body(fac)

Intuitively, the rec operator provides a marker indicating that ‘at this position there is a recursive
call’. Whenever such a marker is evaluated, we insert the body of the corresponding function
(where all recursive calls are marked by rec again).

If our language is untyped (or if the type system supports recursive types), we can actually
define rec as syntactic sugar.

let rec(f) = (fun (x) { f(x(x)) })(fun (x) { f(x(x)) });

Then rec(f) evaluates to f(rec(f)) (try it).
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2.9 Recursion

Simultaneous recursion Our let-construct only allows the definition of a single recursive
function. Sometimes one would like to define several mutually recursive functions like

1 let f(x) { if x = 0 then 1 else g(x-1) };

2 let g(x) { if x = 0 then 1 else 1+f(x-1) };

There are three ways to implement such definitions. The first one is to extend the syntax of let-
bindings to allow for the simultaneous definition of several identifiers. This is the most practical
solution and implemented in all serious programming languages. In our toy language we will not
take this approach (just tomake our life easier, at the cost of making the programmers life harder).
We can do so because simultaneous recursion can be implemented using single recursion. Sup-
pose we have a definition like

1 let x = f(x,y) and y = g(x,y);

2 h(x,y);

We can either transform it into

1 let x = f(x, (let y = g(x,y); y));

2 let y = g(x,y);

3 h(x,y)

or, if the language supports tuples or records (see the next section), we can use them to write

1 let (x,y) = (f(x,y), g(x,y));

2 h(x,y);

The first solution duplicates some code (which is then executed twice), the second one has to
allocate memory for the tuple. In most cases this overhead is negligible.

Recursive data structures Since we are already talking about data structures, let us also men-
tion the related problem of creating mutually recursive data structures. The most practical solu-
tion is again to use mutable data structures. Then we can (i) first allocate all the memory and then
(ii) initialise it. For instance, to create two pairs

let p = (1, q) and q = (2, p);

we can write

1 let p = (1, 0);

2 let q = (2, 0);

3 p.2 := q;

4 q.2 := p;

Tail calls Finally, let us mention an important implementation detail. In a programming lan-
guage where the only mechanism for unbounded iteration is recursion, it is essential that this
feature is usable even if the number of iterations is large. For every recursive call, we have to al-
locate memory to store parameters and local variables. In a naive implementation this memory
will only be freed once all recursive calls have returned. This leads to amemory consumption that

21



2 Expressions and Functions

is linear in the number of recursive calls, which is problematic if this number is large. There is an
important situation where we can free this memory earlier: if the recursive call is the last expres-
sion of our function, i.e., the return value of the function is the value returned by the recursive
call.

1 let find_next_prime(n) { let fac(n) {

2 if n is prime then if n == 0 then

3 n 1

4 else else

5 find_next_prime(n+1) n * fac(n-1)

6 }; };

In the situation on the left, we will not need the parameters and local variables after the re-
cursive call has returned. Hence, we can free the memory containing them before the call to
find_next_prime instead of after it. This is called a tail-call optimisation. It amounts to repla-
cing the recursive call by a jump to the beginning of the function.

1 let find_next_prime(n) {

2 label start;

3 if n is prime then

4 n

5 else

6 (n := n+1; goto start)

7 };

After this transformation the function will use a constant amount of memory and is as efficient
as an imperative solution using a while-loop.

Frequently, it is possible to transform a recursive definition that uses non-tail calls into a tail-
call one by using an accumulator. For instance, we can define the factorial function as

1 let fac(n) {

2 let multiply(n, acc) {

3 if n == 0 then

4 acc

5 else

6 multiply(n-1, n*acc)

7 };

8 multiply(n,1);

9 };

After tail-call optimisation, this looks like

1 let fac(n) {

2 let multiply(n, acc) {

3 label start;

4 if n == 0 then

5 acc

6 else (
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2.10 Lazy evaluation

Eager evaluation. The evaluation of an expression proceeds from the left-most, inner-most
operation.

Lazy evaluation. The evaluation of an expression proceeds from the left-most, outer-most
operation.

7 new_n := n-1;

8 new_acc := n*acc;

9 n := new_n;

10 acc := new_acc;

11 goto start;

12 };

13 acc := 1;

14 goto start;

15 };

which (after some trivial optimisations) is equivalent to the imperative code

1 let fac(n) {

2 let acc = 1;

3 while n > 0 {

4 acc := n * acc;

5 n := n - 1;

6 };

7 return acc;

8 };

2.10 Lazy evaluation

Since our language does not support side-effects, the order in which we evaluate expressions does
not matter. Any order we choose produces the same result.

fun (x) {1+x*x} (1+1) fun (x) {1+x*x} (1+1)

=> fun (x) {1+x*x} 2 => 1+(1+1)*(1+1)

=> 1+2*2 => 1+2*(1+1)

=> 1+4 => 1+2*2

=> 5 => 1+4

=> 5

There are two canonical orders in which we can evaluate expressions:

• eager evaluation evaluates an expression starting with the left-most, inner-most operation,
while

• lazy evaluation starts with the left-most, outer-most operation.
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2 Expressions and Functions

Advantages of lazy evaluation It can be shown that lazy evaluation is more powerful than
eager evaluation in the following sense: every computation that terminates using an arbitrary
evaluation order also terminates with lazy evaluation and produces the same result. On the other
hand, there are expressions that terminate with a result using lazy evaluation but not with eager
evaluation.

It has turned out that there are two main areas where this property of lazy evaluation makes it
superior to eager evaluation:

(1) processing of infinite data structures and
(2) evaluations of (mutually) recursive definitions.

(1) Using data constructors with lazy evaluation, it is very simple to define and process infinite
data structures like infinite lists.

1 let ones = [1 | ones];

2 ones

3
4 let numbers i = [i | number(i+1)];

5 numbers

6
7 let add(x,y) { x+y };

8 let fib = [0, 1 | map2(add, fib, tail(fib))];

9 fib

But note that this means that there are no inductive lazy datatypes. For example

type nat = Zero | Succ(nat)

does not define the natural numbers since

let omega = Succ(omega);

defines the infinite number Succ(Succ(Succ(...))). Hence, in order to be able to define in-
ductive datatypes like natural numbers, finite lists, or finite trees, a lazy language must have sup-
port for eagerly evaluated data constructors.

(2) The definition of the Fibonacci sequence above is also an example of a recursive definition,
that is very easy to write down using lazy evaluation, but much more involved when using eager
evaluation. For instance, the following code computes the list of the first n Fibonacci numbers.

1 // lazy // eager

2 let fib = let fib_list(n) {

3 [0, 1 | let iter(i,a,b) {

4 map2(add, fib, tail(fib))]; if i == n then

5 let fib_list(n) = take(n, fib); []

6 else

7 [a+b | iter (i+1,b,a+b)]

8 };

9 [0, 1 | iter(2,0,1)]

10 };
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Disadvantages of lazy evaluation On the flip side, lazy evaluation has also severe disadvant-
ages. The most prominent one is that it cannot be combined with side-effects as it obscures the
order in which expressions are evaluated, which is of paramount importance in computations
with side-effects.

Furthermore, it turned out that it is very hard to predict thememory consumption of programs
using lazy data structures since one is never quite sure when a structure will be constructed and
when the program is done processing it, so the garbage collector can free it again.

2.11 Programming examples

Let us conclude this chapter with several examples of programs in a functional style. We concen-
trate on functions for list processing.

1 let compose(f,g) {

2 fun (x) { f(g(x)) }

3 };

4 let iterate(f,n) {

5 if n == 0 then

6 fun (x) { x }

7 else

8 compose(f, iterate(f,n-1))

9 };

10
11 type list =

12 | Nil

13 | Cons(a, b);

14
15 let nth(lst,i) {

16 if i == 0 then

17 head(lst)

18 else

19 nth(tail(lst), i-1)

20 };

21
22 let length(lst) {

23 case lst

24 | Nil => 0

25 | Cons(x,xs) => 1 + length(xs)

26 };

27
28 let sum(lst) {

29 case lst

30 | Nil => 0

31 | Cons(x,xs) => x + sum(xs)
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32 };

33
34 let map(f, lst) {

35 case lst

36 | Nil => Nil

37 | Cons(x,xs) => Cons(f(x), map(f, xs))

38 };

39
40 let fold(f, acc, lst) {

41 case lst

42 | Nil => acc

43 | Cons(x,xs) => fold(f, f(acc, x), xs)

44 };

45
46 let foldr(f, acc, lst) {

47 case lst

48 | Nil => acc

49 | Cons(x,xs) => f(x, foldr(f, acc, xs))

50 };

51
52 let reverse(lst) {

53 let iter(lst, result) {

54 case lst

55 | Nil => result

56 | Cons(x,xs) => iter(xs, Cons(x,result))

57 };

58 iter(lst, Nil)

59 };

60
61 // tail recursive version of foldr

62
63 let foldr(f, acc, lst) {

64 let g(x,y) { f(y,x) };

65 fold(g, acc, reverse(lst))

66 };

Exercise Write an implementation of balanced binary search trees in the toy language as it is
defined so far.
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3.1 Static and dynamic typing

In most languages there are operations that cannot be performed on every kind of input. For
instance, division might be defined for numbers, but not for strings. For this reason one distin-
guishes several types of data. In some languages such as Haskell, Scala, or Rust, the type system
is extremely sophisticated and subject to active research, other languages make do with rather
impoverished type systems. For instance, the original Fortran had only two types: integers and
floating point numbers.

Traditionally, there are two radically different ways of implementing types: static typing and
dynamic typing. In static typing, every identifier of the program is associated with some type and
the compiler ensures that the value of the identifier will always be of that type. In dynamic typing
on the other hand, the types are not associated with the identifiers but with the values themselves.
That means that every value in memory is tagged with its type and these tags are checked by all
operations performed on the value. Each choice has its advantages and disadvantages.

Dynamic typing

• is very slow: every operation performs runtime checks of the types,

• catches only type errors in those parts of the program that are executed,

• is more permissive and more convenient: no type annotations or other kinds of red tape.

For these reasons, dynamic typing is mainly useful in scripting languages, but not for writing
non-trivial programs.

Static typing

• is stricter and catches more errors,

• the compiler can prove that the program is free of type errors,

• there is no runtime overhead,

• it can sometimes be inconvenient: the programmer has to write additional code in order
to make correct code actually compile,

• not all properties can be checked statically (e.g., array bounds),

Static typing. Types are checked at compile-time.
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Dynamic typing. Types are checked at run-time.

• with sophisticated type systems, the error messages from the type checker can be hard to
understand,

• type annotations help document code,
• types help with refactoring,
• static type information can provide implicit context that changes the behaviour of a piece

of code (e.g., with overloading).

Good static type systems try not to get in the way of the programmer. For instance, ML-like
languages provide static type checking without requiring any kind of type annotations. Unfor-
tunately, other languages are much less successful in this respect, think for example of template
code in C++.

For serious software development, static type checking has turned out to be indispensable. First
of all, we can use it as a means for the compiler to automatically prove that the program does not
contains certain kinds of errors. The more expressive the type system is, the more kinds of errors
we can catch.

Secondly, types also help with program design. When tasked with writing a certain submodule
of a program,many programmers first design the types and data structures of the data involved.
Then they use these types as a guide to write the actual code.

Thirdly, experience has shown that a good type system helps with refactoring large programs:
after a change in one place of the program, the type checker can tell you all the other places you
have to change as well.

Finally, let us note that the advantages of type checking apply much more to symbolic compu-
tations, than to numeric code (e.g., it doesn’t catch sign errors).

3.2 Type annotations

To implement static typing in our toy language, we add type annotations to every declaration.
(This is not strictly necessary as there exist algorithms to automatically infer the types from a
program without annotations. We will discuss such algorithms below.)

⟨expr⟩ ∶∶= . . . ∣ let ⟨id⟩ : ⟨type⟩ = ⟨expr⟩ ; ⟨expr⟩
∣ let ⟨id⟩ ( ⟨id⟩ : ⟨type⟩ ) : ⟨type⟩ { ⟨expr⟩ }; ⟨expr⟩
∣ fun( ⟨id⟩ : ⟨type⟩ ) : ⟨type⟩ { ⟨expr⟩ }

We also need to define which types the language provides. In our case we have the base type
int for integers, function types a -> b, and one type foo for every type declaration

type foo = | A(a,b,...) | ... | Z(c,d,...);

in the program. So far, the parameters a,b,c,d,... in constructor declarations served only to
denote the arity of the constructor. Now we require them to be type expressions specifying the
type of the constructors arguments. For instance, if we want A to take an integer and a boolean,
we write A(int, bool).
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Basic type. An atomic type without parts.

Composite type. A type built up from several other types.

Examples

1 let fac(n: int) : int {

2 if n == 0 then 1 else n * fac(n-1)

3 };

4
5 let compose(f: int -> int, g: int -> int): int -> int {

6 fun (x: int) { f(g(x)) }

7 };

8 let twice(f : int -> int): int -> int {

9 compose(f, f)

10 };

11 let apply : (int -> int) -> int -> int =

12 fun (f: int -> int) {

13 fun (x: int) {

14 f(x)

15 }

16 };

17
18 type int_list = IntNil | IntCons(int, int_list);

19
20 let sum(l : int_list) : int { ... };

Exercise What could be the type of the following function?

let f = fun (x) { x(x) };

(Note that f(f) evaluates to f(f).)

3.3 CommonTypes

Let us give a short overview of types that are commonly found in real programming languages.
Generally, we distinguish between basic and composite types. The former are atomic and built
into the language,while that latter are composed out of one or several simpler types. Hence, basic
types are types such as

• integers, signed and unsigned, of various precisions, including arbitrary precision integers,

• floating point numbers of various precisions, decimal numbers (0000.00), and arbitrary
precision rational numbers,
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• integer ranges (1..100),

• enumerations (enum colours { Red, Green, Blue, Yellow }),

• booleans,

• characters,

• strings,

• the empty type and the unit type,

while the composite types include

• arrays,

• pointers and references,

• functions and procedures,

• records and tuples,

• unions and variants,

• lists and maps or dictionaries.

Arrays Arrays are homogeneous (all elements have the same type) collections of values. Some
languages come with a very elaborate support for arrays. The language Fortran shines in this
area, as it was specifically designed for numeric computations where arrays play an important
rôle. In particular, Fortran supports higher-dimensional arrays and efficient array slices, which
are (not necessarily contiguous) subsets of an array. For instance, one can define a slice consisting
of the first 16 elements of every other row of an array. The important aspect of a slice is that it
does not make a copy of the array, but only provides a new way to index the elements of the old
array.

From the point of view of the type system, a point of concern is the fact that it is not possible
to statically check that all array accesses are within bounds. This would be a very desirable thing
to have, as array overflows are a very common source of bugs and security problems. Therefore,
modern languages usually add dynamic bounds checks to each array access. (Usually these can
be turned off selectively at places where efficiency matters.)
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Product type. Several components are laid out in memory next to each other.

Sum type. All components share the same memory. Only one is usable at the same time.

Product types Products are similar to arrays, but they are inhomogeneous (the elements can
have different types) and their size is fixed. Set-theoretically they correspond to a cartesian product.
Commonly the components of a product are labelled and can be referred to by their name. In this
case such types are usually called records or structures.

1 type triple = int * int * int;

2 type vector = [ x : float, y : float, z : float ];

Languages supporting product types come in two flavours depending on how the components
of a product are accessed. If the language has first-order fielding the component is fixed at compile
time, while a language with first-class fielding allows the runtime computation of the component.
For instance, if we write r.x to access the field named x of a record r, we know the field at compile
time. But if we can write r.(e) with an arbitrary expression e, it is only known at compile time
which field we are accessing. Clearly, first-class fielding is much more expressive than first-order
fielding, but it is unfortunately not possible to combine it with static type checking. For example,
in

1 type foo = [ x : int, y : bool ];

2
3 r.(if i = 0 then x else y)

we cannot say, whether the expression evaluates to an integer or a boolean. For these reasons,
first-class fielding is usually found only in dynamically typed scripting languages. One example,
where it is rather useful is in writing serialisation and deserialisation code.

Sumtypes Sum types (also called tagged unions) are dual to products. Instead of storing several
values at the same time, a sum type contains only a single value whose type may be one of a given
list of types. Set-theoretically they correspond to a disjoint union.

1 type int_list = | Nil | Cons(int, int_list);

2 type expr = | Num(int) | Plus(expr, expr) | Times(expr, expr);

3 type nat = | Zero | Suc(nat)

In languages with sum types, one usually combines them with products, i.e., one allows the user
to specify a type as a sum of products as in the example above. In this case one speaks of variant
types or algebraic types.

Variant types are frequent in ML-like languages, but not well-supported by C-based or Pascal-
based ones. C++ has enums which can be seen as sum types where the constructors have no
arguments. It also has untagged unions,which can simulate sum types by adding the tagmanually.
Pascal supports a case-statement inside records which serves the same purpose as a sum type.

Note that sum types add a dynamic component to a type system. For instance, if we have a
value of type
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Unit type. A type with a single value.

Void type. A type without any values.

type either = | Left(int) | Right(bool);

it is unknown at compile time whether it is an integer or a boolean. Hence, we have to tag the
value with its variant (Left or Right). Note that this is the same thing we do in set theory, where
a disjoint union is usually defined as

A+ B ∶= {} × A∪ {} × B .

Here the first component ( and ) serves as a tag distinguishing the elements of A and B.

Unit and void type One has to distinguish between a unit type which has exactly one value,
usually the empty tuple,

type unit = | Nothing;

and the void type which has no values at all.

type void = ;

If we want to treat procedures as functions with a special return value, this value must be of a unit
type, since a function must return a value but we do not care which one it is. A function whose
return type is void cannot return at all as it would have to produce a value of void type to do so.

Recursive types Most programming languages have at least some support for recursively defined
types such as

type expr = | Num(int) | Plus(expr, expr) | Times(expr, expr);

Note that a value of the form, say, Plus(e,e) is not stored in memory by having a memory
segment consisting of a tag and two copies of the value e and e (which can be arbitrarily large).
Instead, the memory segment contains the tag and pointers to the two argument values. In many
languages one is only allowed to define recursive types if the recursion is via such pointers. Some
languages have full support for recursive types by allowing arbitrary recursive definitions. Un-
folding such definitions produces a possibly infinite type expression. For instance,

type t = t -> t

is the type of all functions from t to t. It unfolds to

type t = (... -> ...) -> (... -> ... )

This is the type of the self-application function.

let f(x : t): t = { x(x) };

This means that with full support for recursive types, we can type the recursion operator as
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Name equivalence. Two types are only equivalent if they have the same name.

Structural equivalence. Two types are equivalent if they have the same definition.

1 type b = b -> a;

2 let rec(f : a -> a) : a =

3 (fun (x : b) : a { f(x(x)) })

4 (fun (x : b) : a { f(x(x)) });

3.4 Type checking

Type equivalence Before being able to type check, we have to decide when we allow an argu-
ment of a given type a to be passed to a function expecting arguments of some, possibly different,
type b. Clearly, this should be the case if the two types are equivalent. But what does being equi-
valent mean? There are basically two choices.

