IA159 Formal Verification Methods LTL Model Checking of Pushdown Systems

Jan Strejček

Faculty of Informatics Masaryk University

Focus

- pushdown systems
- representation of sets of configurations
- computing all predecessors: checking safety properties
- state-based LTL model checking

Sources

- J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon: *Efficient algorithms for model checking pushdown systems*, CAV 2000, LNCS 1855, Springer, 2000.
- S. Schwoon: *Model-Checking Pushdown Systems*, PhD thesis, TUM, 2002.

Pushdown systems can be used to precisely model sequential programs with procedure calls, recursion, and both local and global variables.

A pushdown system is a triple $\mathcal{P} = (P, \Gamma, \Delta)$, where

- P is a finite set of control locations,
- Γ is a finite stack alphabet,
- $\Delta \subseteq (P \times \Gamma) \times (P \times \Gamma^*)$ is a finite set of transition rules.

We write $\langle q, \gamma \rangle \hookrightarrow \langle q', w \rangle$ instead of $((q, \gamma), (q', w)) \in \Delta$.

We do not consider any input alphabet as we do not use pushdown systems as language acceptors.

Definitions

- a configuration of *P* is a pair ⟨*p*, *w*⟩ ∈ *P* × Γ*, where *w* is a stack content (the topmost symbol is on the left)
- the set of all configurations is denoted by C
- an immediate successor relation on configurations is defined in standard way
- reachability relation ⇒ ⊆ C × C is the reflexive and transitive closure of the immediate successor relation
- $\stackrel{+}{\Rightarrow} \subseteq C \times C$ is the transitive closure of the immediate successor relation
- given a set C ⊆ C of configurations, we define the set of their predecessors as

$$pre^*(C) = \{ c \in C \mid \exists c' \in C . c \Rightarrow c' \}$$

 $\mathcal{P} ext{-automata}$

are finite automata used to represent sets of configurations

- use Γ as an alphabet
- have one initial state for every control location of the pushdown (we use P as the set of initial states)

Given a pushdown system $\mathcal{P} = (P, \Gamma, \Delta)$, a \mathcal{P} -automaton (or simply automaton) is a tuple $\mathcal{A} = (Q, \Gamma, \delta, P, F)$ where

- Q is a finite set of states such that $P \subseteq Q$,
- $\delta \subseteq \mathbf{Q} \times \mathbf{\Gamma} \times \mathbf{Q}$ is a set of transitions,
- $F \subseteq Q$ is a set of final states.

■ a (reflexive and transitive) transition relation $\rightarrow \subseteq Q \times \Gamma^* \times Q$ is defined in a standard way

 \blacksquare $\mathcal{P}\text{-}automaton$ \mathcal{A} represents the set of configurations

$$Conf(\mathcal{A}) = \{ \langle p, w \rangle \mid \exists q \in F . p \stackrel{w}{\rightarrow} q \}$$

a set of configurations of *P* is called regular if it is recognized by some *P*-automaton In the rest of this section, we use

- p, p', p'', ... to denote initial states of an automaton (i.e. elements of P)
- **s**, s', s'', ... to denote non-initial states, and
- q, q', q'', \dots to denote arbitrary states (initial or not).

Verification of pushdown systems: the first step

Computing $pre^*(C)$ for a regular set C

IA159 Formal Verification Methods: LTL Model Checking of Pushdown Systems

- Given a pushdown system *P* and a regular set of configurations *C*, the set *pre*^{*}(*C*) is again regular.
- 2 If *C* is defined by a \mathcal{P} -automaton \mathcal{A} , then the automaton \mathcal{A}_{pre^*} representing $pre^*(C)$ is effectively constructible.

Intuition

$$\begin{array}{l} \langle \boldsymbol{p}_1, \gamma_0 \rangle \hookrightarrow \langle \boldsymbol{p}_2, \gamma_1 \gamma_2 \rangle \\ \langle \boldsymbol{p}_3, \gamma_3 \rangle \hookrightarrow \langle \boldsymbol{p}_1, \gamma_0 \gamma_1 \rangle \end{array}$$

 $\begin{array}{c} \langle \boldsymbol{p}_1, \gamma_0 \rangle \hookrightarrow \langle \boldsymbol{p}_2, \gamma_1 \gamma_2 \rangle \\ \langle \boldsymbol{p}_3, \gamma_3 \rangle \hookrightarrow \langle \boldsymbol{p}_1, \gamma_0 \gamma_1 \rangle \end{array}$

