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Complementary Approximate Reachability (CAR)

Technique for verifying invariant properties of boolean transition
systems.

Inspired by symbolic reachability and IC3/PDR
Aims to find a property violation as fast as possible
Works complementary to IC3/PDR
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Preliminaries

We use propositional logic (boolean variables, connectives
∧,∨,¬, =⇒ , ⇐⇒ ). A variable or its negation is called literal,
conjunction of literals is cube and disjunction of literals is clause.

A formula over variables X = {x1, . . . , xn} is satisfiable (SAT) if there
exists an assignment α : X → {true, false} to its variables that
evaluates the formula to true. We allow α to be partial function, in
which case we call the assignment partial assignment.

If a formula φ is unsatisfiable (UNSAT), we can find its minimal unsat
core (MUC) which is a subformula ψ of φ which is UNSAT but every
subformula of ψ is SAT.
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Preliminaries – cont.

Boolean transition system (BTS) is a tuple (x̄ , I,T ) consisting of
state (boolean) variables x̄ = {x1, x2, ..., xn},
a propositional formula I(x̄) describing initial states,
a propositional formula T (x̄ , x̄ ′) describing transition relation

Where x̄ ′ are the next-state versions of state variables: {x ′1, x ′2, ..., x ′n}.

A predicate over x̄ represents a set of states. Notably, a conjunction of
n (different) literals represents a single state.
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BTS Example

000

111

100 010 001

110 011 101

x̄ = {x1, x2, x3}
I(x̄) = ¬x2 ∧ ¬x3

T (x̄ , x̄ ′) = (x1 ⇐⇒ x ′2) ∧ (x2 ⇐⇒ x ′3) ∧ (x3 ⇐⇒ x ′1)
P(x̄) = ¬x1 ∨ ¬x2
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Preliminaries – cont.
From now on, we fix some BTS (x̄ , I,T ) and a set of states P called
property.

Notation: we do not write arguments to named formulas. That is, we
abbreviate I(x̄) to I and T (x̄ , x̄ ′) to T . Formula F ′ is the formula F
with all variables primed. E.g., if F = x ∧ y then F ′ = x ′ ∧ y ′. If
F = z ∧ y ′, then F ′ = z ′ ∧ y ′′, etc.

A set of states is invariant of BTS if it is a superset of reachable states.
A set S of states is inductive (closed under reachability) if

I =⇒ S
S ∧ T =⇒ S ′
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Model Checking of BTSs

Assume we want to show that all states reachable from I satisfy a
predicate P.

The basic option is to enumerate states reachable in 0, 1, 2, ... steps.

But that is not efficient for large systems.

Another option is to try to find an inductive invariant F such that
F =⇒ P, i.e.,

I =⇒ F
F ∧ T =⇒ F ′

F =⇒ P
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Model Checking of BTSs – cont.

A useful technique for finding inductive invariants for BTSs is
IC3/PDR:

IC3/PDR maintains an over-approximation F of states reachable
in at most k steps (k is being increased if found insufficient)
it iteratively blocks states that fail the inductiveness of F until F
becomes inductive or a counter-example (real error) is found.
IC3/PDR generalizes the blocked states to speed-up the
convergence to an invariant.
Problem 1: the generalization has a big over-head.
Problem 2: it may take a long time to find a counter-example.
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Model Checking of BTSs – cont.

CAR is inspired by IC3/PDR but tries to solve:

Problem 1 (the generalization in IC3/PDR has a big over-head)
by using MUC for the generalization. MUC are provided virtually
free by SAT solvers.
Problem 2 (it may take a long time to find a counter-example) by
using also an under-approximation of states that reach bad states.
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CAR Algorithm (main loop)
assume Bi ,Fi = false, true for all i > 0
F0,B0 ← I,¬P

# check the first two steps from init
if sat(F0 ∧ B0) or sat(F0 ∧ T ∧ B′0):

return unsafe (+ cex)

for i in 1, 2, . . . :
Fi ← P
cex ← strengthen
# a counter-example (real error) found
if cex: return unsafe (+ cex)

# some frame got inductive
if ∃j ≤ i : Fj =⇒

∨
m<j

Fm:

return safe
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CAR Algorithm (the core)

def strengthen():

while sat((
∨
n

Fn) ∧ T ∧ (
∨
n

B′n)):

j ← the minimal j s.t. sat(Fj ∧ T ∧ B′k) for some k
c1 ← partial_assignment(Fj ∧ T ∧ B′k)|x̄
if j = 0: return c_1 # found error

Bk+1 ← Bk+1 ∨ c1
φ← Fj−1 ∧ T ∧ c ′1
if sat(φ):

c2 ← partial_assignment(φ)|x̄
Bk+2 ← Bk+2 ∨ c2

else:
c2 ← (unsat_core(φ)|c′

1
)[x̄ ′ ← x̄]

Fj ← Fj ∧ ¬c2
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Final notes

CAR can run also backwards (with T−1 from ¬ − P to I)
Experiments: in paper.

Thank you!
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