• With name equivalence two types are considered to be the same if they have the same name.
Examples of languages using name equivalence are Pascal, C and their descendants.

• With structural equivalence two types are considered to be the same if they have the same
structure, even if their names might be different. Languages in the ML-family typically use
this kind of equivalence.

Example In C, which uses name equivalence for structures, all of the following types are con-
sidered to be distinct since they have different names.

1 type vector = [ x : int, y : int ];

2 type pair = [ x : int, y : int ];

3 type pair2 = [ y : int, x : int ];

In ML the corresponding definitions would all define the same type, so we could pass a pair2 to
a function expecting a pair.

Example Suppose we want to use types to distinguish between measurements in metric units
and in imperial units. How to do so depends on which kind of equivalence the type system uses.

1 // name equivalence // structural equivalence
2 type metric = float; type metric = M(float);

3 type imperial = float; type imperial = I(float);

4
5 let f(x: metric): metric { let f(x: metric) : metric {

6 ... 2*x ... ... 2 * unpack(x) ...

7 }; };

8 let x : imperial = 10; let x : imperial = I(10);

9 f(x) // error f(x) // error
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Type coercion. An implicit type conversion.

Type cast. An explicit type conversion.

Type conversions There are cases where we can allow passing arguments to a function even
if the types are not equivalent. For instance, this is the case when we can convert the argument
to the expected type. For example, in C one can pass an integer to a function expecting a floating
point argument and it will automatically converted into a floating point number. When such con-
versions are done automatically by the compiler, we speak of type coercions. Some languages like
C, Perl, or JavaScript are very liberal with regard to type coercions,while other languages, like ML
and Haskell do not allow coercions at all. Except for scripting languages, modern programming
languages usually try to reduce the amount of coercions.

On the one hand, coercions are convenient since they make the code shorter and cleaner. On
the other hand, they make the code harder to understand (implicit behaviour) and can hide type
errors. This is the usual trade-off between an implicit effect and an explicit one. In moderation
they can make the life of the programmer easier, but when overdone they easily create a mess.

Some languages with a permissive type system also allow type casts. A type cast is a command
telling the compiler to regard a value as having a user-specified type instead of its real one.

There are several kinds of conversion between types (either in a coercion or a type cast). If
every value of the first type has the same memory representation as the corresponding value of
the second type, we can just change the type and there is no run-time overhead. If the memory
representations differ (e.g., if we convert an integer to a floating-point number), we have to insert
code that does the conversion. Some languages also support non-converting type casts. Such
casts never change the memory representation, even if this does not make sense semantically.
This feature makes the type system unsound, but it can be useful for system programming. For
instance, in C one can cast from any pointer-type to any other in this way.

An additional complication arises if not every value of one type can be converted to the other
type. In such cases one has to add a runtime check ensuring that the conversion is possible. For
example, in object-oriented languages one sometimes wants to cast an object of a superclass to
one of its subclasses. In this case a runtime check is needed to make sure that the object is in fact
of the required class.

Type checking After these preliminary remarks, let us finally turn to type checking itself. For
the simple type system we have chosen for our toy language, which is basically what the older
mainstream languages like C and Pascal did provide, this is straightforward.

1 let fac(n : int) : int {

2 if n == 0 then 1 else n * fac(n-1)

3 };
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Polymorphism. The phenomenon where a piece of code can be used with several types.

Ad-hoc polymorphism. Providing several definitions for the same identifier, each with its
own type

3.5 Polymorphism

In the typing examples above, we have seen that, when adding type annotations to a program,
we sometimes have to make arbitrary choices since some functions could be used with different
types. For instance, the identity function

fun (x) { x }

can be given the type int -> int, or bool -> bool, or (int -> bool) -> (int -> bool),
and so on. It would be desirable, to use the same function definition for all suitable types instead of
requiring a separate definition (with the same code) for each of them. This phenomenon is called
polymorphism. Most modern programming languages support it in one form or other. One can
broadly distinguish three different forms of polymorphism.

(i) ad-hoc polymorphism, also called overloading,

(ii) parametric polymorphism as can be found in ML-like languages, and

(iii) subtyping polymorphism as is present in object-oriented languages.

Ad-hocpolymorphism In ad-hoc polymorphism the programmer can define several versions
of a function. Which of themwill be selected when the function is called will depend on the types
of the supplied arguments. A typical example are arithmetic operations which in many languages
are defined both for integers and floating point numbers.

1 + : int -> int -> int

2 + : float -> float -> float

3 + : string -> string -> string

Ad-hoc polymorphism is the most flexible form of polymorphism since it allows the program-
mer complete freedom. The disadvantage is that one has to write several different versions of
each function which can become quite a chore. Furthermore, if ad-hoc polymorphism is used
extensively the program can become hard to understand as it will be difficult to figure out which
version of the function will be called at each call site.

Parametric polymorphism In parametric polymorphism we allow type expressions to con-
tain type variables. For instance, we can specify the type of the map function as

Parametric polymorphism. Type expressions may contain parameters. Each identifier has
a single definition that works for all types.
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Subtyping polymorphism. A subtyping relation is defined between values. Every value is
implicitly converted to its supertypes.

Type inspection. Making decisions based on types at compile-time or runtime.

map : (a -> b) -> list(a) -> list(b)

with two variables a and b. This is a simple and quite clean extension of the type system with few
drawbacks. But is is less flexible than ad-hoc polymorphism. Most of the functional programming
languages have adopted this version of polymorphism.

Subtyping polymorphism This kind of polymorphism is based on the subtyping relation. We
say that a type a is a subtype of b if every value of type a can be used where a value of type b was
expected. This is a situation that commonly arises in object-oriented languages where objects of a
subclass automatically also belong to their superclasses.We will discuss subtyping polymorphism
in more detail in Chapter 8. As far as the expressive power is concerned, there are things that
subtyping can express, which parametric polymorphism cannot, and vice versa. Both approaches
have their merits, but they have a very different feel to them. While parametric polymorphism is
conceptually quite simple, subtyping makes a type system very complex.

Type inspection Some languages provide mechanisms to inspect the type of a polymorphic
value either at compile-time or at runtime. In this way a polymorphic function can behave dif-
ferently depending on which type is supplied. A prominent example is serialisation, where an
arbitrary value is converted to a string.

1 let serialise(value) {

2 case type_of(value)

3 | int => int_to_string(value)

4 | bool => bool_to_string(value)

5 | string => sanitise_string(value)

6 | cons => "cons(" ++ serialise(fst(value)) ++ ","

7 ++ serialise(snd(value)) ++ ")"

8 | ...

9 };

Type inspection is a way to add the power of ad-hoc polymorphism back to a system based on
parametric or subtyping polymorphism. It makes the type system much more powerful, but also
less uniform and more complex.

Data polymorphism So far, we have looked at polymorphic functions. Data structures can
also be polymorphic. For instance, the general list type and the types of the two constructors are

1 type list(a) = | Nil | Cons(a, list(a));

2 Nil : list(a)

3 Cons : a -> list(a) -> list(a)
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Type inference. Automatically computing the types at compile-time.

3.6 Type inference

Writing explicit type annotations at every declaration can become quite tedious, in particular, if
we use a sophisticated type system where the type expressions are quite large (see, for instance,
template code in C++). Many modern languages therefore implement a form of type inference
where the types of expressions are automatically derived from the code without the help of type
annotations. The amount to which this is possible strongly depends on the type system. In ML-
like systems, type inference is possible without restrictions. In more complicated type systems,
we need some type annotations but can infer others. The original type inference algorithm for
ML was developed by Damas, Hindley, and Milner. Therefore, one frequently speaks of Hindley-
Milner type inference. Given an expression the algorithm looks at every subexpression and ex-
tracts a list of equations between the types involved and solves them.

Example

let twice(x) { 2 * x };

We start by associating a type variable with every subexpression.

2 ∶ α
x ∶ β
* ∶ γ
2*x ∶ δ
fun (x) { 2*x } ∶ ε

We already know that

α = int and γ = int * int -> int .

By looking at each subexpression in turn, we obtain the following additional equations.

2*x ∶ γ = α * β -> δ
fun (x) { 2*x } ∶ ε = β -> δ

Solving them we obtain.

α = int , β = int , γ = int * int -> int , δ = int , ε = int -> int .

Example

let compose(f,g) { fun (x) { f(g(x)) } }
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Unification. Solving an equation between terms.

Again we start by associating type variables with subexpressions.

x ∶ α
f ∶ β
g ∶ γ
g(x) ∶ δ
f(g(x)) ∶ ε
fun (x) { f(g(x)) } ∶ ξ
compose ∶ η

The equations are

γ = α → δ
β = δ → ε
ξ = α → ε
η = β → γ → ξ

which lead to the solution

η = β → γ → ξ = (α → δ)→ (δ → ε)→ α → ε .

Unification The process of solving a single type equation s = t is called unification. Concep-
tually, the algorithm is very simple. If s or t is a type variable, we can set its value to be the other
term. Otherwise, we check that the outermost operator of both type expressions is the same and
recursively unify the arguments.

x = t  x ∶= t
s = x  x ∶= s

s → s′ = t → t′  s = t ∧ s′ = t′

c(s, . . . , sn) = c(t, . . . , tn)  s = t ∧ ⋅ ⋅ ⋅ ∧ sn = tn
s = t  failure

Type inference has its advantages and disadvantages. On the one hand, it is very convenient,
relieving the programmer of the burden of having to annotate every declaration with a type. Fur-
thermore, it will find the most general type for an expression and automatically introduce poly-
morphism. On the other hand,having explicit type annotations serves as a kind of documentation
and improves the readability of the code (explicit vs. implicit information). Furthermore, error
messages from a type checker with type inference are usually more complicated and harder to
read. One reason for this is that the equation-based approach of type inference obscures the loc-
ation of the type error. The algorithm only determines that some equations are inconsistent, but
it cannot deduce which of them is the cause.
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3.7 Advanced topics

Much of the current research on programming languages focuses on type theory. In this last
section we briefly discuss a few of the more experimental usages of type systems.

Linear types Type systems with linear types keep track of how many ways there are to access
a given value. This information can be used in several ways.

• It can be used for resource management: if a certain resource is no longer accessible, it can
safely be deallocated.

• It can be used to manage mutable state: a mutable value can only be modified if it cannot
be accessed by another part of the program.

• It can be used as a synchronisation mechanism for shared-memory concurrency: no mut-
able value should be accessible from different threads.

A prominent example of a language with a linear type system is Rust, which uses linear types for
all of these tasks.

Dependent types Dependent types are parameteric types where the parameters are not ne-
cessarily other types, butmight also be other values. For instance, one could have a type array(n)
for arrays of length n, where the parameter n ranges over integers. An example of a language sup-
porting dependent types is Idris. Contrary to many other such languages, the focus is here not on
theorem proving, but on programming.

Gradual types Languages with gradual typing provide a mixture of static and dynamic typing.
The idea is to use dynamic typing in the early prototyping phase of a project and to incrementally
transition to static typing later on.
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4 State and Side-Effects

4.1 Assignments

In its current state our toy language is purely functional, that is, running a program amounts to
evaluating a mathematical expression that produce some value and nothing more. In this chapter
we will add side effects to the picture. With side effects expressions do not only produce a value,
but they can also modify the state of the world in certain ways, say, changing the contents of
memory cells, drawing on the screen, or reading keystrokes from the keyboard. These are all
essential features no serious general purpose programming language can do without. Even so-
called purely functional languages must therefore support side effects, but they do it in a way
which is separated from the rest of the program. For instance, a Haskell program consists of two
phases. The first phase is pure and does not allow side effects. It computes a list of commands
that do have side effects. This list is then executed in the second phase.

We start by extending our toy language with two commands providing different kinds of side
effects: an assignment statement to alter the contents of a memory cell and a print statement to
produce screen output.

⟨expr⟩ ∶∶= . . . ∣ skip ∣ print ⟨msg⟩ ⟨expr⟩ ∣ ⟨expr⟩ ; ⟨expr⟩
∣ ⟨id⟩ := ⟨expr⟩

1 let x = 1;

2 print "x has value: " x;

3 x := 2;

4 print "now x has value: " x;

With these new statements we cannot regard an expression e anymore as a mathematical func-
tion env → val that, given values for the free identifiers in e, produces a value. Instead, we also
have to specify its effect on the state of the world. That is, an expression now determines a func-
tion env × state → val × state. In our case the state must contain the memory contents and also
the produced output.

Note that, with assignments identifiers no longer represent constant values but variables in-
stead. A variable in this context is an identifier associated with a location in memory which con-
tains the value stored in the variable. This means that the notion of an environment is changed
from a function mapping names to values to one mapping names to memory locations.

Side effects. Additional effects of an expression besides returning a value.
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Referential transparency. The property that expressions are indistinguishable from their
values.

We have seen that in a language with assignments we must distinguish between expressions
denoting values and those denoting memory locations. Only the latter can appear on the left-
hand-side of an assignment, while the right-hand-side can contain both kinds of expressions.
One frequently uses the terminology of l-values and r-values for locations and values, respectively.
Here, the l and the r specify on which side of an assignment the expression can appear.

In our toy language, the only l-values are variables and expressions for structure access r.m. In
real imperative languages like C several other kinds of expression can be l-values, for instance,
expressions for array indexing a[i].

4.2 Ramifications

The support for side effects has a drastic influence on all aspects of a programming language. Let
us mention a few aspects.

Evaluationorder First of all,with side effects the order of evaluation becomes important. Until
now we could not have cared less about in which order subexpressions were evaluated (if we
ignore termination issues for the moment), but with assignments and IO the order matters. For
instance,

1 let x = 0;

2 let y = (x := 1; 3) + (x := 2; 4);

3 x + y

returns either  or  depending on which term in the definition of y is evaluated first. This means
that with side effects we have to define an evaluation order, preferably one that can easily be read
off from the syntactic structure of the code. This rules out lazy evaluation, where it is very hard
for the programmer to determine in which order expressions are evaluated.

Failure of referential transparency Referential transparency refers to the property that an
expression can be replaced by its value without changing the behaviour of a program. This makes
reasoning about programs much simpler. But it clearly fails for an expression with side-effects
(values have no side-effects). For instance, a print statement has type unit, but we cannot replace
it by ().

Uninitialised data structures Another new effect is that assignments allow for uninitialised
or partially initialised data structures. Such things are not possible in a purely functional language
since there is no way to retrospectively initialise objects. Partial initialisation is very convenient
when creating mutually recursive data structures. We can first allocate the memory for all the
structures and then fill in the pointers between them. Of course, having uninitialised data struc-
tures is also a source of bugs when such a structure escapes into a part of the program that expects
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Aliasing. A situation where two different expressions refer to the same memory location.

Deep copying. Copying a data structure and all structures reachable from it via pointers.

its inputs to be fully initialised. (This is a common problem when writing constructors in, say,
C++ as constructor code is executed while the objects in question is not yet fully initialised. So
all methods called inside a constructor have to work with a partially initialised object.)

Aliasing With assignmentswe have to distinguish twonotions of equality. Twoobjects can have
the same value or the same memory location. We can tell these two apart by changing the value
of one object. If the value of the second object also changes, they share the same memory loca-
tion, otherwise their locations are distinct. Having the same memory location accessible through
several variables or expressions is called aliasing. For instance, consider the following code.

1 let x = 1;

2 let y = x;

3 x := 2;

4 y

Depending on the semantics of our programming language y will or will not alias x and the code
will return either 1 or 2.

When working with mutable data structures, aliasing has to be strictly controlled. If a piece of
code wants to modify a data structure and it does not know whether there is aliasing involved, it
has tomake a copy of the structure beforemodification. In big programswritten by a large teamof
programmers, it is not always clear at which places aliasing can occur. Therefore, one commonly
makes copies of data ‘just to be sure’. This leads to a lot of unnecessary copying. For instance,
in one version of the Chrome web browser, profiling revealed that every single keystroke in the
URL field the browser resulted in several thousand memory allocations. This copying does not
only slow down the program it also wastes space. When working with immutable data structures,
one can have them share those parts they agree on. For instance, we can have two lists share a
common tail or two search trees share common subtrees. This is a common situations for data
structures in functional languages.

In light of the aliasing effect, a language designer has to decide what to do if a data structure
gets assigned to a variable. The most efficient solution is to just let the variable point to the same
object without making a copy. As we have discussed, this creates aliasing. If one wants to avoid
aliasing, one has to make a copy of the data structure and, recursively, of all data structures reach-
able from the given one via pointers. This approach is called deep copying. It is quite slow and
memory inefficient. There is also a compromise where only the first structure is copied, but not
the pointed to structures. This approach, called shallow copying, is clearly inferior to the other two:
it is less efficient than the first one, does not avoid aliasing, and it is also more complicated for the
programmer. We will discuss these different strategies more below in the section on parameter

Shallow copying. Copying a data structure without duplicating other structures pointed to.
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passing.

Cleanup code Finally, since our code can now affect the state of the system, it needs to clean
up when it is done by freeing the allocated resources like, say, memory, file handles, or windows.
This means that we have to make sure that every code path leaving this part of the program calls
the cleanup code. In practice, this can be a lot of work and rather a nuisance. It is also quite error
prone as it is easy to forget to free one or two of the resources. Note that, in addition to direct
returns we also have to check indirect ones like exceptions.

1 ...

2 let a = allocate_a();

3 if error then

4 return

5 ...

6 let b = allocate_b();

7 if error then {

8 free(a);

9 return

10 }

11 ...

12 let c = allocate_c();

13 if error then {

14 free(b);

15 free(a);

16 return

17 }

18 ...

Many languages have added special constructs to help with cleanup. For instance, in Java a block
can be annotated with a finally-statement which contains code that is always executed when con-
trol leaves the block.

1 let a = nil;

2 let b = nil;

3 let c = nil;

4 {

5 ...

6 a := allocate_a();

7 if error then return;

8 ...

9 b := allocate_b();

10 if error then return;

11 ...

12 c := allocate_c();

13 if error then return;
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14 ...

15 }

16 finally {

17 if c then free(c);

18 if b then free(b);

19 if a then free(a);

20 }

A similar idea is to have a defer-statement which specifies commands to be executedwhen leaving
the current block.

1 let a = nil;

2 let b = nil;

3 let c = nil;

4 {

5 ...

6 a := allocate_a();

7 if error then return;

8 defer free(a);

9 ...

10 b := allocate_b();

11 if error then return;

12 defer free(b);

13 ...

14 c := allocate_c();

15 if error then return;

16 defer free(c);

17 ...

18 }

Discussion Side effects drastically increase the power of a language. There are algorithmic
problems that have very simple solutions using side effects, but where the corresponding side-
effect free solutions are extremely cumbersome or inefficient. Furthermore, every serious lan-
guage must support some form of IO,which is not possible without side effects.

On the flip side, side effects make the code much more complicated to reason about. They
add implicit interactions between different parts of a program, for instance, via mutable global
variables. This reduces encapsulation, makes the program harder to understand (non-local reas-
oning), and the coding more error prone.