Intuition

 $\begin{array}{l} \langle \boldsymbol{\rho}_1, \gamma_0 \rangle \hookrightarrow \langle \boldsymbol{\rho}_2, \gamma_1 \gamma_2 \rangle \\ \langle \boldsymbol{\rho}_3, \gamma_3 \rangle \hookrightarrow \langle \boldsymbol{\rho}_1, \gamma_0 \gamma_1 \rangle \end{array}$

Let \mathcal{P} be a pushdown system and \mathcal{A} be a \mathcal{P} -automaton. We assume (w.l.o.g.) that \mathcal{A} has no transition leading to an initial state. The automaton \mathcal{A}_{pre^*} is obtained from \mathcal{A} by addition of new transitions according to the following rule:

Saturation rule

If $\langle p, \gamma \rangle \hookrightarrow \langle p', w \rangle$ and $p' \stackrel{w}{\to} q$ in the current automaton, add a transition (p, γ, q) .

- we apply this rule repeatedly until we reach a fixpoint
- a fixpoint exists as the number of possible new transitions is finite
- the resulting \mathcal{P} -automaton is \mathcal{A}_{pre^*}

transition rules of \mathcal{P} :

$$\begin{array}{ll} \langle \boldsymbol{p}_{0}, \gamma_{0} \rangle \hookrightarrow \langle \boldsymbol{p}_{1}, \gamma_{1} \gamma_{0} \rangle & \langle \boldsymbol{p}_{2}, \gamma_{2} \rangle \hookrightarrow \langle \boldsymbol{p}_{0}, \gamma_{1} \rangle \\ \langle \boldsymbol{p}_{1}, \gamma_{1} \rangle \hookrightarrow \langle \boldsymbol{p}_{2}, \gamma_{2} \gamma_{0} \rangle & \langle \boldsymbol{p}_{0}, \gamma_{1} \rangle \hookrightarrow \langle \boldsymbol{p}_{0}, \varepsilon \rangle \end{array}$$

transition rules of \mathcal{P} :

$$\begin{array}{ll} \langle \boldsymbol{p}_{0}, \gamma_{0} \rangle \hookrightarrow \langle \boldsymbol{p}_{1}, \gamma_{1} \gamma_{0} \rangle & \langle \boldsymbol{p}_{2}, \gamma_{2} \rangle \hookrightarrow \langle \boldsymbol{p}_{0}, \gamma_{1} \rangle \\ \langle \boldsymbol{p}_{1}, \gamma_{1} \rangle \hookrightarrow \langle \boldsymbol{p}_{2}, \gamma_{2} \gamma_{0} \rangle & \langle \boldsymbol{p}_{0}, \gamma_{1} \rangle \hookrightarrow \langle \boldsymbol{p}_{0}, \varepsilon \rangle \end{array}$$

IA159 Formal Verification Methods: LTL Model Checking of Pushdown Systems

A pushdown system is in normal form if every rule $\langle p, \gamma \rangle \hookrightarrow \langle p', w \rangle$ satisfies $|w| \le 2$.

Any pushdown system can be transformed into normal form with only linear size increase.

Algorithm: notes

We give an algorithm that, for a given A, computes transitions of A_{pre^*} . The rest of the automaton A_{pre^*} is identical to A.

The algorithm uses sets *rel* and *trans* containing the transitions that are known to belong to A_{pre^*} :

- rel contains transitions that have already been examined
- no transition is examined more than once
- when we have a rule $\langle p, \gamma \rangle \hookrightarrow \langle p', \gamma' \gamma'' \rangle$ and transitions $t_1 = (p', \gamma', q')$ and $t_2 = (q', \gamma'', q'')$ (where q, q' are arbitrary states), we have to add transition (p, γ, q'')
- we do it in such a way that whenever we examine *t*₁, we check if there is a corresponding *t*₂ ∈ *rel* and we add an extra rule ⟨*p*, *γ*⟩ → ⟨*q*′, *γ*″⟩ to a set of such extra rules Δ′
- the extra rule guarantees that if a suitable t₂ will be examined in the future, (p, γ, q") will be added.