So side effects are necessary but dangerous. Therefore it is desirable for a language to have some
sort of separation between pure and impure code. This separation was already present in Algol
which distinguishes between expressions and commands. A modern example is Haskell, which is
particularly strict in this regard. Other languages are much more relaxed. For instance in ML or
C++, one can declare variables to be constant (the default inML) ormutable (the default in C++).
This can be used to limiting side effects. So far, none of the solutions are really satisfactory. Either
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the separation is too lenient to offer real protection against side effects in places where they are
not needed; or it is too strict making it very cumbersome. For instance, if during development
one discovers that some part of a Haskell program would profit from a use of side effects, it is
frequently necessary to rewrite large (and mostly unrelated) parts of the program to make the
type system happy.

4.3 Parameter passing

Having introduced assignments and mutable state, we have to decide how it interacts with para-
meter passing. When we change a variable inside a function, does this effect become visible on
the outside?

1 let f(x) { x := 1; };

2 let y = 0;

3 f(y);

4 y

Some languages allow the programmer to annotate function definitions with the desired beha-
viour for the parameters. For instance,Ada distinguishes between in-mode, out-mode, and in/out-
mode parameters. In-modeparameters allow the passage of value from the call site to the function,
out-mode parameters allow the passage in the opposite direction, and in/out-mode parameters
can be used for both. Most other languages only provide in-mode parameters. Let us take a closer
look at the various parameter passing mechanisms.

Call-by-value is the standard mechanism for in-mode parameters. When calling a function,
the argument values are passed as copies to the function body. Modifications of the copies do
not affect the originals. This is a very safe method that avoids any confusion cause by unexpected
modifications. The disadvantage is that it can be inefficient if large objects are passed in this way.

Call-by-result is the analog of call-by-value for out-mode parameters. No value is passed dur-
ing the function call. Instead, when the function returns, the current contents of the variable
corresponding to the parameter is copied back to the argument, which must be an l-value. Call-
by-result has the same advantages and disadvantage as call-by-value. There are two additional
problems that need to be addressed.

(i)What happens if the same variable is passed to two different out-mode parameters?

1 f(in x, out y, out z) {

2 y := x+1;

3 z := x+2;

4 };

5 let u = 0;

6 f(u,u,u);

(ii) At what time is the l-value passed as argument evaluated?
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1 f(in x, out y, out z) {

2 y := x+1;

3 z := x+2;

4 };

5 let i = 0;

6 f(i, array[i], i);

Call-by-value-result/call-by-copy/call-by-copy-result combines call-by-value and call-by-
result for in/out-mode parameters. The argument value is copied to the parameter when the
function is called and copied back, when it returns.

1 let u = 1;

2 let f(x) {

3 print "u is " u;

4 x := 2;

5 print "u is now " u;

6 };

7 f(u);

8 print "u is now " u;

Call-by-reference is a more efficient version of call-by-value-result. Instead of copying the
value back-and-forth, its address is passed to the function. EveryModification inside the function
directly affects on the original l-value. This is very efficient, but can create aliasing problems.

1 let u = 1;

2 let v = 0;

3 f(x, y) {

4 x := x + u - v;

5 y := y + u - v;

6 };

7 f(u, v)

1 f(x, y) { x := 1; y := 2; };

2 g(x, y) { y := 2; x := 1; };

3 let u = 0;

4 f(u, u); print "after f:" u;

5 g(u, u); print "after g:" u;

Call-by-name is a radically different calling convention invented inAlgol. Here the expression
given as argument is substituted for the formal parameter in the function body using a capture-
avoiding substitution, i.e., all local variables in the function will be renamed to avoid name clashes.
In an implementation this amounts to passing the argument expression as a thunk (a suspended
computation). This calling convention is the basis for implementing lazy evaluation. For code
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without side-effects,we have seen that call-by-name is nearly indistinguishable from call-by-value
(except for issues of termination). In combination with side-effects, call-by-name is radically
different from call-by-value.

1 let i = 0;

2 let array = [1,2];

3 let p(x) {

4 i := x;

5 x := 0;

6 };

7 p(array[i]);

8 print i array[0] array[1];

A famous example of call-by-name is what is called Jensen’s device. The function

1 let sum(k, l, u, expr) {

2 let s = 0;

3 for k = l .. u {

4 s := s + expr;

5 };

6 s;

7 };

computes∑u
k=l expr where the expression can be passed as an argument.

• sum(i, 0, 99, array[i]) sums the first 100 entries of an array.

• sum(i, 1, 100, i*i) sums the first 100 square numbers.

• sum(i, 0, 3, sum(j, 0, 3, m[i,j])) sums the entries of a  ×  matrix.

Call-by-need is an optimised version of call-by-name useful for in-mode parameters. It is
the standard calling convention used in lazy functional languages like Haskell. Here, after the
first evaluation of a passed argument expression, the result is stored, so subsequent uses of the
parameter do not need to evaluate the expression again. Of course, this onlyworks if the argument
expression has no side effects.

Call-by-macro-expansion is also similar to call-by-name but uses textual substitutions in-
stead of capture-avoiding ones. Hence, the function works like a macro. This calling convention
has its uses in a few limited cases, but it is clearly unsuited as the main calling convention of a
language. Besides it being hard to implement efficiently (in particular, if recursion is involved), it
also introduced non-local effects via unintended variable capturing. In particular, renaming local
variables can change the behaviour of a program.

More examples

1 let f(x,y) { x := 2; y := 3; x };

2 let u = 1;
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3 let v = 1;

4 let w = f(u,v);

5 print "u is now: " u;

6 print "v is now: " v;

7 print "w is now: " w;

8 let w = f(u,u);

9 print "u is now: " u;

10 print "v is now: " v;

11 print "w is now: " w;

12
13 let swap(x,y) { let tmp := x; x := y; y := tmp };

14 let a = 1;

15 let b = 2;

16 swap(a,b);

17 print "a is now: " a;

18 print "b is now: " b;

Discussion The consensus today is that one does want to have call-by-value in languages with
side effects and call-by-need in languageswithout. The reason for call-by-value is to avoid aliasing,
in particular variable aliasing where writing to one variable can change the contents of another
one. There is also data structure aliasing where part of a data structure is accessible from different
variables. If one wants to avoid this as well, we have to copy entire data structure when passing
them to a function. This process is called deep copying as it involves following all pointers in the
structure and recursively copying the memory pointed to. Since deep copying is very inefficient,
it is implemented by only a few languages. Some languages prove a compromise where only the
structure directly pointed to is copied, but no recursive copying occurs. This is called shallow
copying. Shallow copying has fallen out of favour, as it does not really solve the problem of aliasing
and it is still more inefficient than call-by-value. Therefore, most languages today use call-by-
value where non-scalars, i.e., composite data structures, are passed by pointer. Some allow the
simulation of call-by-reference by using explicit reference or pointer types. There is one exception:
in a logical language call-by-reference is more natural, as it better fits the semantics expected by
the user.

head([X|XS], X).

p(L) :- head(L, X), q(X).

In such languages, the problems of call-by-reference is reduced considerably as variables usually
only support single-assignments (see Chapter 7), not multiple ones.

4.4 Memorymanagement

When adding assignments we introduced the notion of a store. Our naive implementation added
values to the store but never removed them again. In a real implementation this is of course
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Reference couting. Each memory block contains a count of how many pointers point to it.

Garbage collection. The heap is scanned periodically to free unreachable memory blocks.

unacceptable. Programs would run out of memory. So every real programming language must
have some form of memory management that frees unused values in memory. There are three
forms of memory management.

• Inmanual memory management the programmer is responsible for (nearly all) allocations
and deallocations of memory blocks. (The exception is memory for local variables, which
is usually managed automatically on a stack.)

• In automatic memory management the runtime system of the language performs alloca-
tions and deallocations automatically.

• In type based memory management the type system tells the compiler at which places it has
to allocate and deallocate memory.

There are two types of problems memory management has to address.

• Dangling pointers, that is, pointers to already deallocated memory block. These can lead to
program crashes and other undefined behaviour.

• Unreachable objects, that is, objects that are still allocated, but no longer reachable via point-
ers. These waste memory but are otherwise harmless.

Manual memory management For manual memory management, the language provides
two operations to the programmer: one to allocate a certain amount of memory and one to deal-
locate it again. It is the responsibility of the programmer to make sure that memory that is not
needed anymore is actually freed. Of course, this is quite tedious and error prone. It is easy to
either forget to free memory, or to free it too soon. Both kinds of errors are hard to debug as the
place where the error is made is usually not the place where its effects manifest.

Most implementations of manual memory management use a list (or several) of free memory
blocks. If a certain amount of memory is to be allocated, this list is traversed until a block of
suitable size is found. If later on the memory is freed again, it is simply added to the list. In actual
implementations the picture is a bit more complicated as several techniques are added to increase
efficiency. In particular, one should note that, in this scheme, allocating and freeing memory are
both operations which take a non-negligible amount of time.

Automatic memory management With automatic memory management the programmer
is relieved of the burden of managing memory herself. There are two main approaches. The first
one is called reference counting. Here, every memory object has a counter which stores the num-
ber of pointer to this object. If, at some point, this counter reaches zero, the object is automatically
deleted. The other approach is based on garbage collection. Here, objects are not freed right away.
Instead, the program continues to allocate memory until the remaining amount of free memory
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drops below a certain threshold. Then the memory manager determines which part of the alloc-
ated memory is actually in use and frees the rest.

Reference counting is easy to implement, but very slow and it cannot deal with cyclic data
structures. Garbage collection on the other hand, is very hard to implement well. But it has the
advantage that allocations are very fast (usually just a pointer increment and a compare) and deal-
locations do not take any time at all. Of course there is also the collection phase, which can take
quite some time. How much depends on the kind of collection being performed. We distinguish
the following cases.

• During collection the whole program is stopped. This is the easiest to implement, but it
causes latency problems.

• A collection is split into several pieces, which are interleaved with the program execution.
This somewhat reduces the latency problem.

• The garbage collector and themain program run in parallel. This is very hard to implement
well, but it completely eliminates the latency problem at the cost of further increasing the
garbage collection overhead.

Type based memory management This is a novel approach to memory management and
still experimental. The only mainstream language currently implementing it is Rust. Here, one
uses the type system to encode information about the lifetime of objects. Objects are deallocated
when the type system says that they are dead. For instance, if an object is locally defined in some
scope and no references to the object are passed out of the scope, we know that we can safely
delete the object when the scope terminates. This approach tries to retain the safety guarantees of
automatic memory management while avoiding its overhead. It remains to be seen how practical
it will turn out to be.

Discussion Automatic memory management has clear advantages over manual management.
It guarantees the absence of certain kinds of memory errors which historically have been the
cause of many program crashes and security breaches. It also makes the code shorter and cleaner
as the programmer does not need to write cleanup code. Finally, there are scenarios where it is
even faster than manual memory management.

On the other hand, it also has several disadvantages. First of all, it is quite complex and hard
to implement. In particular, if it is to be parallelised or if one wants to address real-time require-
ments. Furthermore,many of the faster garbage collection algorithmswaste quite a bit of memory
(frequently only half of the real memory is usable). And finally, even with all optimisations, there
is still a considerable overhead associated with garbage collection. This makes it unusable for
certain applications with strict performance requirements like, say, computer games.

4.5 Loops

The imperative analogue of recursion is a loop. We distinguish two kinds of loops: bounded and
unbounded ones. A loop is bounded if the number of iterations is known beforehand. So for-loops
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are bounded and while-loops unbounded.

⟨expr⟩ ∶∶= . . . ∣ while ⟨expr⟩ { ⟨expr⟩ } ∣ for ⟨id⟩ = ⟨expr⟩ .. ⟨expr⟩ { ⟨expr⟩ }

There is amore fundamental primitive that can be used to implement loops: the goto-statement.
A goto is an unconditional jump that transfers the program execution to the specified location.

⟨expr⟩ ∶∶= . . . ∣ label ⟨id⟩ ∣ goto ⟨id⟩

Using gotos we can replace a while-loop

while cond { expr }

by the following code:

1 label start;

2 if cond then (

3 expr;
4 goto start

5 )

6 else

7 skip

Similarly, a for-loop

for i = first to last { expr }

can be translated to

1 let i = first;
2 let l = last;
3 label start;

4 if i == l then

5 skip

6 else (

7 expr;
8 i := i + 1;

9 goto start

10 )

Although goto is more expressive than for- and while-loops, it has the disadvantage that it can
easily lead to unreadable code jumping willy-nilly from one location to another. The nesting
imposed by loops prevents this kind of spaghetti code. There are several guidelines for the clean
use of goto-statements. The simplest one is to only allow forward jumps in the code, but no
backward ones. It can be shown that, if the language supports while-loops and if-statements, we
can eliminate every goto by restructuring the code. For these reasonsmanymodern programming
languages have no goto-statements.

There are situations where the lack of a goto-statement leads to rather cumbersome code. The
most common one is when one wants to jump out of the middle of a loop. Here a solution using
an if-statement is rather inelegant, in particular if several such jumps are needed.
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1 let terminate = False;

2
3 while ... and not(terminate) {

4 ...

5 if ... then

6 terminate := True

7 else {

8 ... rest of the loop ...

9 }

10 }

As this situation arises quite frequently, most languages provide specialised statements for them.
A break statement terminates the innermost loop, a continue statement skips the rest of the
loop’s body and directly continues with the next iteration, and a return statement terminates the
current function and returns to the caller.

⟨expr⟩ ∶∶= . . . ∣ break ∣ continue ∣ return ⟨expr⟩

In some languages, it is also possible to jump out of nested loops by adding a label to the break-
or continue-statement.

1 for i = 0 to 10 {

2 for k = 0 to 10 {

3 ...

4 continue i;

5 ...

6 }

7 }

4.6 Programming Examples

We have argued above that the use of side-effects can be problematic as it can make a program
much harder to understand. On the other hand, judicial use of side-effects can also greatly sim-
plify a program. Let us give some examples.

Recursive data structures As already explained in the section on recursion, we can use side-
effects to create truly recursive data structures: first, we allocate all the memory needed for the
various parts of the structure, then we initialise it and create all references between them.

Optimisation In certain cases using mutable variables makes an implementation more effi-
cient. If we update some value and do not need the old value anymore,we can store the new value
at the same memory location instead of allocating new memory. A typical example are accumu-
lator variables used in loops. For instance, the list functions of Section 2.11 can be written using
mutable variables in the following way.
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1 let length(lst) {

2 let len = 0;

3 while is_cons(lst) {

4 len := len+1;

5 lst := snd(lst);

6 };

7 len

8 };

9
10 let sum(lst) {

11 let s = 0;

12 while is_cons(lst) {

13 s := s + head(lst);

14 lst := snd(lst);

15 };

16 s

17 };

18
19 let map(f, lst) {

20 while is_cons(lst) {

21 fst lst := f(fst(lst));

22 lst := snd(lst);

23 }

24 };

25
26 let fold(f, acc, lst) {

27 while is_cons(lst) {

28 acc := f(acc, fst(lst));

29 lst := snd(lst);

30 };

31 acc

32 };

Another common example are mutable data structures such as hash tables, search trees, etc.
When programming in a functional style we have to create a new copy of the data structure
whenever we update it. (Frequently, we do not need to copy the whole structure though, since
we can share those parts that do not need to be modified with the old copy.) If we allow muta-
tion, we can change the structure in place, which is usually more efficient. Of course, if we do so
and we still need the old version of the structure, we have to manually make a copy first (which
is less efficient as the functional implementation since in this case we usually cannot use sharing
of parts of the structure).

Communication We can use mutable data structures to communicate between parts of the
code. For example, if we want to implement a random number generator, we have to pass its state
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from one invocation to the next. In a functional implementation, the generator takes the form

random : state -> (state, int)

Hence, we have to pass the current state of the generator to every place where we want call this
function and we have to pass the new state back to the next invocation. This is very tedious and
decreases the readability of the code quite a bit. In an implementation with side-effect, we can
store the current state in a mutable variable.

1 let state = ... some initial value ...;

2
3 let random(): int {

4 state := (1103515245 * state + 12345) mod 2147483647;

5 state

6 };

The problem with this use of side-effects is that it can make the program much harder to un-
derstand. Instead of explicitly passing values between the program parts in question, we do so
implicitly by storing them in some shared variable. Hence, the programmer cannot understand
one part of the program without the other, which violates the principle of local reasoning.
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5.1 Simple modules

As programs grow larger it is necessary to divide them into manageable units commonly called
modules, packages, or programunits. Amodule is a part of a programwith a well-defined interface
that lists all the identifiers (and their types) defined within.

⟨expr⟩ ∶∶= . . . ∣ module ⟨id⟩ { ⟨declarations⟩ } ∣ module ⟨id⟩ = ⟨module-expr⟩
∣ ⟨module-expr⟩ . ⟨id⟩ ∣ import ⟨module-expr⟩

⟨module-expr⟩ ∶∶= ⟨id⟩ ∣ ⟨module-expr⟩ . ⟨id⟩

Every module creates its own namespace. To access its elements, other parts of the program must
prefix the identifier with the module name. Alternatively, one can use an import-statement to
include the namespace of the module in the current one.

1 module Stack {

2 type stack(a) = list(a);

3
4 let empty = [];

5
6 let top(s) { head(s) };

7 let pop(s) { tail(s) };

8 let push(s, x) { [x|s] };

9 };

10
11 ... import Stack;

12 let s = Stack.empty; let s = empty;

13 ... ...

14 Stack.push(s, 13); push(s, 13);

15 ... ...

5.2 Encapsulation

Themodulemechanism addresses two ergonomic issues. Firstly, they help usmanage namespaces
and avoid name clashes between identifiers. Note that this could also be solved by adopting a strict
coding style where, for instance, all identifier names in a given program unit start with a prefix
indicating that unit. But this manual solution is cumbersome for the programmer (for instance,
the convenience of import statements is lost) and not enforced by the compiler.
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Encapsulation. Allowing access to part of the programonly through awell-defined interface.

Secondly, they help to decompose the program into smaller, easier to understand parts (which
themselves might be divided further into submodules). To understand such a program we only
need to understand each component separately and then look at the way they interact. The second
part is the easier the more limited the interaction between modules is. This is where declarative
programming styles shine. If the modules are written declaratively, they can only interact via
their specified inputs and outputs. We do not have to take further interactions into account, say,
via mutable global state as is the case when using side effects.

This second use of modules is an example of a mechanism called encapsulation. Generally,
encapsulation is the process of separating part of the program from the rest and allowing access
only via a specified interface. This has several advantages.

First of all, as we have already explained above, it makes the program easier to understand
since it reduces the amount of code a programmer must be aware of when looking at some part
of the program. In particular, users of a module only need to know its interface, not the actual
implementation. This is called information hiding and is the main way encapsulation contributes
to program readability.

But note that when dividing a program intomodules one needs to strike a balance. The smaller
the modules are, the easier each of them is to understand in isolation. At the same time, as the
size of modules decreases their number increases, and so does the interaction between modules,
which makes the program as a whole harder to understand again. A good rule of thumb seems
to be to organise the division into modules by themes. Put types and functions with a common
purpose into one module. As a slogan: for every module one should be able to give a single-
sentence description of what it contains.

Secondly, encapsulation can be used to guarantee the integrity of data maintained by a module,
since only code within the module is allowed to directly access the inner representation the data.
In this way a module can enforce certain invariants a data structure must satisfy. (For instance,
the requirement on red and black nodes in a red-black tree.)

Finally, it helps with program maintainability as one is free to change the inner representation
of a modules data without affecting the rest of the program.

Encapsulation is the single most important mechanism to make programs more readable, with
no associated runtime overhead. When used correctly it has no drawbacks. But note that, when
used incorrectly, it can both make a program harder to understand and decrease its performance
significantly. The problem is that we have to choose the division into modules carefully and to
come up with good interfaces. Both of these can easily be gotten wrong and require a lot of
experience to dowell. A bad divisionmakes a programharder to understand as it becomes unclear
what the task of each module is. A bad interface makes it cumbersome to use a module and can
increase both runtime and code size considerably. Let us give some examples.

(a) If an interface does not make certain information accessible, it might force its users to re-
peatedly recompute this information.

(b) If the interfaces of some modules use different types for the same kind of data (e.g., old
style C-strings and std::string in C++), it might be necessary to frequently convert between
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the various representations.
(c) If the interface of a module is stateful,we might be required to make frequent copies of data

structures to prevent the module from modifying them.
As an example, some years ago a Chrome developer reported: “In the course of optimizing

SyzyASan performance, the Syzygy team discovered that nearly 25000 (!!) allocations are made
for every keystroke in the Omnibox. We’ve since built some rudimentary memory profiling tools
and have found a few issues:

• strings being passed as char* (using c_str) and then converted back to string

• Using wrappers to StringAppendV, such as StringPrintf, to concatenate strings or for
simple number conversions (see note below)

• Using a temporary set to search for a specific value,which creates O(n) allocations and runs
in O(n ⋅ log n) time, only to call find on it to return true/false if the value is present.
Ouch!

• Not reserving space in a vector when the size is known”

The simple module system defined in the previous section supports the separating part of en-
capsulation, but not the interface part. For full encapsulation, we need to add a mechanism to
restrict the access to the names defined in a module. There are basically two ways to do so. One
is to allow definitions to be declared as either public or private. Only the public definitions are
accessible from the outside. This is the method chosen by C++ and by Java for class definitions.

An alternative method, used in ML and also in C header files, for example, is to provide every
module with a separate interface specification containing declarations of all identifiers visible to
the outside. It requires more typing from the programmer, but it spacially separates the inter-
face from the implementation. This makes it easier to read and also allows some more advanced
mechanisms for module handling which we shall introduce below.

5.3 Abstract Data Types

An abstract data type is what we get when we apply the concept of encapsulation to the imple-
mentation of a data type. More concretely, an abstract data type is a data structure (usually defined
inside a module) where the representation of the data, i.e., the concrete implementation, is hidden
from the rest of the program (information hiding). The only access is via the operations defined
in its interface (encapsulation). For instance, note that in most languages, built in types can be
considered abstract, although this is a somewhat degenerate case.

Example Let us take a look at an abstract data type for stacks.We start with a functional version.
The interface is

1 module Stack {

2 type stack(a);

3 let empty : stack(a)

4 let push : stack(a) * a -> stack(a);

5 let top : stack(a) -> a;
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6 let pop : stack(a) -> stack(a);

7 };

and the implementation is

1 module Stack {

2 type stack(a) = list(a);

3 let empty : stack(a) = nil;

4 let push(st : stack(a), x : a) : stack(a) {

5 pair(x, st)

6 };

7 let top(st : stack(a)) : a {

8 case st | pair(x,xs) => x

9 };

10 let pop(st : stack(a)) : stack(a) {

11 case st | nil => nil | pair(x,xs) => xs

12 };

13 };

The next version is imperative. The interface is

1 module Stack {

2 type stack(a);

3 let create : unit -> stack(a);

4 let empty : stack(a) -> bool;

5 let push : stack(a) * a -> unit;

6 let top : stack(a) -> a;

7 let pop : stack(a) -> unit;

8 };

and the implementation is

1 module Stack {

2 let create() : stack(a) {

3 [ elements = nil ]

4 };

5 let empty(st : stack(a)) : bool {

6 is_nil(st.elements)

7 };

8 let push(st : stack(a), x : a) : unit {

9 st.elements := [x|st.elements]

10 };

11 let top(st : stack(a)) : a {

12 head(st.elements)

13 };

14 let pop(st : stack(a)) : unit{

15 st.elements := tail(st.elements)
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16 };

17 };

5.4 Parametrisedmodules

Most programming languages only offer a simple module system like the one presented above. A
notable exception is ML where one can parametrise modules by other modules.

⟨expr⟩ ∶∶= . . . ∣ module ⟨id⟩ ( ⟨id⟩ , . . . , ⟨id⟩ ) { . . . }
∣ module ⟨id⟩ = ⟨module-expr⟩
∣ ⟨module-expr⟩ . ⟨id⟩ ∣ import ⟨module-expr⟩

⟨module-expr⟩ ∶∶= ⟨id⟩ ∣ ⟨module-expr⟩ . ⟨id⟩
∣ ⟨module-expr⟩ ( ⟨module-expr⟩ , . . . , ⟨module-expr⟩ )

For instance, one way to define a map data type parametrised by the key type is as follows.

1 interface KEY {

2 type t;

3 type ord = | LT | EQ | GT;

4 let compare : t * t -> ord;

5 };

6 module Map(Key : KEY) {

7 type map(a) =

8 | Leaf

9 | Node(Key.t, a, map(a), map(a));

10
11 let empty : map(a) = Leaf;

12
13 let add(m : map(a), k : Key.t, v : a) : map(a) {

14 case m

15 | Leaf => Node(k, v, Leaf, Leaf)

16 | Node(k2, v2, l, r) => case compare(k, k2)

17 | LT => Node(k2, v2, add(l, k, v), r)

18 | EQ => Node(k2, v, l, r)

19 | GT => Node(k2, v2, l, add(r, k, v))

20 };

21 ...

22 };

First-class modules We can make the module system even more expressive by supporting
first-class modules, i.e., adding the ability to pass modules around just like other values.

1 let add_two(M,x,y) { let add_two(M,x,y) {
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2 let m = M.make(); import M;

3 M.add(m,x); let m = make();

4 M.add(m,y); add(m,x);

5 }; add(m,y);

6 };

One can implement first-classmodules by treating everymodule as a record containing the values
of all identifiers defined within. Of course this means that referencing an element of a module
now requires a memory lookup and cannot be done statically anymore (in general, the lookup
can of course be optimised away in certain cases).
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6.1 Continuation passing style

In order to introduce the notion of a continuation let us take a look at the following example.
Suppose we have a program that prompts the user for two inputs and then computes some result.

1 let f () {

2 let u = input("first: ");

3 let v = input("second: ");

4 process(u,v)

5 };

When we want to adapt this program to use a web-interface we face a problem with the way web-
servers operate.Web-servers have the ability to call external programs to generate web-pages. But
these programs are immediately terminated by the server after a web-page is produced. In our
example we need three pages, two containing forms for the user to fill in the values of u and v,
and one to display the computed result. As the program is terminated after each page, we have
to figure out some way to pass the program state from one invocation to the next. Of course,
web-sites with internal state are quite common, so web-servers do provide several mechanisms
for doing so (cookies, hidden form fields, URL query string,…). What remains for us to do is to
figure out, which information precisely to pass along. We need (i) a data structure storing at what
place in the program we are and (ii) a way to use this data to resume the program at that point.

To resume the computation of the program from an arbitrary point we need to know

• where in the program we are, i.e., what the last evaluated expression was,

• what the result of this expression was, and

• what the values of the local variables were.

We can store this information as a function that, given the result of the last expression, continues
the program from this point. Such a function is called a continuation. For instance, in the above
example the continuation after having read the first input is

1 fun (u) {

2 let v = input("second: ");

3 process(u,v)

4 };

Continuation. A function containing the remainder of a computation.
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Continuation passing style. A programming style where functions never return but call an
explicitly passed continuation instead.

The continuation after the second input is

1 fun (v) {

2 process(u,v)

3 };

In order to prepare our program for usage with a web-server, it is useful to translate it into a
form that makes these continuations explicit. This form is call continuation passing style, CPS for
short. In this form, every function takes an additional argument k that takes the continuation to
be called when the function wants to return. Our example now looks as follows.

1 let f (k) {

2 input("first: ",

3 fun (u) {

4 input("second: ",

5 fun (v) {

6 process(u,v,k);

7 })

8 })

9 };

As a second example, let us take a look at the factorial function.

let fac(n) { if n == 0 then 1 else n * fac(n-1) };

We present two versions using continuation passing style. The first one is rather relaxed in the
sense that we do not convert primitive operations.

1 let fac_cps(n,k) {

2 if n == 0 then

3 k(1)

4 else

5 fac_cps(n-1, fun (x) { k(n*x) })

6 };

If we also use continuation passing style for primitive operations like equality, subtraction, and
multiplication, the code looks as follows.

1 let fac_cps(n,k) {

2 equal(n,0,

3 fun (c) {

4 if c then

5 k(1)

6 else

7 minus(n,1,
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8 fun (a) {

9 fac_cps(a,

10 fun (b) { times(n,b,k) })

11 })

12 })

13 };

Aswe see inCPS a function never really returns, instead it calls its continuation.We can seeCPS
as a programming style where instead of using a call stack we manually handle return addresses
by storing them in function closures, i.e., on the heap. This is of course a bit less efficient, since we
removed the optimisation of using a stack, but as we will see below it offers more flexibility and
allows for certain programming constructs not possible (or at least much harder to implement)
with a stack discipline.

Let us conclude this section with a more involved example: a parsing function for regular
expressions.

1 type regex =

2 | Char(char)

3 | Plus(regex, regex)

4 | Concat(regex, regex)

5 | Star(regex);

6
7 let parse_cps(str : list(char),

8 regex : regex,

9 succ : list(char) -> bool,

10 fail : unit -> bool) : bool {

11 case regex

12 | Char(c) => if head(str) == c then

13 succ(tail(str))

14 else

15 fail()

16 | Plus(r,s) =>

17 parse(str, r, succ,

18 fun () { parse(str, s, succ, fail) })

19 | Concat(r,s) =>

20 parse(str, r,

21 fun (str) { parse(str, s, succ, fail) },

22 fail)

23 | Star(r) =>

24 parse(str, r,

25 fun (str) { parse(str, Star(r), succ,

26 fun () { succ(str) }) },

27 fun () { succ(str) })

28 };

29 let parse(str, regex) {
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30 parse_cps(str, regex,

31 fun (s) { s == "" },

32 fun () { False })

33
34 };

6.2 Continuations

The problem with continuation passing style is that, in order to use it at one place in the program,
we have to convert all functions used in that part to CPS. This is rather inconvenient and makes
modifications of a program unnecessarily complicated. To avoid this overhead we can introduce
a new construct into our language that makes the continuation at the current position available
to the programmer.

⟨expr⟩ ∶∶= . . . ∣ letcc ⟨id⟩ { ⟨expr⟩ }

The statement

letcc k { expr }

evaluates the given expression after binding the current continuation to the identifier k. So when
calling k(a), the program behaves as if expr returned the value a.

Examples

1 letcc k { 1 }

2 letcc k { k(1) }

3 letcc k { k(1+2) }

4 1 + letcc k { k(1) }

5 1 + letcc k { k(1+1) }

6 letcc k { (3 + k(1)) }

7 1 + letcc k { (3 + k(1)) }

There are two ways we can use the continuation k. We can call it within the expression expr,
or we can store it somewhere and call it after the evaluation of the letcc statement is already
finished. In the first case it acts like a return statement or an exception: we abort the evaluation
of the expr prematurely and return the specified result. In the second case,we perform some kind
of backtracking: we restart the computation following the letcc statement with an alternative
value for expr. We will see several examples where this can be used to good effect.

Discussion Continuations increase the power of a language by allowing the user to define her
own control-flow operations. As usual such power comes with costs.

First of all, there is a performance cost as continuations invalidate the usual stack regime for
function calls. The two common ways to implement them involve either (i) replacing the call
stack by a more general data structure, which is bad for cache locality, or (ii) copying parts of the
stack when a continuation is created or called.
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Generator. A coroutine generating a sequence of values.

The second issue concerns program readability. A continuation can be seen as a functional
analogue of a goto statement. The only difference is that with continuations we can only jump
to places we have already been, while a goto also allows jumps to unvisited program locations.
As with gotos, this flexibility can be misused. Many languages therefore try to replace arbitrary
continuations with restricted versions, like exception mechanisms (see below).

6.3 Generators

As a first application of continuations, let us implement what is sometimes called a generator. For-
loops in our language are rather restricted as we can only iterate over the numbers between two
given bounds. Many language designers tried to generalise loops to an imperative analogue of a
fold function. For instance, there are languages where for-loops can also iterate over the elements
of container types like arrays and lists. Instead of having built in support for a handful of such
types, recent languages like Python found a way to allow the user to define her own iterators for
for-loops. Such a definition is called a generator. It is a function that produces, one after the other,
all the values the loop should iterate over. The question is howwe can pass these values to the loop
construct while at the same time remembering where to continue for the next iteration. Using the
return value of the function is cumbersome since we can return only one value at a time. So these
languages introduced a new language construct yield that stops the evaluation of the current
function, returns a value to the caller, and allows the caller to later resume the function at the
point it was interrupted. For instance,

1 let gen() {

2 let n = 0;

3 while True {

4 yield n;

5 n := n+1;

6 }

7 };

generates the sequence 0,1,2,3,4,.... Similarly,

1 let gen(lst) {

2 while is_cons(lst) {

3 yield head(lst);

4 lst := tail(lst);

5 }

6 };

generates the sequence of all elements in the given list.
Looking at the definition of yield, we see that it looks a lot like a continuation, and we can in

fact use continuations for the implementation.
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Exception. A control-flow mechanism for returning out of nested function calls.

1 let gen_return(x) { () };

2
3 let gen_helper() {

4 let n = 0;

5 while True {

6 letcc k {

7 gen_helper := k;

8 gen_return(n)

9 };

10 n := n+1;

11 };

12 0

13 };

14
15 let gen() {

16 letcc k {

17 gen_return := k;

18 gen_helper()

19 }

20 };

6.4 Exceptions

Continuations can also be used to good effect for error handling. The problem with error hand-
ling is that, when an error occurs, we need to abort the current computation and go to an outer
context where we can sensibly react to the failure. If we are using side effects, we also have to
do the required clean up work required by the aborted computation. In the traditional way of
error handling, error conditions are communicated via the return value of functions. This has the
disadvantage that we have to surround every function call by an if-statement to test for the occur-
rence of an error, which is quite cumbersome, error prone (easy to forget), and clutters the code.
Therefore programming languages have introduce a mechanism making the error checking im-
plicit. This exceptionmechanism works similarly to the break-statement of imperative languages.
But instead of jumping out of loops, i.e., out of a nested static scope, it allows the program to jump
out of nested function calls.

⟨expr⟩ ∶∶= . . . ∣ try ⟨expr⟩ catch ⟨var⟩ => ⟨expr⟩
∣ throw ⟨expr⟩

1 try 2 try 2 + throw 4

2 catch x => x + 1 catch x => x + 1

3 => 2 => 5
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1 type error = | EmptyList;

2
3 let head(lst) {

4 case lst

5 | [] => throw EmptyList

6 | [x|xs] => x

7 };

8
9 try head([])

10 catch x => 0

1 type error = | NotFound;

2 type key_val = [ key : a, val : b ];

3
4 let lookup(lst : list(key_val), k : a) : b {

5 case lst

6 | [] => throw NotFound

7 | [x|xs] => if x.key == k then

8 x.val

9 else

10 lookup(xs, k)

11 };

Exceptions can be implemented using continuations. Every function gets as an additional ar-
gument a continuation to call when raising an exception. A catch statement uses letcc to create
such a continuation.

1 try e catch x => handler Ô⇒ letcc k { e(fun (x) { k(handler) }) }

2 throw e k Ô⇒ k(e)

Exercise Implement exceptions using this translation.
Exceptions are not without problems. Although they can be considered as a generalised break-

statement, the destination of an exception is determined dynamically by the sequence of function
calls and not statically by the syntactic structure of the program. This makes reasoning about
exceptions non-local.

In a purely functional program, the main kind of bug caused by improper use of exceptions
is forgetting to catch them. This can lead to program termination and thus to possible data loss
and reduced availability. When programming with side effects it is much harder to get code with
exceptions right. (There are whole books written about how to write exception-save C++ code. In
Python it is actually impossible to write exception-save code as every statement can throw excep-
tions.) The problem is that, in the presence of side effects, it is essential to know which function
calls can throw exceptions, since we might need to perform some cleanup tasks if an exception
occurs. Some languages therefore require programmers to annotate functions with a list of all
exceptions they can throw. In practice, this has not turned out to be very successful, as many pro-
grammers consider this tedious and simply specify that there are no restrictions on the exceptions
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a function can throw. (Java and most other object oriented languages make this very easy as there
usually is some general Exception class that a programmer can use to circumvent the need for
precise exception specifications.)

For these reasons it is better to use exceptions sparingly. They should not be used as the main
mechanism for error handling. Instead, it is better to think of exceptions as a control flow mech-
anism. An exception is an efficient way to return from a deeply nested function call that can be
used to avoid having to unwind the stack one function at a time and to check the return value for
an error each time. Code that uses the return value for error reporting is usually much easier to
understand. Such a coding style is therefore recommended in cases where function calls are not
nested that deeply and the cost associated with checking the return value is thus not that high.

A programming style based on returning error codes is not without its own problems though.
(1) It is easy to forget checking for errors, if a function does not use a variant type that distin-

guishes between regular return values and error codes, but uses some ‘magic values’ to indicate
errors. For instance, in old C code it is usual for a function returning an integer to use negat-
ives values as error codes and other values for regular returns. Similarly, for functions returning
pointers it is common to indicate failures by returning null.

(2) If a language does not support variant types or functions with multiple return values, it is
cumbersome to use return values both for error reporting and for returning the regular result.

(3) Return values containing error codes can seriously degrade performance. One needs to
pass more data to and from functions and after every function call one needs additional code to
check for errors. Besides the runtime cost this also slows down the compiler as it has to deal with
this additional code. On the other hand, throwing exceptions also has associated costs: for C++,
a recent report names a cost of 8000 to 20000 CPU cycles (depending on which compiler is used)
for throwing an exception.

6.5 Algebraic effects

Algebraic effects are a generalisation of exceptions that can be used to extend the language by
user-defined control-flow constructs. As with exceptions, algebraic effects consist of two parts:
the execution of an effect and its handling.