Algorithm

Input: a pushdown system $\mathcal{P} = (P, \Gamma, \Delta)$ in normal form a \mathcal{P} -automaton $\mathcal{A} = (Q, \Gamma, \delta, P, F)$ without transitions into POutput: the set of transitions of \mathcal{A}_{pre^*}

1 rel := \emptyset : trans := δ : Δ' := \emptyset : forall $\langle p, \gamma \rangle \hookrightarrow \langle p', \varepsilon \rangle \in \Delta$ do trans := trans $\cup \{(p, \gamma, p')\};$ 2 3 while trans $\neq \emptyset$ do 4 pop $t = (q, \gamma, q')$ from *trans*; 5 if $t \notin rel$ then 6 $rel := rel \cup \{t\};$ 7 forall $\langle p_1, \gamma_1 \rangle \hookrightarrow \langle q, \gamma \rangle \in (\Delta \cup \Delta')$ do 8 trans := trans $\cup \{(p_1, \gamma_1, q')\};$ 9 forall $\langle p_1, \gamma_1 \rangle \hookrightarrow \langle q, \gamma \gamma_2 \rangle \in \Delta$ do $\Delta' := \Delta' \cup \{ \langle \boldsymbol{p}_1, \gamma_1 \rangle \hookrightarrow \langle \boldsymbol{q}', \gamma_2 \rangle \};$ 10 forall $(q', \gamma_2, q'') \in rel$ do 11 12 trans := trans $\cup \{(p_1, \gamma_1, q'')\}$; 13 return rel

IA159 Formal Verification Methods: LTL Model Checking of Pushdown Systems

Theorem

Let $\mathcal{P} = (P, \Gamma, \Delta)$ be a pushdown system and $\mathcal{A} = (Q, \Gamma, \delta, P, F)$ be a \mathcal{P} -automaton. There exists an automaton \mathcal{A}_{pre^*} recognizing pre*(Conf(\mathcal{A})). Moreover, \mathcal{A}_{pre^*} can be constructed in $\mathcal{O}(|Q|^2 \cdot |\Delta|)$ time and $\mathcal{O}(|Q| \cdot |\Delta| + |\delta|)$ space.

- We can assume that every transition is added to *trans* at most once. This can be done (without asymptotic loss of time) by storing all transitions which are ever added to *trans* in an additional hash table.
- Further, we assume that there is at least one rule in Δ for every γ ∈ Γ (transitions of A under some γ not satisfying this assumption can be moved directly to *rel*).
- The number of transitions in δ as well as the number of iterations of the while-loop is bounded by |Q|² ⋅ |Δ|.

- Line 10 is executed for each combination of a rule $\langle p_1, \gamma_1 \rangle \hookrightarrow \langle q, \gamma \gamma_2 \rangle$ and a transition $(q, \gamma, q') \in trans$, i.e. at most $|Q| \cdot |\Delta|$ times.
- Hence, $|\Delta'| \leq |Q| \cdot |\Delta|$.
- Line 8 is executed for each combination of a rule $\langle p_1, \gamma_1 \rangle \hookrightarrow \langle q, \gamma \rangle \in (\Delta \cup \Delta')$ and a transition $(q, \gamma, q') \in trans$. As $|\Delta'| \leq |Q| \cdot |\Delta|$, line 8 is executed at most $\mathcal{O}(|Q|^2 \cdot |\Delta|)$ times.

As a conclusion, the algorithm takes $\mathcal{O}(|Q|^2 \cdot |\Delta|)$ time.

Memory is needed for storing *rel*, *trans*, and Δ' .

- The size of Δ' is in $\mathcal{O}(|Q| \cdot |\Delta|)$.
- **Line 1** adds $|\delta|$ transitions to *trans*.
- Line 2 adds at most $|\Delta|$ transitions to *trans*.
- In lines 8 and 12, p₁ and γ₁ are given by the head of a rule in Δ (note that every rule in Δ' have the same head as some rule in Δ). Hence, lines 8 and 12 add at most |Q| · |Δ| different transitions.

We directly get that the algorithm needs $\mathcal{O}(|Q| \cdot |\Delta| + |\delta|)$ space. As this is also the size of the result *rel*, the algorithm is optimal with respect to the memory usage.

Notes

- the algorithm can be used to verify safety property: given an automaton A representing error configurations, we can compute A_{pre*}, i.e. the set of all configurations from which an error configuration is reachable
- there is a similar algorithm computing, for a given regular set of configurations C, the set of all successors

$$post^*(C) = \{c' \in C \mid \exists c \in C . c \Rightarrow c'\}$$

Theorem

Let $\mathcal{P} = (P, \Gamma, \Delta)$ be a pushdown system and $\mathcal{A} = (Q, \Gamma, \delta, P, F)$ be a \mathcal{P} -automaton. There exists an automaton \mathcal{A}_{post^*} recognizing post*(Conf(\mathcal{A})). Moreover, \mathcal{A}_{post^*} can be constructed in $\mathcal{O}(|P| \cdot |\Delta| \cdot (|Q| + |\Delta|) + |P| \cdot |\delta|)$ time and space.