⟨expr⟩ ∶∶= . . . ∣ effect ⟨name⟩ : ⟨type⟩ ;
∣ try ⟨expr⟩ catch ⟨effect⟩ => ⟨expr⟩
∣ ⟨effect⟩ ⟨arguments⟩
∣ abort ⟨arguments⟩
∣ resume ⟨arguments⟩

We can define a new effect using the effect statement.

1 effect break : unit;

2 effect continue : unit;

3 effect throw : a -> b;
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After such a definition the name of an effect can be used in an expression to call the corresponding
handler. Handlerswork just like exception handlers except for the fact that, in addition to aborting
the expression containing the effect, they can also resume it at the point after the effect. To do so
an effect handler can use the statements abort and resume. For instance,

1 effect bar : int;

2
3 try 3 + bar catch bar => 1 + abort 5

works just like an exception where the handler returns the value 5, i.e.,

1 try 3 + throw bar catch x => 5

But

1 effect bar : int;

2
3 try 3 + bar catch bar => resume 5

resumes the expression 3 + bar by assuming that the value of bar is 5. Thus this code is equi-
valent to

1 3 + 5

Hence, one can think of resume 5 as calling the continuation of bar in 3 + bar with the ar-
gument 5. Similarly, abort 5 is a call to the continuation of try ... catch bar => ... with
argument 5. Instead of calling these continuations, the handler also has to ability to return them
or to store them in some data structure.

Let’s take a look at a few examples. We start by implementing break and continue statements
as algebraic effects.

1 effect break : unit;

2 effect continue : unit;

3
4 for x in ... { try

5 ... for x in ... {

6 if ... then break; try

7 ... ===> ...

8 if ... then continue; if ... then break;

9 ... ...

10 } if ... then continue;

11 ...

12 catch continue => abort ()

13 }

14 catch break => abort ()

Similarly, exceptions can be defined using algebraic effects.

1 effect throw : a -> b;

2
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3 try try

4 ... ===> ...

5 throw 4 throw 4

6 ... ...

7 catch x => ... x ... catch throw(x) => abort (... x ...)

As usual, the more powerful a language feature the easier it is to misuse. In particular our
remarks on the issues associated with exceptions also apply to algebraic effects.
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The idea of declarative programming is to just describewhat you want to compute, but not how to
compute it. It is then the responsibility of the compiler to figure this out on its own. In particular
this means that declarative programs do not use side-effects or state. The advantage is that each
part of such a program can be understood on its own. Furthermore, the various components of
declarative programs can be written separately and then combined. This makes programs written
in this style usually easier to understand and reason about.

There are twomain declarative programming paradigms: functional programming and logical
programming. We have already seen the former in Chapter 2. Here, we will focus on the latter. In
logic programming one tries to formulate the problem as a set of constraints and then use a built
in constraint solver to search for a solution.

7.1 Single-assignment variables

To support logic programming,we have to extend our language with two new constructs. The first
is the concept of a single-assignment variable. Such variables may start uninitialised, but once a
value is assigned it cannot be changed anymore. The only change in syntax to the previous chapter
is that we allow to omit the value from let-bindings to introduced uninitialised variables.

⟨expr⟩ ∶∶= . . . ∣ let ⟨id⟩ ; ⟨expr⟩

But the semantics change. Assigning a value to a variable is only allowed if the variable is either
uninitialised, or it already has the same value we are assigning.

1 let x;

2 let y;

3 x := 1;

4 x := 1; // ok

5 x := 2; // error

6 y := x+1;

Furthermore, parameter-passing is now by reference.

1 let add(x,y,z) {

2 z := x+y;

3 };

4 let u;

5 add(1,2,u);

Single-assignment variable. A variable that can we written to only once.
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There are several choices of what should happen if we read from an uninitialised variable. In a
concurrent program, the most sensible thing to do is to block until some other fibre initialises the
variable. Without concurrency the only possibility is to abort the program with an error message.

1 let reverse(lst, ret) {

2 case lst

3 | [] => ret := []

4 | [x|xs] => {

5 let rev;

6 ret := [x|rev];

7 reverse(xs, rev);

8 }

9 };

Note that we made the function reverse tail recursive by putting the assignment to ret before
the recursive call.

We can also use uninitialised variables in data structures. For instance, to implement lists that
allow adding elements at the end.

1 let make() {

2 let empty;

3 Pair(empty, empty)

4 };

5 let add_first(lst, x, ret) {

6 case lst

7 | Pair(first, last) =>

8 ret := Pair([x|first], last)

9 };

10 let add_tail(lst, x, ret) {

11 case lst

12 | Pair(first, last) =>

13 ( let empty;

14 last := [x|empty];

15 ret := Pair(first, empty) )

16 };

We can also use single-assignment variables to create cyclic data structures.

x := [1,2,3|x]

7.2 Unification

An assignment statement x := e is asymmetric as we can only use l-values on the left-hand side,
while arbitrary r-values are allowed on the right-hand side. When using single-assignment vari-
ables, we can define a symmetric version of the assignment statement which is called unification.

74



7.2 Unification

Unification. Solving an equation between terms.

⟨expr⟩ ∶∶= . . . ∣ ⟨expr⟩ :=: ⟨expr⟩

When unifying two values u and v, we try to assign values to all undefined variables in u and v in
such a way that the resulting values become equal. Hence, a unification u :=: v can be seen as
solving the equation u = v by substituting values for the variables.

1 1 :=: x x := 1

2 x :=: y identifies x and y

3 [x,2] :=: [1,y] x := 1 and y := 2

Implementation We can solve equations of the form u ∶=∶ v recursively as follows.

• If u is an uninitialised variable, we set it to v.

• If v is an uninitialised variable, we set it to u.

• If u = m and v = n are both numbers,we check that m = n. If this is not the case, unification
fails.

• If u = c(s, . . . , sm−) and v = d(t, . . . , tn−) are both constructors, we check that c = d,
m = n, and si ∶=∶ ti , for all i.

• If u = [l = s, . . . , lm− = sm−] and v = [k = t, . . . , kn− = tn−] are both records, we
check that there is some bijection φ ∶ m → n such that li = kφ(i) and si ∶=∶ tφ(i), for all i.

• In all other cases, unification fails.

(Note in particular that we cannot unify function values.) There are a few things one has to keep
in mind when implementing this procedure.

(1) We have to distinguish two kinds of uninitialised values. If we have just introduced an
uninitialised variable x, we know nothing at all about its value. After a unification with another
uninitialised variable y, we still do not know the value of x, but we already know that it is equal to
that of y. So we need to distinguish between values for completely undefined variables and values
for variables that are equal to other variables.

(2) A naïve recursive implementation of unification can go into an infinite loop if we unify
cyclic data structures. For instance, the last unification in

1 let x; let y;

2 x :=: [1,x];

3 y :=: [1,1,y];

4 x :=: y;

might not terminate. To prevent this, we need to remember during unification which equations
we have already checked. If we try to check an equation u :=: v for the second time, we do not
need to recursively call the unification procedure, we can simply skip it and assume that it was
successful.
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Backtracking. Reverting previous choices.

7.3 Backtracking

What do we do if we use single-assignment variables and discover that we have assigned them
the wrong value? Backtracking is a mechanism for reverting such choices by reverting the whole
program to an earlier state. To implement it we add a nondeterministic choice operator to our
language.

⟨expr⟩ ∶∶= . . . ∣ choose| ⟨expr⟩ . . . | ⟨expr⟩ ∣ fail

Abstractly, a choice operator selects one of the given expressions that does not cause a failure and
executes it. The actual implementation of course does not know which of the expressions will
fail. What the operator therefore does is to create a kind of checkpoint and then executes the first
expression. If, later on, a failure occurs, the program state saved at the last checkpoint is restored
and the next alternative is tried instead. If all alternatives fail, the checkpoint is deleted again and
the choose-statement itself fails. This means that only this last alternative executed (the one that
succeeded) will have an effect on the program, those that have failed will not. It is if they never
were executed. Not that the failure does not need to occur inside the expressions themselves, it
may happen later on in the program.

1 choose

2 | { x := 1; y := 1; }

3 | { x := 2; y := 2; }

tries first to set two variables to 1. If one of them already has a different value, the corresponding
assignment fails andwe try to set the variables to 2. If this fails as well, thewhole choose-statement
fails. In this case,none of the variables ismodified. Note that a transaction can only undomemory
changes, not other kinds of side-effects. So

1 choose

2 | { print "start..." 1; fail; print "stop..." 1; }

3 | print "start..." 2

will print out "start... 1start... 2" even though the first expression is aborted.
How do we implement the choose construct? We use two primitive operations checkpoint k

and rewind. The first one takes a continuation as argument and creates a checkpoint storing the
current machine state. If later on a rewind command is executed, we

• fetch the continuation associated with the last checkpoint,

• restore the machine state to its previous state (which deletes the last checkpoint),

• and call the fetched continuation.

Using these two operations we can translate a choose statement as follows.

1 choose | e Ô⇒ e
2 choose | e | e ... | en Ô⇒ letcc k {
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3 checkpoint

4 fun () { k(choose | e ... | en) };

5 e
6 }

7 fail Ô⇒ rewind

Of course, now we have to figure out how to implement checkpoint and rewind. Saving the
whole machine state is very inefficient. What we will do instead is to record all memory changes
and undo them when we rewind. As we only use single-assignment variables the only changes
we need to undo are assignments of values to uninitialised variables. This can be done by simply
marking those variables as uninitialised again. Hence, what we need to do is to store a list of all
variables whose value has changed since the last checkpoint. Then rewind can traverse the list
and undo those changes again.

This means our implementation looks as follows. We maintain a stack of checkpoints. Each
entry of the stack contains a stored continuation and the list of variables whose value has changed.
A checkpoint k command simply pushes a new entry on the stack consisting of k and the empty
list. Each variable assignment now has to add the variable in question to the list in the top stack
entry. Finally, a rewind command, retrieves the continuation from the top stack entry, walks the
list of variables to mark them as uninitialised again, and then calls the retrieved continuation.

With single-assignment variables and backtracking, we can translate most Prolog programs
(which do not use advanced features) into our kernel language. For instance,

1 edge(a,b).

2 edge(b,c).

3 trans(X,Y) :- edge(X,Y).

4 trans(X,Y) :- edge(X,Z), trans(Z,Y).

turns into

1 let edge(x,y) {

2 choose

3 | { x := a; y := b; }

4 | { x := b; y := c; }

5 }

6 let trans(x,y) {

7 choose

8 | edge(x,y)

9 | { let z; edge(x,z); trans(z,y); }

10 }

7.4 Programming examples

Let us write our standard list processing examples using single-assignment variables.

1 let nth(lst,n,z) {

2 choose
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3 | { let t;

4 n :=: 0;

5 lst :=: [z|t] }

6 | { let h; let t;

7 lst :=: [h|t];

8 nth(t,n-1,z) }

9 };

10 let length(lst, n) {

11 choose

12 | { lst :=: []; n :=: 0 }

13 | { let h; let t; let m;

14 lst :=: [h|t];

15 length(t, m);

16 n :=: m+1 }

17 };

18 let sum(lst, n) {

19 choose

20 | { lst :=: []; n :=: 0 }

21 | { let h; let t; let m;

22 lst :=: [h|t];

23 sum(t,m);

24 n :=: m+h; }

25 };

26 let map(f, lst, z) {

27 choose

28 | { lst :=: []; z :=: [] }

29 | { let h; let t; let y;

30 lst :=: [h|t];

31 z :=: [f(h)|y];

32 map(f, t, y); }

33 };

34 let fold(f, acc, lst, z) {

35 choose

36 | { lst :=: []; z :=: acc }

37 | { let h; let t;

38 lst :=: [h|t];

39 fold(f, f(acc, h), t, z) }

40 };

41 let foldr(f, acc, lst, z) {

42 choose

43 | { lst :=: []; z :=: acc }

44 | { let h; let t; let y;

45 lst :=: [h|t];

46 foldr(f, acc, t, y);
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47 z :=: f(h, y) }

48 };

49 let append(x,y,z) {

50 choose

51 | { x :=: []; y :=: z }

52 | { let h; let t; let r;

53 x :=: [h|t];

54 z :=: [h|r];

55 append(t,y,r); }

56 };

57 let reverse(lst, z) {

58 let iter(lst, y, z) {

59 choose

60 | { lst :=: []; z :=: y }

61 | { let h; let t;

62 lst :=: [h|t]; iter(t, [h|y], z) }

63 };

64 iter(lst, [], z)

65 };

If we use a more Prolog-like syntax, the code becomes extremely clean.

1 nth([x|xs], 0, x).

2 nth([x|xs], i, y) :- nth(xs, i-1, y).

3
4 length([], 0).

5 length([x|xs], n) :- length(xs, n-1).

6
7 sum([], 0).

8 sum([x|xs], n) :- sum(xs, n-s).

9
10 map(f, [], []).

11 map(f, [x|xs], [f(x)|ys]) :- map(f, xs, ys);

12
13 fold(f, acc, [], acc).

14 fold(f, acc, [x|xs], z) :- foldr(f, f(acc, x), xs, z).

15
16 foldr(f, acc, [], acc).

17 foldr(f, acc, [x|xs], f(acc, z)) :- foldr(f, acc, xs, z).

18
19 append([], y, y).

20 append([x|xs], y, [x|z]) :- append(xs, y, z).

21
22 reverse(lst, rev) :- reverse_helper(lst, [], rev).

23
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24 reverse_helper([], z, z).

25 reverse_helper([x|xs], y, z) :- reverse(xs, [x|y], z).

We can use lists terminated by an unbound variable to efficiently implement queues.

1 type queue = | Queue(int,list(a),list(a));

2
3 let empty () {

4 let t;

5 Queue(0, t, t);

6 };

7 let is_empty(queue) {

8 case queue

9 | Queue(n,q,t) => n == 0

10 };

11 let insert(queue,x) {

12 case queue

13 | Queue(n,q,t) => { let s; t := [x|s]; Queue(n+1,q,s) }

14 };

15 let first(queue) {

16 case check(queue)

17 | Queue(n,q,t) => head(q)

18 };

19 let remove(queue) {

20 case check(queue)

21 | Queue(n,q,t) => Queue(n-1, tail(q), t)

22 };
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Object-oriented programming has created quite a hype after it became mainstream with the re-
lease of the first C++ compilers. It was seen as a panacea for all kinds of program design issues,
mainly because of its clear advantages over the other mainstream languages of the time, most
notably C. Fortunately, this hype is slowly fading over the last years, so a rational discussion of
object-oriented programming is now possible.

Unfortunately, there is no standard definition of object-orientation as everybody uses his or
her own version. The initial idea was to make the global state of a program more manageable by
breaking it into smaller parts called objects. Each of these objects has its own local state which is
not accessible to the outside. To communicate objects can pass messages between them. Thus, as
a slogan we could say that object-orientation combines encapsulated state plus message passing.

At least that was the initial idea. Over time the meaning has changed slightly. Nowadays when
introducing object-oriented programming one usuallymentions as a key idea the concept of com-
bining data and functions operating on it into a single data structure. According to this newer
definition, an object is simply a record containing both functions and non-function values. In
addition one usually considers a certain set of additional languages features (such as inheritance)
to be an essential part of the definition. Which exactly depends on the person.

Still, the original definition is quite useful as it tells us how to use object-orientation,whereas the
newer one simply tells us how it is implemented. In the following sections we will present several
language features that can be used to implement object-oriented programming,or tomake itmore
useful. In particular, we will consider

• dynamic dispatch,

• subtyping,

• encapsulated state,

• inheritance,

• open recursion.

8.1 Dynamic dispatch

We will implement the features of object-oriented programming step by step starting with dy-
namic dispatch. If we want to send a certain message to an object, we do not know statically
which function to call. Therefore, we have to store the function with the object and look it up at

Dynamic dispatch. Method calls are resolved at runtime, not at compile-time.
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runtime. An easy way to do so is to represent the object as a record of functions, one for each
message. For instance, a list object supporting the messages

1 next : unit -> object

2 get : unit -> int

3 iter : (int -> unit) -> unit

4 length : unit -> int

would be represented by a record of type

1 [ next : unit -> object,

2 get : unit -> int,

3 iter : (int -> unit) -> unit,

4 length : unit -> int ];

To send a message, we just call the corresponding function.

1 let new_empty() {

2 let n =

3 [ next = fun () { n },

4 get = fun () { error },

5 iter = fun (f) { () },

6 length = fun() { 0 } ];

7 n

8 };

9 let new_node(val, next) {

10 [ next = fun () { next },

11 get = fun () { val },

12 iter = fun (f) { f(val); next.iter(f) },

13 length = fun () { 1 + next.length() } ]

14 };

15
16 let n1 = new_empty();

17 let n2 = new_node(1,n1);

18 let n3 = new_node(2,n2);

19 n3.iter(fun (x) { print "value is " x });

This direct encoding via records quickly becomes cumbersome, but the right kind of syntactic
sugar makes it usable.

1 object { m : t ; ... ; mk : tk ; }

2 Ô⇒ [ m : t , ... , mk : tk ]

3
4 object {

5 m ( a ) { b } ;

6 ...

7 mk ( ak ) { bk } ;

8 }
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9 Ô⇒
10 [ m = fun ( a ) { b },

11 ...

12 mk = fun ( ak ) { bk } ]

With this notation we can write the above code as

1 type olist =

2 object {

3 next : unit -> olist;

4 get : unit -> int;

5 iter : (int -> unit) -> unit;

6 length : unit -> int

7 };

8
9 let new_empty() {

10 let n =

11 object {

12 next() { n };

13 get() { error };

14 iter(f) { () };

15 length() { 0 };

16 };

17 n

18 };

19 let new_node(val, next) {

20 object {

21 next() { next };

22 get() { val };

23 iter(f) { f(val); next.iter(f) };

24 length() { 1 + next.length() };

25 }

26 };

27
28 let n1 = new_empty();

29 let n2 = new_node(1,n1);

30 let n3 = new_node(2,n2);

31 n3.iter(fun (x) { print "value is " x });

Objects that are implemented as records of functions as above are sometimes called functional
objects since they have no internal state. Such functional objects can be regarded as a generalisa-
tion of a function that has multiple entry points.

Note that the above implementation is based on structural type equivalence. Two objects (like
empty and node above) have the same type if they support the same set of methods. Most object-
oriented languages use name equivalence instead and would consider empty and node to have
different types. In languages such as C++ there is nothing corresponding to object types like the
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type olist in the above example. But many of the modern object-oriented languages that are
based on name equivalence have added such types as an additional concept. For instance, in Java
they are called interfaces.

Example Our running example in this chapter will be a class hierarchy for geometric shapes.
This is still simple enough to (mostly) fit on a single page but sharesmany propertieswith themore
complicated hierarchies one finds in real-world programs, like class hierarchies for graphical user
interfaces.

1 type shape = object {

2 draw : unit -> unit;

3 move : int -> int -> shape;

4 dimensions : unit -> [ min_x : int, min_y : int,

5 max_x : int, max_y : int ];

6 };

7
8 let new_point(x : int, y : int) : shape =

9 object {

10 draw() { draw_point(x,y) };

11 move(dx, dy) { new_point(x + dx, y + dy) };

12 dimensions() { [ min_x = x, min_y = y, max_x = x, max_y = y ] };

13 };

14
15 let new_circle(x : int, y : int, r : int) : shape =

16 object {

17 draw() { draw_circle(x,y,r) };

18 move(dx, dy) { new_circle(x + dx, y + dy, r) };

19 dimensions() { [ min_x = x - r, min_y = y - r,

20 max_x = x + r, max_y = y + r ] };

21 };

22
23 let new_rectangle(x : int, y : int, w : int, h : int) : shape =

24 object {

25 draw() { draw_rectangle(x,y,w,h) };

26 move(dx, dy) { new_rectangle(x + dx, y + dy, w, h) };

27 dimensions() { [ min_x = x, min_y = y,

28 max_x = x + w, max_y = y + h ] };

29 };

30
31 let new_group(shapes : list(shape)) {

32 object {

33 draw() { iter(fun (s) { s.draw() }, shapes) };

34 move(dx, dy) { new_group(map( fun (s) { s.move(dx, dy) }, shapes)) };

35 dimensions() {
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36 case shapes

37 | [] => [ x = 0, y = 0, w = 0, h = 0 ]

38 | [s|ss] => let d = s.dimensions();

39 fold(fun(d,s) {

40 let d2 = s.dimensions();

41 [ min_x = min(d.min_x, d2.min_x),

42 min_y = min(d.min_y, d2.min_y),

43 max_x = max(d.max_x, d2.max_x),

44 max_y = max(d.max_y, d2.max_y) ]

45 },

46 s.dimensions(),

47 ss)

48 };

49 };

50 };

Multi-methods One problem with dynamic dispatch as defined above is that it is asymmetric
with respect to its arguments. The object we dispatch on is treated differently than the other argu-
ments. Some languages have introduced the possibility to dispatch on the types of all arguments.
This is called multi-methods.

1 let intersect(x : circle, y : circle) : shape { ... }

2 let intersect(x : circle, y : rectangle) : shape { ... }

3 let intersect(x : rectangle, y : circle) : shape { ... }

4 let intersect(x : rectangle, y : rectangle) : shape { ... }

The problem with multi-methods is that, as the number of classes grows, defining functions for
all combinations quickly becomes unmanageable. While there are languages that support multi-
methods, the approach has never really become popular.

Type classes An alternative approach to dynamic dispatch is provided by Haskell’s type classes.
A type class consists of a collection of functions types associated with one or more parameter
types. For each choice of parameter types,we can defined an instance of the type class by providing
an implementation of the required functions.

1 typeclass Shape(a) {

2 draw : a -> unit;

3 move : a -> int -> int -> a;

4 dimensions : a -> [ min_x : int, min_y : int,

5 max_x : int, max_y : int ];

6 };

7
8 type point = Point(int,int);

9
10 instance Shape(point) {
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11 draw(Point(x,y)) { draw_point(x,y) };

12 move(Point(x,y), dx, dy) { Point(x + dx, y + dy) };

13 dimensions(Point(x,y)) { [ min_x = x, min_y = y,

14 max_x = x, max_y = y ] };

15 };

16
17 type circle = Circle(int,int,int);

18
19 instance Shape(circle) {

20 draw(Circle(x,y,r)) { draw_circle(x,y,r) };

21 move(Circle(x,y,r), dx, dy) { Circle(x + dx, y + dy, r) };

22 dimensions(Circle(x,y,r)) { [ min_x = x-r, min_y = y-r,

23 max_x = x+r, max_y = y+r ] };

24 };

Type classes are a controlled form of ad-hoc polymorphism. When comparing them with gen-
eral overloading we notice the following advantages and disadvantages.

• Type classes are more restrictive as every instance needs to fit to the given parametric type.
E.g. it is not possible to have instances with a different number of arguments.

• Type classes provide a mental framework that prevents overloading to cause too much
chaos. For instance, in every instance of the Eq typeclass the operator == should check
for equality, and not do something completely different.

• When using type classes one can type check code without having to know all the instances.
With overloading on the other hand, all instances need to be known before one is able to
check that a function call is well-typed.

Comparison with variant types There is an alternative solution based on variant types in-
stead of objects. We could have defined

1 type shape =

2 | Point(int,int)

3 | Circle(int,int,int)

4 | Rectangle(int,int,int,int)

5 | Group(list(shape));

6
7 let draw(sh) {

8 case sh

9 | Point(x,y) => draw_point(x,y)

10 | Circle(x,y,r) => draw_circle(x,y,r)

11 | Rectangle(x,y,w,h) => draw_rectangle(x,y,w,h)

12 | Group(shapes) => iter(draw, shapes)

13 };

14 let move(sh, dx, dy) {

15 case sh
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Subtype. s is a subtype of t if values of type s can be used everywhere a value of type t is
expected.

16 | Point(x,y) => Point(x + dx, y + dy)

17 | Circle(x,y,r) => Circle(x + dx, y + dy, r)

18 | Rectangle(x,y,w,h) => Rectangle(x + dy, y + dy, w, h)

19 | Group(shapes) => Group(map(fun (s) { move(s, dx, dy) }, shapes))

20 };

21 let dimensions(sh) {

22 case sh

23 | Point(x,y) => ...

24 | Circle(x,y,r) => ...

25 | Rectangle(x,y,w,h) => ...

26 | Group(shapes) => ...

27 };

The only difference is the way we have grouped the code. In the object-based solution we collect
all code pertaining to a given shape in one place, whereas when using variant types we collect all
code pertaining to a given operation on shapes in one place. The difference becomes noticeable if
we want to extend the program. If we add a new shape, say a triangle, the object-based approach is
more convenient, we only need to define a new class. In the variant-type-based solution we have
to modify every operation to add a new case. If, on the other hand, we add a new operation, like
rotation, then the solution using variant types is more convenient. In the object-based approach
we have to modify every class definition.

8.2 Subtyping

A type s is a subtype of a type t if values of type s can be used everywhere a value of type t is
expected. This means that s is more specialised than t, or t more general than s. We write s ≤∶ t
to denote this fact. As with type equivalence there are two different approaches to implement
subtyping: structural and by name. In languages like Java where subtyping is defined by name, the
programmer has to explicitly declare if one object type is to be a subtype of another. In languages
with structural subtyping on the other hand, a type s is automatically a subtype of all types that
are more general than s. This means that, if s and t both are object types, then s will be a subtype
of t if s supports all the methods of t. For instance, if we have defined a class of shapes with
methods draw, move, and box and a subclass of rectangles with an additional method area, then
the rectangle class is a subtype of the shape class.

Programming languages have a certain choice in how exactly to define the subtyping relation.
Let us discuss the possibilities for some of the usual types. It does make a difference whether we
have immutable or mutable values. We start with the case where all values are immutable. It is
possible to already define subtyping relations between basic types. For instance, we could have

int16 ≤∶ int32 ≤∶ int64 or uint16 ≤∶ int32
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Contravariant. The order is reversed.

Covariant. The order is preserved.

What about

uint32 ≤∶ int32 or int32 ≤∶ float32 ?

For records we have

[l ∶ s, . . . , lm ∶ sm , k ∶ t, . . . , kn ∶ tn] ≤∶ [l ∶ u, . . . , lm ∶ um]

if si ≤∶ ui for all i, that is, if every label appearing in the second record is also present in the first
one with a subtype of the corresponding type on the right-hand side.

Example

1 type shape = [ x : int, y : int ];

2 type circle = [ x : int, y : int, r : int ];

3 type rectangle = [ x : int, y : int, w : int, h : int ];

4
5 circle <∶ shape and rectangle <∶ shape

Exercise What is the subtype ordering for variant types?

What about functions? Suppose we have a function of type f ∶ a → b. When can we use it at a
place where a function of type c → d is expected? f will get passed a value of type c (so c <∶ a)
and it will return a value of type b where one of type d is expected (so b <∶ d).

1 let g(f : c -> d) = {

2 ...

3 let x : c = ...;

4 let y : d = f(x);

5 ...

6 };

This means that

a → b <∶ c → d iff c <∶ a and b <∶ d .

Note that the orders for the parameter and the return value are different. We say that function
types are contravariant (the order is reversed) in the parameter position and covariant (the order
is the same) in the result position. In general a type constructor is contravariant in all types used
as inputs and covariant in all types used as outputs. If an argument type is used both as input and
output, the constructor is invariant.
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Invariant. No order relation for different parameters.

Example

1 type shape = [ x : int, y : int ];

2 type circle = [ x : int, y : int, r : int ];

3 type rectangle = [ x : int, y : int, w : int, h : int ];

4
5 shape -> circle <∶ rectangle -> circle <∶ rectangle -> shape

Example The most important example of invariant constructors is the case of mutable data
structures.

1 type box(a) = [ data : a ];

2
3 let get(box : box(a)) : a {

4 box.data

5 };

6 let set(box : box(a), x : a) : unit {

7 box.data := x

8 };

When is box(a) <∶ box(b)? Suppose that box(a) <∶ box(b). Then applying get : box(b) -> b

to a value of type box(a),we need to get a value of some subtype of b. Hence,wemust have a <∶ b.
Furthermore, if we call set : box(b) -> b -> unitwith a box of type box(a) and an element
of type b, and then apply get : box(a) -> a to that box, we need to get an element of type a.
Hence, we also must have b <∶ a.

1 x : a, y : b, u : box(a)

2 ...

3 // conversion a -> b

4 set(u,x); // set : box(a) -> a -> unit

5 y := get(u); // get : box(b) -> b

6 ...

7 // conversion b -> a

8 set(u,y); // set : box(b) -> b -> unit

9 x := get(u); // get : box(a) -> a

Subtyping for objects Many languages define simpler subtyping relations than the most gen-
eral one we have described above. In particular, when determining whether some class is a sub-
class of another one, object-oriented languages frequently require the types of methods to match
exactly instead of one being just a subtype of the other one. This makes type checking faster and,
more importantly, the type system less complex.
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In fact, this form of subtyping is simple enough that it can be emulated by a certain variant of
parametric polymorphism called row polymorphism. The idea is to allow parameters in record
(and object) types of the form

[l ∶ t, . . . , ln− ∶ tn−, α]

which can be instantiated with further label declarations. For instance, instantiating the α in the
above record type with the value k ∶ s, k ∶ s, β yields the record type

[l ∶ t, . . . , ln− ∶ tn−, k ∶ s, k ∶ s, β]

Then we have a subtyping relation

[l ∶ t, . . . , α] <∶ [k ∶ s, . . . , β]

between two such types if we can obtain the later by a suitable instantiation of the parameter α in
the former. Hence, we can simulate object types with subtyping by identifying an object type

object m ∶ t, . . . ,mn− ∶ tn− end

with the record type

[m ∶ t, . . . ,mn− ∶ tn−, α]

In this context of subtyping for objects let us also mention the language Eiffel, where the defin-
ition allows subtypes when comparing methods. But the designer of Eiffel consciously chose to
define subtyping for functions to be covariant in both types. This leads to an unsound type sys-
tem since the programmer is allowed to pass arguments of unsupported types to a function (in
which case Eiffel generates a runtime-exception). The reason for this decision was that it was felt
that contravariance was too confusing for the programmer. But it is questionable whether this
solution is any less confusing.

Let us conclude this section with an example showing the advantages of subtyping. One area
where it can be superior to parametric polymorphism is one wants to use heterogeneous data
structures. For instance, using subtyping it is possible to have a list containing both circles and
rectangles, whereas when using parametric polymorphism we have to decide which of the two
kinds of objects we want to put into the list.

8.3 Encapsulated state

We have shown above how to implement purely functional objects. Now it is time to add mutable
state. We can do so by simply combining dynamic dispatch with side-effects.

1 type account = object {

2 deposit : int -> unit;

3 withdraw : int -> unit;

4 };
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8.3 Encapsulated state

5 let new_account(balance) {

6 object {

7 deposit(amount) { balance := balance + amount };

8 withdraw(amount) { balance := balance - amount };

9 }

10 };

As are more involved example let us give a version of the shape class with internal state.

1 type shape = object {

2 draw : unit -> unit;

3 move : int -> int -> unit;

4 dimensions : unit -> [ min_x : int, min_y : int, max_x : int, max_y : int ];

5 };

6
7 let new_point(x : int, y : int) : shape {

8 object {

9 draw() { draw_point(x,y) };

10 move(dx, dy) { x := x + dx; y := y + dy; };

11 dimensions() { [ min_x = x, min_y = y, max_x = x, max_y = y ] };

12 }

13 };

14
15 let new_circle(x : int, y : int, r : int) : shape {

16 object {

17 draw() { draw_circle(x,y,r) };

18 move(dx, dy) { x := x + dx; y := y + dy; };

19 dimensions() { [ min_x = x - r, min_y = y - r,

20 max_x = x + r, max_y = y + r ] };

21 }

22 };

23
24 let new_rectangle(x : int, y : int, w : int, h : int) : shape {

25 object {

26 draw() { draw_rectangle(x,y,w,h) };

27 move(dx, dy) { x := x + dx; y := y + dy; };

28 dimensions() { [ min_x = x, min_y = y,

29 max_x = x + w, max_y = y + h ] };

30 }

31 };

32
33 let new_group(shapes : list(shape)) {

34 object {

35 draw() { iter(fun (s) { s.draw() }, shapes) };

36 move(dx, dy) { iter(fun (s) { s.move(dx, dy) }, shapes) };
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Inheritance. A mechanism to share code between classes.

37 dimensions() { ... };

38 };

39 };

Capabilities Modules and abstract data types provide encapsulation via controlling the visib-
ility of identifiers. A more powerful method uses an object to guard the access to certain data. An
outside function can only access the guarded data if it has the object guarding it. Furthermore,
the object can ensure data integrity and other invariants by executing suitable code before or after
the access. Such objects are called capabilities or proxies.

As an example, we can use objects to guard file operations.

1 let prox = object {

2 public:

3 read(str) { ... };

4 write() { ... };

5 private:

6 file : file_handle;

7 };

Such an object could, for instance, handling the locking of the file, check permissions, or ensure
that the client uses the correct file format.

8.4 Inheritance

With the object framework introduced so far,we have towrite every class from scratch. It would be
desirable to share common code between classes. Besides requiring less typing, this also increases
code maintainability as changes in the code do not have to be repeated for every class. On the
negative side, one has to note that such sharing reduces code locality, as the implementation of a
class becomes distributed over several parts of the program. This is particularly problematic for
objects with encapsulated state as it can be quite easy to lose track of all the places where this state
is modified. We will call the mechanism for code sharing within a class framework inheritance,
although strictly speaking this term only refers to using code from a parent class in a subclass.
There are several ways to support inheritance, some more problematic than others.

Delegates Suppose we want to add classes for coloured shapes to the class hierarchy defined
above. A coloured shape has two more methods to access the colour of the shape.

1 type coloured_shape = object {

2 draw : unit -> unit;

3 move : int -> int -> shape;

4 dimensions : unit -> [ min_x : int, min_y : int,

5 max_x : int, max_y : int ];
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8.4 Inheritance

Delegate. An object used as part of another object.

6 colour : colour;

7 set_colour : colour -> unit;

8 };

One easy way to create objects for such a class is to use an object of the parent class as is and
implement the methods of the new class using those of the old one. An object used as part of
another one in this way is called a delegate.

1 let new_coloured_point(x : int, y : int, c : colour) : coloured_shape =

2 let p = new_point(x,y);

3 object {

4 draw() { set_colour(col); p.draw() };

5 move() { p.move() };

6 dimensions() { p.dimensions() };

7 colour() { c };

8 set_colour(col) { c := col };

9 };

Addingmethods In the above example we directly called the methods of the delegate without
any changes. In this case we can simplify the code slightly as follows.

1 let new_coloured_point(x : int, y : int, c : colour) : coloured_shape =

2 let p = new_point(x,y);

3 [ draw = p.draw,

4 move = p.move,

5 dimensions = p.dimensions,

6 colour = fun () { c },

7 set_colour = fun (col) { c := col } ];

Adding syntactic sugarwe canneaten up the code further and obtain something like the following.

1 let new_coloured_point(x : int, y : int, c : colour) : coloured_shape =

2 let p = new_point(x,y);

3 object {

4 include p;

5 colour() { c },

6 set_colour(col) { c := col };

7 }

Replacingmethods Just adding newmethods is not always enough. Sometimes we also want
to change existing ones. Let us first see how to replace an old method with a completely new one.

1 let new_coloured_point(x : int, y : int, c : colour) : coloured_shape =
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2 let p = new_point(x,y);

3 [ draw = fun () { set_colour(c); draw_point(x,y); },

4 move = p.move,

5 dimensions = p.dimensions,

6 colour = fun () { c },

7 set_colour = fun (col) { c := col } ];

There is one issue one has to be aware of when doing such a replacement: in a simple implement-
ation like the one above, if an old method tries to call the replaced one, it will use the original
version, not the new one. If that is not the desired behaviour, one has to implement what is called
open recursion (see below).

In the following example, some methods of the superclass are mere stubs that are intended to
be overwritten by each subclass. This is a common idiom in languages like C++ that use name
equivalence for subtyping and that do not support object types (interfaces in Java’s terminology).
In such a languagewe can emulate object types in the followingway via inheritance and subtyping.

1 class shape {

2 draw() { () };

3 move(dx : int, dy : int) { () };

4 dimensions() { [ min_x = 0, min_y = 0,

5 max_x = 0, max_y = 0 ] };

6 };

7
8 class point(x : int, y : int) extends shape {

9 draw() { draw_point(x,y) };

10 move(dx, dy) { x := x + dx; y := y + dy; };

11 dimensions() { [ min_x = x, min_y = y, max_x = x, max_y = y ] };

12 };

13
14 class circle(x : int, y : int, r : int) extends shape {

15 draw() { draw_circle(x,y,r) };

16 move(dx, dy) { x := x + dx; y := y + dy; };

17 dimensions() { [ min_x = x - r, min_y = y - r,

18 max_x = x + r, max_y = y + r ] };

19 };

20
21 class rectangle(x : int, y : int, w : int, h : int) extends shape {

22 ...

23 };

24
25 class group(shapes : list(shape)) extends shape {

26 ...

27 };
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Modifyingmethods In the implementation of coloured points above we did repeat the code
of the old methods in the definition of the new one. We can increase the amount of code reuse
by using the old methods instead.

1 let new_coloured_point(x : int, y : int, c : colour) : coloured_shape =

2 let super = new_point(x,y);

3 [ draw = fun () { set_colour(c); super.draw(); },

4 move = super.move,

5 dimensions = super.dimensions,

6 colour = fun () { c },

7 set_colour = fun (col) { c := col } ];

One question one has to addresswhen designing an inheritancemechanism for a programming
language is who is in command, the subclass or the superclass? That is, when invoking a method
of a subclass, do we execute the function given in the subclass definition (which then may or may
not call the function of the superclass), or do we execute the function of the superclass (which
then can call the function of the subclass)? For instance, suppose we use a class hierarchy to
model widgets in a graphical user interface. We might define a class for a general kind of text field
and several subclasses for more special versions. Consider the method that gets called when the
user presses a key. Do we want the superclass to first process this key press and then pass the keys
it is not interested in to the subclass, or do we want it to be the other way round? The following
examples illustrate the differences between these two approaches.

Example Let us discuss the various choices on how to use inheritance in the example of a class
for buttons in a user interface. In most object-oriented GUI frameworks they are implemented
using inheritance with modification.

1 type button = object {

2 button_down : unit -> unit;

3 button_up : unit -> unit;

4 ...

5 };

6 let basic_button() {

7 object {

8 button_down(self) { ... draw button ... };

9 button_up(self) { ... draw button ... };

10 ...

11 };

12 };

13 let my_button() {

14 let super = basic_button();

15 object {

16 include super;

17 button_down(self) {

18 super.button_down(self);
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19 ... do something ...

20 };

21 ...

22 }

23 };

Note that in this solution, it is not obvious how a subclass is intended to call the button superclass.
When should it call the button_down method of the superclass? At the beginning of its own
method,at the end, somewhere in between? Should it call it at all? Herewe seewhy it is sometimes
better to be able to call subclass methods via outer instead of superclass methods via super.

We can clean this design up, by splitting the button_downmethod into two parts. One part to
be overwritten by the superclass and one to be left alone.

1 type button = object {

2 button_down : unit -> unit;

3 button_up : unit -> unit;

4 button_pressed : unit -> unit;

5 ...

6 };

7 let basic_button() {

8 object {

9 button_down(self) {

10 ... draw button ...

11 self.button_pressed();

12 };

13 button_up(self) { ... draw button ... };

14 button_pressed(self) { () };

15 ...

16 }

17 };

18 let my_button() {

19 let super = basic_button();

20 object {

21 include super;

22 button_pressed(self) {

23 ... do something ...

24 };

25 ...

26 }

27 };

Finally, we can simplify our implementation further, by using a first-class function instead of
inheritance.

1 type button = object {

2 button_down : unit -> unit;
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8.4 Inheritance

Open recursion. Methods get a pointer to the object, so they can use dynamic dispatch.

3 button_up : unit -> unit;

4 ...

5 };

6 let basic_button(pressed : unit -> unit) {

7 object {

8 button_down(self) {

9 ... draw button ...

10 pressed();

11 },

12 button_up(self) {

13 ... draw button ...

14 };

15 ...

16 }

17 };

In this case we do not need to define new classes at all. We can simply use the base class as is.

Open Recursion It is frequently the case that some method of the superclass calls another
method of the superclass that is overridden in the subclass. In this case we have to decide which
version of the method to execute, the one in the superclass or in the subclass.

1 type widget = object {

2 draw : unit -> unit;

3 resize : int -> int -> unit;

4 ...

5 };

6 let new_widget(width,height) {

7 object {

8 draw() { () }

9 resize(w,h) { width := w; height := h; draw(); }

10 }

11 };

12
13 type text_field = object { ... };

14 let new_text_field() {

15 object {

16 draw() { ... };

17 ...

18 };

19 };
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Usually, we want to use the version in the subclass. In order to get access to this function,we need
to have the object available during the method call. The standard solution is to pass the object as
an additional, implicit parameter to every method.

1 type widget = object {

2 draw : unit -> unit;

3 resize : int -> int -> unit;

4 ...

5 };

6 let new_widget(width,height) {

7 object {

8 draw(obj) { () }

9 resize(obj,w,h) { width := w; height := h; obj.draw(); }

10 }

11 };

12
13 type text_field = object { ... };

14 let new_text_field() {

15 object {

16 draw(obj) { ... };

17 ...

18 };

19 };

Type classes Type classes also offer two of the forms of inheritance discussed above. Firstly,
we can extend a given type class with new functions.

1 typeclass Eq(a) {

2 equal : a -> a -> bool;

3 not_equal : a -> a -> bool;

4 };

5 typeclass Eq(a) => Ord(a) {

6 type cmp = | LT | EQ | GT;

7 compare : a -> a -> cmp;

8 };

9
10 instance Eq(int) {

11 equal(x,y) { prim_equal_int(x,y) };

12 not_equal(x,y) { not(equal(x,y)) };

13 };

14 instance Ord(int) {

15 compare(x,y) { if x < y then LT else if x > y then GT else EQ };

16 };

Secondly, a type class can offer a default implementation that may be overwritten by the instance.
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8.4 Inheritance

Mixin. Code sharing without subtyping.

1 typeclass Eq(a) {

2 equal : a -> a -> bool;

3 not_equal : a -> a -> bool;

4 not_equal(x,y) { not(equal(x,y)) };

5 };

6
7 instance Eq(int) {

8 equal(x,y) { prim_equal_int(x,y) };

9 };

Multiple inheritance Inheritance is mainly a mechanism to reuse code from existing objects.
Sometimes one would like to use code of several objects at once. Therefore some languages (most
notably C++) allow to define classes that extend several superclasses at the same time. This is
calledmultiple inheritance. While addingmore power to the language,multiple inheritancemakes
the object system also considerably more complicated. For instance, what happens if several of
the superclasses have methods with the same name? Does this result in an error, or do we simply
pick one of the methods for the subclass? Another problematic situation is the following one.
Suppose we have two classes B and C that both inherit from some class A. What happens if we
inherit a class D from both B and C ? Do we get two copies of the class A or only one? For
these reasons, many modern languages do not support multiple inheritance and try to provide
alternative, cleaner ways to achieve the same effects. For instance, Java does only support single
inheritance, but it allows classes to implement multiple interfaces.

Mixins The main reason why multiple inheritance is problematic, is the fact that in most lan-
guages inheritance is the only mechanism to define class hierarchies. A declaration like

class B extends A { ... }

both declares B as a subclass ofA and lets B inherit themethods ofA. If we provide separatemech-
anisms for inheritance and the declaration of subtyping relationships, the object system becomes
much simpler and cleaner.

How could an inheritance mechanism look like that is decoupled from subtyping? One ex-
ample of such a mechanism is calledmixins. A mixin is a function F ∶ I → J that takes a class A of
a specified object type I and produces a new class F(A) of type J. Hence, a mixin is very similar
to the parametrised modules we have described in Section 5.4. As an example let us consider a
mixin that turns shapes into coloured shapes.

1 type coloured_shape = object {

2 draw : unit -> unit,

3 move : int -> int -> shape,

4 dimensions : unit -> [ min_x : int, min_y : int,

5 max_x : int, max_y : int ],
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6 colour : colour,

7 set_colour : colour -> unit

8 };

9
10 let make_coloured(s : shape, c : colour) : coloured_shape =

11 [ draw = fun () { set_colour(c); s.draw() },

12 move = s.move,

13 dimensions = s.dimensions,

14 colour = fun () { c },

15 set_colour = fun (col) { c := col } ];

So, instead of using inheritance to extend a class A to a subclass B, we can use a mixin F such
that B = F(A). In some cases, we can use mixins also to simulate multiple inheritance. Suppose
that A is a common superclass of both B and C, and D inherits from B and C. If we can write
B = F(A) and C = G(A) with mixins F and G, then we can try to express D = H(G(F(A))) as
an extension of G(F(A)) via a third mixin H.

8.5 Discussion

The problem with many object-oriented languages is that they offer a single mechanism (class
definitions) that combines all the object features. This makes the language very complex and has
lead to much confusion about object-oriented design. A much cleaner and simpler design is to
provide separate mechanisms for subtyping, dynamic dispatch, encapsulated state, and inherit-
ance.

For instance, there is an old debate on whether subclasses should represent an ‘is-a’ or a ‘has-a‘
relationship. Separating the aspects of object-oriented design, we see that an ‘is-a’ relationship
is precisely modelled by the subtyping relation, whereas a ’has-a’ relationship is more suitably
modelled by some form of inheritance or the use of delegates.

Separation also allows one to only use those features necessary for a particular solution. For
instance, if stateless objects are sufficient for the task at hand,we can avoid the added complexities
involved with side-effects.

Let me conclude this chapter with a word of advice: while subtyping and object-oriented pro-
gramming as a whole are quite powerful, they are also quite complex. They are not always the best
way to solve a problem. Only use them if they make the resulting program simpler. If a purely
functional solution, or a plain imperative one, works as well, there is no need to resort to objects.

Also one can easily get carried away with designing elaborate class hierarchies, instead of writ-
ing code that actually does something. For instance, if you are about to define several helper
classes to perform a single task, you should ask yourself whether you really need thatmany classes
or whether a different approach would not offer a simpler solution. For instance, if it is possible to
use them, higher-order functions and parametric polymorphism are usually the better approach.
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9 Concurrency

So far in our language the evaluation order is completely deterministic. If we run a program
several times,we observe the same ordering each time. In this chapter we study language features
that cause the evaluation order to be non-deterministic. In this case we say that the program
is concurrent. The most common case of concurrency is when the program consists of several
threads of processes that are executed in parallel. But there are also examples of concurrency
without parallelism.

Of course, concurrency increases the complexity of programs andmakes themharder to reason
about, in particular, when combined with side-effects which, as we have seen, care about the eval-
uation order of expressions. Purely functional, concurrent programs are much better behaved.

On the language level concurrencymanifests in having several independent‘paths of execution’,
that is, instead of having a single code location identifying the expression that is to be executed
next, there can be several such locations. Each of the expressions pointed towill be executed even-
tually, but the ordering in which this happens is left unspecified. Such a path of execution is called
a fibre of the program. If fibres are executed in parallel, they are also called threads or processes.
Fibres that are not executed in parallel are called coroutines. Thus, a fibre is a part of the program
with its own control flow. Within each fibre execution is linear, but the program execution can
jump between fibres at certain points. Even without parallelism, fibres have the advantage that
the program is no longer restricted to a single syntactic nesting and stack discipline. It can use
several of them in parallel.

The main problem of concurrent programming is to organise the communication between
different fibres. This is called synchronisation. There are two fundamentally different methods for
synchronisation: message passing and shared memory. We will consider each one in turn.

9.1 Fibres

Before turning to the synchronisation problem let us first see how to implement fibres in our
language. As real parallelism requires support from the operating system,our implementationwill
be non-parallel and based on a form of cooperative multi-threading. We start with the following
functions.

1 make_ready : (unit -> unit) -> unit;

2 schedule : unit -> unit;

3 spawn : (unit -> unit) -> unit;

4 yield : unit -> unit;

Concurrency. Non-deterministic order of execution.
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Parallelism. Instructions are executed at the same time.

Fibre. A path of execution in the program.

The two low-level functions make_ready and schedule respectively add a fibre to the list of run-
ning fibres and execute the next fibre in the list. The high-level functions spawn and yield re-
spectively create a new fibre and mark a place where we can switch from one fibre to another one.
We can implement them as follows.

1 let ready_fibres = Queue.make ();

2
3 type terminate = | Terminated;

4
5 let make_ready(f) {

6 Queue.push(ready_fibres, f);

7 };

8
9 let schedule() {

10 if Queue.is_empty(ready_fibres) then

11 throw Terminated

12 else {

13 let f = Queue.pop(ready_fibres);

14 f();

15 schedule()

16 }

17 };

18
19 let start_scheduler() {

20 try

21 schedule()

22 catch e => case e

23 | Terminated => ()

24 | else => print "uncaught exception" e

25 };

26
27 let spawn(f) {

28 letcc k {

29 make_ready(k);

30 make_ready(f);

31 schedule()

Thread. A parallel fibre.
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Coroutine. A non-parallel fibre.

Synchronisation. Communication between fibres.

32 }

33 };

34
35 let yield() {

36 letcc k { make_ready(k); schedule() }

37 };

The module Queue contains a simple queue implementation where we can add elements at one
end and remove them at the other one. A simple example of how to use fibres, consider the
following program where two fibres print some numbers in an arbitrary ordering. (With the
implementation above, the fibres alternate.)

1 let f1() {

2 for i = 1 .. 10 {

3 print "fibre1:" i;

4 yield();

5 }

6 };

7 let f2() {

8 for i = 1 .. 10 {

9 print "fibre2:" i;

10 yield();

11 }

12 };

13 spawn(f1);

14 spawn(f2);

15 start_scheduler()

With only these two operations fibres are not of much use. We also need some operations
for synchronisation of and communication between fibres. We start by defining a few primitive
operations that can be thenused to implementmore complex communicationmechanisms. These
operations are based on the notion of a condition. A fibre can wait on such a condition until it is
woken up by some other fibre.

1 type condition(a);

2 new_condition : unit -> condition(a);

3 wait : condition(a) -> a;

4 wait_multi : list(condition(a)) -> a;

5 resume : condition(a) -> a -> unit;

new_condition creates a new condition, wait(c) sends the current fibre to sleep, waiting on the
condition c, and resume(c) wakes up all fibres waiting on c.
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1 type trigger(a) = [ cont : a -> void, triggered : bool ];

2 type condition(a) = [ waiting : list(trigger(a)) ];

3
4 let make_trigger(k) {

5 [ cont = k, triggered = False ]

6 };

7
8 let resume_trigger(t,v) {

9 if t.triggered then

10 ()

11 else {

12 t.triggered := True;

13 make_ready(fun () { t.cont(v) });

14 }

15 };

16
17 let new_condition() {

18 [ waiting = [] ]

19 };

20
21 let resume(c,v) {

22 let waiting = c.waiting;

23 c.waiting := [];

24 List.iter(fun (k) { resume_trigger(k,v) },

25 waiting);

26 };

27
28 let wait(c) {

29 letcc k {

30 let t = make_trigger(k);

31 c.waiting := [t | c.waiting];

32 schedule();

33 }

34 };

35
36 let wait_multi(cs) {

37 letcc k {

38 let t = make_trigger(k);

39 List.iter(fun (c) { c.waiting := [t | c.waiting] },

40 cs);

41 schedule();

42 }

43 };
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Mutualexclusion. Making sure that certain parts of the programare not executed in parallel.

Using conditions the example from above can bewritten as follows. This code strictly alternates
between fibres irrespective of the way the scheduling algorithm works.

1 let c1 = new_condition();

2 let c2 = new_condition();

3
4 let f1() {

5 for i = 1 .. 10 {

6 print "fibre1:" i;

7 resume(c2, ());

8 wait(c1);

9 };

10 resume(c2, ());

11 };

12
13 let f2() {

14 for i = 1 .. 10 {

15 print "fibre2:" i;

16 resume(c1, ());

17 wait(c2);

18 };

19 resume(c1, ());

20 };

21
22 spawn(f1);

23 spawn(f2);

24 start_scheduler()

9.2 Ramifications

When adding concurrency to a language many new phenomena and problems arise. Let us dis-
cuss a few of them.

Mutual exclusion When two regions of code in different fibres want to modify the same data
structure, it is usually required that the control flows of the two fibres do not enter these regions
simultaneously. This is called the mutual exclusion problem and most synchronisation problems
can be reduced to it. Many of the synchronisation mechanisms we will introduce below have
specifically been invented to ensure mutual exclusion.

Deadlocks A deadlock is a situation where there are several fibres, each waiting on an action
that can only be performed by one of the other waiting fibres.
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Deadlock. A cycle of fibres waiting on each other.

Race condition. A bug that only occurs under a specific timing.

Race conditions A race condition is a bug that is caused by the particular choices and timing
of the scheduler.

Starvation If a fibre is ready but it is never executed because there is always another fibre that
goes first, we say the fibre is starving.

Lifeness Lifeness is the opposite of starvation: every ready fibre is executed eventually.

Fairness When several fibres compete for a certain resource,we ideally want them to get access
to the resource in equal amounts. This is called fairness.

9.3 Message passing

Having a basic implementation of fibres we can turn to communication mechanisms. We start
withmessage passing. The central concept of message passing are objects called channels or ports.
A channel is a line of communication between processes that supports two operations: one pro-
cess can write data, a message, to the channel and the other one can read it. Channels come in
many variants. They might be

• synchronous: a writer waits until the other process reads the message, a reader waits until
the other process has supplied a message;

• asynchronous and buffered: a writer can continue immediately after sending the message,
a reader must still wait until a message is available; there can be several messages waiting
for the reader;

• asynchronous and unbuffered: awriter can continue immediately after sending themessage,
a readermust still wait until amessage is available; there can be atmost onemessagewaiting
for the reader; if the writer wants to send a second message, he blocks until the reader has
read the first one;

• one-directional: a channel is split into two parts: one for reading and one for writing, if a
process has access to only one of the parts, it can performonly the corresponding operation.

• bidirectional: each end of a channel can be used both for reading and for writing.

Before giving an example, let us describe the library functions we need to implement.

Starvation. A ready fibre is never scheduled.
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new_channel : unit -> channel(a)

send : channel(a) -> a -> unit

receive : channel(a) -> a

new_channel() creates a new channel
send(ch,x) sends the value x over the channel ch

receive(ch) reads a value from the channel ch

In our implementation, channels are synchronous and bidirectional.

1 type channel_state(a) = | Free | Reading | Written(a);

2 type channel(a) = [ state : channel_state(a),

3 readers : condition(a),

4 writers : condition(unit) ];

5
6 let new_channel() {

7 [ state = Free,

8 readers = new_condition(),

9 writers = new_condition() ]

10 };

11
12 let receive(ch) {

13 case ch.state

14 | Free => { ch.state := Reading; wait(ch.readers) }

15 | Written(v) => { ch.state := Free; resume(ch.writers, ()); v }

16 | Reading => error

17 };

18
19 let send(ch,v) {

20 case ch.state

21 | Free => { ch.state := Written(v); wait(ch.writers); }

22 | Written(v) => error

23 | Reading => { ch.state := Free; resume(ch.readers,v) }

24 };

25
26 let merge(ch1,ch2) {

27 let merge_fibre(ch1,ch2,c) {

28 while True {

29 case ch1.state

30 | Written(v) => send(c,receive(ch1))

31 | else => case ch2.state

32 | Written(v) => send(c,receive(ch2))

33 | else => { ch1.state := Reading;

34 ch2.state := Reading;

35 wait_multi([ch1, ch2]); }

107



9 Concurrency

36 }

37 };

38 let c = new_channel();

39 spawn(fun () { merge_fibre(ch1,ch2,c) });

40 c

41 };

Example As an example of how to use message passing, let us take a look at the well-known
producer–consumer problem.

1 let produce(ch) { let consume(ch) {

2 while True { while True {

3 let x = get_next_item(); let x = receive(ch);

4 send(ch,x); process_item(x);

5 }; };

6 }; };

7
8 let ch = new_channel();

9 spawn(fun () { produce(ch) });

10 spawn(fun () { consume(ch) });

11 start_scheduler()

Example Suppose we have a user interface where we want to implement drag-and-drop. The
usual GUI frameworks have an event-loop where the program can register call-backs for various
events likemouse clicks.When using such a framework,we face the problem of how to remember
the program state between user inputs. The typical solution looks as follows.

1 type state = | Idle | Dragging(obj);

2
3 let state = Idle;

4
5 let mouse_down(x,y) {

6 case state

7 | Idle => case object_under_pointer(x,y)

8 | None => Nothing

9 | Some(obj) => state := Dragging(obj)

10 | Dragging(obj) => Nothing

11 };

12 let mouse_up(x,y) {

13 case state

14 | Dragging(obj) => { move_object_to(obj,x,y); state := Idle; }

15 | Idle => Nothing

16 };

17 let mouse_move(x,y) {
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18 case state

19 | Dragging(obj) => move_object_to(obj,x,y);

20 | Idle => Nothing

21 };

22
23 register_call_back_mouse_down(mouse_down);

24 register_call_back_mouse_up(mouse_up);

25 register_call_back_mouse_move(mouse_move);

When having more states than ‘idle’ and ‘dragging’, this quickly become tedious. Using fibres we
can avoid having to manage the program state explicitly.

1 type event = | Start(object) | Move(int,int) | Drop;

2
3 let drag_and_drop(ch) {

4 case receive(ch)

5 | Start obj =>

6 while True {

7 case receive(ch)

8 | Move(x,y) => move_object_to(obj,x,y);

9 | Drop => break

10 };

11 };

12
13 let mouse_down(ch,x,y) {

14 case object_under_pointer(x,y)

15 | None => Nothing

16 | Some(obj) => send(ch, Start(obj))

17 };

18 let mouse_up(ch,x,y) {

19 send(ch, Drop(x,y));

20 };

21 let mouse_move(ch,x,y) {

22 send(ch, Move(x,y));

23 };

24
25 let ch = make_channel();

26 spawn(drag_and_drop(ch));

27 register_callback_mouse_down(mouse_down(ch));

28 register_callback_mouse_up(mouse_up(ch));

29 register_callback_mouse_move(mouse_move(ch));

Inversion of control If we do not use fibres, communication between program units is asym-
metric. One unit is in control and calls the functions provided by the other unit. In the above
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Inversion of control. A code transformation that reverses the master/slave relationship.

example, the event loop was in control and invokes the callbacks provided by the main program.
Alternatively, we could have the main program be in control and call a library function to get the
next event. But we must choose between these two options. Going from one to the other is called
inversion of control. The choice between these two versions requires careful consideration, as it
has a big influence on the structure of the whole program.

The big advantage of using fibres is that we do not need to choose: both parts can be in control
at the same time and communicate via channels. Thus communication is symmetric.

When compared to shared-memory communication, which we will describe next, message
passing has some overhead as messages must be constructed and passed to another process. But
it scales really well to any number of processes and it works equally well on a single computer or
on a distributed system. Furthermore, it is conceptually really simple and easy to use for the pro-
grammer. In my opinion it is therefore clearly superior to approaches relying on shared-memory.

Futures Futures are a simple synchronisation mechanism where we can evaluate a given ex-
pression in parallel and wait for the result. They work like a channel that can only be used a single
time. The implementation is straightforward using the tools we already have. For instance, we
can use channels.

1 let future(e) {

2 let ch = new_channel();

3 spawn(fun () { send(ch,e) });

4 ch

5 };

6
7 let get(f) { receive(f) };

We can also use single-assignment variables (if we use the convention that reading from an un-
initialised single-assignment variable blocks until some other fibre assigns a value to it.)

1 let future(e) {

2 let x;

3 spawn(fun () { x := e });

4 x

5 };

6
7 let get(f) { let y = f; y };

Reactive programming An example of a very pure form of message passing concurrency is
given by a programming paradigm called reactive programming. In a reactive program the pro-
grammer uses streams of data to connect time dependent data sources with objects reacting to
the data. This is usually done in a purely functional way. For instance, there can be data sources
for the current mouse position, the state of the mouse buttons, or the current time. The streams
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Atomic operation. No intermediate states are visible from the outside.

created by these sources can be modified by operations like counting the number of events, filter-
ing out uninteresting ones, or applying arbitrary functions to the data. Finally, such streams are
connected to objects that react to the data, like, a text field that reads strings from a stream and
displays them.

1 let a = ... mouse.x ... mouse.y ... ;

2 let b = ... time ... ;

3 let c = ... a ... b ... ;

4
5 let num_clicks = count(mouse_button);

6 let str = sprintf("The mouse is at (%d, %d). There have been %d clicks.",

7 mouse.x, mouse.y, num_clicks);

8 let fld = make_text_field(str);

Because of its declarative nature this programming style is very easy to use and programs are
highly compositional. Furthermore, typical problems of concurrent programs like race conditions
and deadlocks are automatically avoided.

On the other side, it is not suitable for every problem. It seems to work well for simple user
interfaces and dynamical web-pages, but in more complex situations it quickly becomes cumber-
some. In addition, reactive programming sacrifices performance for reliability and ease of use.

9.4 Shared-memory

When several fibres or threads run on the same processor they can use the shared memory to
communicate. Of course this relies on side-effects and, as the evaluation order matters with side-
effects, the non-determinism of this order inherent in concurrency makes such program even
harder to understand. Over the years people have invented several mechanisms and constructs
to make shared memory communication easier to use and less error prone.

Atomic operations Before presenting the various synchronisation mechanisms let us intro-
duce the primitive operations we need to implement them. These are operations that are atomic
which means that, when executing such an operation we cannot observe any intermediate state.
Either we see the state before the operation or we see the resulting state, but we can never find the
operation to be halfway executed.

Usually processors provide a few special atomic instructions to build concurrencymechanisms
with. Typical examples are a test-and-set and a compare-and-swap operation.

1 test_and_set : location -> a -> a;

2 compare_and_swap : location -> a -> a -> bool;

The operation test_and_set(x,a) stores the value a in the variable x and returns the old value
of x. compare_and_swap(x,a,b) compares the value in the memory location xwith the value a.
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If they are the same, it sets the value of x to b. Otherwise, it leaves x unchanged. The return value
indicates whether a change occurred.

Locks/Mutexes A lock (also called amutex) is a data structure with two states. It can either be
locked by a certain fibre (we say that the fibre holds the lock, or that it has acquired the lock) or it
is open. There are two operations.

1 type lock;

2 lock : lock -> unit;

3 unlock : lock -> unit;

When a fibre calls lock on an open lock, the lock changes state to locked and it is now held by the
fibre. When called with a lock that is hold by another fibre, the operation blocks until that fibre
unlocks it. What happens when a fibre calls lock on a lock that is held by itself depends on the
particular implementation. Some implementations just block, which results in a deadlock (as the
fibre waits on itself to release the lock). In this case, we call the locks non-reentrant. The more
sensible solution is to allow a fibre to acquire a lock several times (of course, in this case it has to
release the lock the same number of times before the lock is open again). Such locks are called
reentrant.

For simplicities sake, we will implement non-reentrant locks.

1 type lock = [ locked : bool; waiting : condition() ];

2
3 let new_lock() {

4 [ locked = False, waiting = new_condition() ]

5 };

6
7 let lock(l) {

8 while test_and_set(l.locked, True) {

9 wait(l.waiting)

10 }

11 };

12
13 let unlock(l) {

14 l.locked := False;

15 resume(l.waiting, ());

16 };

Using locks manually is quite error prone. If several locks are involved it is important to lock
and unlock them in the correct order. Also it is easy to forget some of the unlock calls. Some of
these errors can be avoided if the language has built in support for locks, like the following

1 lock name {

2 ...

3 }

⇒
lock(name);

...

unlock(name);
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Example: lock-free stack Sometimes it is not possible to meet the performance requirements
when using higher-level constructs like locks. In these cases one is forced to directly use atomic
operations for synchronisation. Let us give an example of how to implement a stack in this way.
We start with a non-thread-safe version.

1 type node(a) = [ next : node(a), data : a ];

2 type stack(a) = [ head : node(a) ];

3
4 let push(st : stack(a), x : a) : unit {

5 let n = [ next = null, data = x ];

6 let old_head = st.head;

7 n.next := old_head;

8 st.head := n;

9 };

10
11 let pop(st : stack(a)) : a {

12 let old_head = st.head;

13 if old_head == null then

14 throw Empty;

15 let new_head = old_head.next;

16 st.head := new_head;

17 return old_head.data;

18 };

When several threads call push or pop at the same time, this code can corrupt the data structure.
For instance, it is possible to pop the same element several times, or to silently drop pushed ele-
ments. To fix this, we have to make sure when modifying the head pointer of the stack at the end
of push and pop, that it was not modified by another thread in the mean time. This can be done
with compare_and_swap.

1 type node(a) = [ next : node(a), data : a ];

2 type stack(a) = [ head : node(a) ];

3
4 let push(st : stack(a), x : a) : unit {

5 let n = [ next = null, data = x ];

6 while true {

7 let old_head = atomic_read(&st.head);

8 n.next := old_head;

9 if compare_and_swap(&st.head, old_head, n) then

10 return;

11 };

12 };

13 let pop(st : stack(a)) : a {

14 while true {

15 let old_head = atomic_read(&st.head);

16 if old_head == null then
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17 throw Empty;

18 let new_head = old_head.next;

19 if compare_and_swap(&st, old_head, new_head) then

20 return old_head.data;

21 };

22 };

This code looks thread-safe,but it still has a subtle threading bug: compare_and_swap only checks
whether the head pointer of the stack has not changed. But it can be that some other thread
popped the top element of the stack and then pushed new elements, and coincidently the last node
added was allocated at the same memory address as the popped one. Then compare_and_swap

thinks the stack was not modified,while in fact is was. This is called theABA problem. The easiest
fix is to add a serial number to the stack that is incremented each time some element is popped.

1 type node(a) = [ next : node(a), data : a ];

2 type stack(a) = [ head : node(a), count : int ];

3
4 let push(st : stack(a), x : a) : unit {

5 let n = [ next = null, data = x ];

6
7 while true {

8 let old_head = atomic_read(&st.head);

9 n.next := old_head;

10 if compare_and_swap(&st.head, old_head, n) then

11 return;

12 };

13 };

14
15 let pop(st : stack(a)) : a {

16 while true {

17 let old_head = atomic_read(&st.head);

18
19 if old_head == null then

20 throw Empty;

21
22 let old_count = atomic_read(&st.count);

23 let new_head = old_head.next;

24 let new_count = old_count + 1;

25
26 if compare_and_swap2(&st,

27 old_head, old_count,

28 new_head, new_count) then {

29 return old_head.data;

30 }

31 };
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32 };

Here, compare_and_swap2 is a version of compare_and_swap that swaps two values at the same
time.

Condition variables A condition variable is a condition that is associated with a lock. Waiting
on the condition also unlocks the lock and when it is woken up again it automatically acquires
the lock again. This simplifies the common case where a fibre has to wait while holding a lock.

1 type cvar = [ cond : condition, lock : lock ];

2
3 let new_cvar(l) {

4 [ cond = new_condition(), lock = l ];

5 };

6
7 let wait_cvar(c) {

8 unlock(c.lock);

9 wait(c.cond);

10 lock(c.lock);

11 };

12
13 let resume_cvar(c) {

14 resume(c.cond, ());

15 };

Semaphores A semaphore is a generalisation of a lock that has several degrees of being un-
locked. It takes the form of an integer counter that cannot go below zero. If a fibre tries to decrease
the counterwhen it already is zero, it blocks instead until another fibre increases the counter again.
So, we have two operations: one to increment the counter and one to decrement it.

1 type semaphore;

2 increment : semaphore -> unit;

3 decrement : semaphore -> unit;

The implementation is as follows.

1 type semaphore = [

2 count : int,

3 lock : lock,

4 waiting : cvar

5 ];

6
7 let new_semaphore() {

8 let l = new_lock();

9 let cv = new_cvar(l);

10 [ count = 0,
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11 lock = l,

12 waiting = cv ]

13 };

14
15 let increment(sem) {

16 lock(sem.lock);

17 sem.count := sem.count + 1;

18 resume_cvar(sem.waiting); // this automatically unlocks the lock
19 };

20
21 let decrement(sem) {

22 lock(sem.lock);

23 while sem.count == 0 {

24 wait_cvar(sem.waiting);

25 }

26 sem.count := sem.count - 1;

27 unlock(sem.lock);

28 };

Example Thefollowing producer–consumer implementationuses a bufferwhose size is bounded
by some constant n.

1 let lock = new_semaphore();

2 let full = new_semaphore();

3 let empty = new_semaphore();

4 let n = 10;

5 let buffer = new_buffer(n);

6
7 for i = 1 .. n { // the initial value of empty should be n
8 increment(empty)

9 };

10
11 increment(lock);

12
13 let producer() {

14 for i = 0 .. 100 {

15 let x = ... generate a value ...;

16 decrement(empty);

17 decrement(lock);

18 put(buffer, x);

19 increment(lock);

20 increment(full);

21 }

22 };
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23
24 let consumer() {

25 for i = 0 .. 100 {

26 decrement(full);

27 decrement(lock);

28 let x = get(buffer);

29 increment(lock);

30 increment(empty);

31 ... process the value x ...

32 }

33 };

Monitors A monitor is an abstract data type that is protected by a lock. Each operation on the
type first acquires the lock and releases it again upon return. This makes the operations atomic.
For instance, a monitor for a queue implementation could look as follows.

1 type node(a) = [ ... ];

2
3 type queue(a) = [

4 lock : lock,

5 front : node(a),

6 back : node(a)

7 ];

8
9 let make() {

10 let node = [ ... ];

11 [ lock = new_lock(), front = node, back = node ]

12 };

13
14 let pop(q) {

15 lock(q.lock);

16 ... remove the first node from the list ...

17 unlock(q.lock);

18 ... return the data stored in the removed node ...

19 };

20
21 let push(q,x) {

22 lock(q.lock);

23 ... add a new node at the end of the list ...

24 unlock(q.lock);

25 };

Some languages, most notably Java, provide syntactic sugar for monitors. For instance, in Java
you can declare methods as synchronized which automatically protects the body by lock and
unlock statements.

117



9 Concurrency

The obvious advantage of monitors is that they provide a very easy way to write correct syn-
chronisation code. Their main disadvantage is that, like most automatic mechanisms, they can
lead to poor performance by taking locks in situations where it is not necessary.

Transactionalmemory Transactional memory is a general mechanism to make arbitrary op-
erations atomic. A transaction is a piece of code that can either succeed or fail with its task. When
it fails it has no effect on the program, it is as if the transaction was never executed. Thus, trans-
actional memory can be seen as a form of backtracking.

We add the following constructs to our language.

⟨expr⟩ ∶∶= . . . ∣ atomic{ ⟨expr⟩ } ∣ abort ∣ retry

An expression of the form atomic { e } evaluates the expression e as if it were atomic. That
means that no other fibres can see intermediate states of the execution of e. They either see the
state before its execution or the one after it.

In addition, the expression e can contain abort and retry statements to indicate, respectively,
that the transaction has failed, or that it should be restarted from the beginning.

From a programmer’s perspective, transactional memory is by far the easiest to usemechanism
for shared memory concurrency. It automatically avoids the typical errors associated with this
form of concurrency, like deadlocks and race conditions. Furthermore, the resulting code ismuch
more composable and modular than code written with other primitives.

Of course this convenience comes at a significant cost. Transactional memory is very hard to
implement and it comes with a considerable overhead. In particular, acceptable performance re-
quires special hardware support,whichmostmainstreamprocessors do not offer yet. The runtime
cost is increased further by the fact that we sometimes need to execute a transaction several times
for it to succeed. Finally, since transactional memory relies on backtracking, some operations
cannot be used inside a transaction. In particular IO operations are not supported.

Discussion Shared-memory communication is very efficient, but it requires all processors to
sharememory. This becomes quickly impractical as their number increases. From a programmers
perspective the main problem with shared-memory communication is that it is very error prone.
The reason is that mechanisms for shared-memory communication require side-effects and we
have seen that, when programming with side-effects, the order of execution becomes important.
In a concurrent setting, this order is non-deterministic and it is therefore much harder to reason
about. This added complexity makes it almost impossible to write correct code in this setting.
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10.1 Scripting languages

Scripting languages fill a niche that is very different from ordinary programming. Most non-toy
programming languages are designed with large code bases in mind, while scripting languages
specialise in very small programs, where the trade-offs involved are quite different.

Typical use cases for scripting languages are single-file programs with one or two hundred
lines of code and, in particular, programs like shell scripts you run once and then discard. As a
consequence such languages are optimised for convenience and ease of use, while readability and
intelligibility take a back-seat. (It is much easier to understand code and to ensure its correctness,
if the amount of code is that small.)

Let us mention a few examples where scripting languages can be used.

• shell scripts and a language for the command line;

• a macro language for an application like a word processor, a spread sheet program, etc.;

• providing a simple interface to libraries which allows also non-programmers (e.g., scient-
ists) to write the glue code connecting such libraries. (For instance, there are Python frame-
works that are very popular for numerical computations, data analysis, and machine learn-
ing.)

As mentioned, the trade-offs involved in designing a scripting language are quite different to
other languages. Here are a few examples.

• An interpreter is frequently superior to a compiler, as compile times easily outnumber ex-
ecution times.

• A REPL (‘read-evaluate-print loop’) can be useful.

• Scripting languages are the only case I can think of where dynamic typing actually makes
sense.

• The syntax is frequently rather concise and itmight supportsmany different ways to express
the same thing.

Finally, let us mention a few typical consequences of such design choices.

• Scripting languages are usually easier to use for people that are not programmers.

• Most scripting languages are completely unusable for programs with more than, say, 400-
500 lines of code (although a lot of people do so anyway).

• Performance is usually quite low (e.g., due to being interpreted or due to using dynamic
typing).
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10.2 Metaprogramming

Metaprogramming is the practice of using programs to write, modify, or check other programs.
Typical use-cases include

• the automation of tedious tasks (e.g., keeping several parts of a program that depend on
each other synchronised, generating bindings for a large library,…);

• checking for domain-specific errors;

• code instrumentation (e.g., adding profiling code or debugging checks);

• generation of highly-specialised code that is too long or too complicated to write manually.

The simplest way to add metaprogramming capabilities to a language is by implementing mac-
ros. This can be done in several ways, which differ in their degree of sophistication.

• The simplest way to implement macros is as textual substitutions that work independently
of the syntactic structure. The C preprocessor (which used to be a separate program) is a
prime example of this approach.

• Less powerful, but also easier to understand aremacro systems working on the syntax level,
i.e., macros that replace one syntax tree by another one.

• Finally, there are so-called hygienic macros, which also work on the syntax level, but that
additionally know how to handle local variables. When applying such a macro, all variables
local to the macro are renamed to prevent clashes with already existing identifiers. Thus, a
hygienic macro is very similar to a function that is always inlined.

For more elaborate kinds of metaprogramming, the language needs to support first-class code,
either built into the language itself, or via a library. At the very least there have to be data types for
syntax trees and a way to get the syntax tree of a program. More advanced systems additionally
provide a way to execute code given by such a syntax tree. The prime example here is Lisp, where
expressions are just lists and where there exists a built in evaluation function.
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