Verification of pushdown systems: the second step

LTL model checking

IA159 Formal Verification Methods: LTL Model Checking of Pushdown Systems

The global state-based LTL model checking problem for pushdown systems

Compute the set of all configurations of a given pushdown system \mathcal{P} that violate a given LTL formula φ (where a configuration *c* violates φ if there is a path starting from *c* and not satisfying φ).

- state-based ⇒ validity of atomic propositions
- labelling function L: (P × Γ) → 2^{AP} assigns valid atomic propositions to every pair (p, γ) of a control location p and a topmost stack symbol γ
- pushdown system \mathcal{P} and L define Kripke structure
 - states = configurations of *P*
 - transition relation = immediate successor relation
 - no initial states (global model checking)
 - labelling function is an extension of L: $L(\langle p, \gamma w \rangle) = L(p, \gamma)$

IA159 Formal Verification Methods: LTL Model Checking of Pushdown Systems

Büchi pushdown system = pushdown system with a set of accepting control locations.

An accepting run of a Büchi pushdown system is a path passing through some accepting control location infinitely often.

IA159 Formal Verification Methods: LTL Model Checking of Pushdown Systems

Product

Product of

- a pushdown system $\mathcal{P} = (\mathcal{P}, \Gamma, \Delta)$ with a labelling L and
- a Büchi automaton $\mathcal{A}_{\neg\varphi} = (2^{AP(\varphi)}, Q, \delta, q_0, F)$

is a Büchi pushdown system $\mathcal{BP} = ((P \times Q), \Gamma, \Delta', G)$, where

$$\langle (p,q),\gamma \rangle \hookrightarrow \langle (p',q'),w \rangle \in \Delta' \text{ if } \langle p,\gamma \rangle \hookrightarrow \langle p',w \rangle \in \Delta \text{ and}$$

 $q' \in \delta(q, L(p,\gamma) \cap AP(\varphi))$

and $G = P \times F$.

Clearly, a configuration $\langle p, w \rangle$ of \mathcal{P} violates φ if \mathcal{BP} has an accepting run starting from $\langle (p, q_0), w \rangle$.

The original model checking problem reduces to the following:

The accepting run problem

Compute the set C_a of configurations c of \mathcal{BP} such that \mathcal{BP} has an accepting run starting from c.

⇒ denotes the (reflexive and transitive) reachability relation. $\stackrel{+}{\Rightarrow}$ denotes the (transitive) reachability relation.

We define the relation $\stackrel{r}{\Rightarrow}$ on configurations of \mathcal{BP} as

$$egin{array}{ccc} c \stackrel{r}{\Rightarrow} c' & ext{if} & egin{array}{ccc} c \Rightarrow \langle g, u
angle \stackrel{+}{\Rightarrow} c' & ext{for some configuration } \langle g, u
angle & ext{with } g \in G. \end{array}$$

The head of a rule $\langle p, \gamma \rangle \hookrightarrow \langle p', w \rangle$ is the configuration $\langle p, \gamma \rangle$. A head $\langle p, \gamma \rangle$ is repeating if $\langle p, \gamma \rangle \stackrel{r}{\Rightarrow} \langle p, \gamma v \rangle$ for some $v \in \Gamma^*$. The set of repeating heads of \mathcal{BP} is denoted by R.

Lemma

Let c be a configuration of a Büchi pushdown system \mathcal{BP} . \mathcal{BP} has an accepting run starting from $c \iff$ there exists a repeating head $\langle p, \gamma \rangle$ such that $c \Rightarrow \langle p, \gamma w \rangle$ for some $w \in \Gamma^*$.

The implication " \Leftarrow " is obvious. We prove " \Rightarrow ".

IA159 Formal Verification Methods: LTL Model Checking of Pushdown Systems

assume that \mathcal{BP} has an accepting run

$$\langle p_0, w_0 \rangle, \langle p_1, w_1 \rangle, \langle p_2, w_2 \rangle, \dots$$

starting from from c

- let $i_0, i_1, ...$ be an increasing sequence of indices such that ■ $|w_{i_0}| = \min\{|w_i| \mid i > 0\}$
 - $|w_{i_k}| = \min\{|w_j| \mid j > i_{k-1}\} \text{ for } k > 0$
- once a configuration $\langle p_{i_k}, w_{i_k} \rangle$ is reached, the rest of the run never looks at or changes the bottom $|w_{i_k}| 1$ stack symbols

Proof

- let γ_{i_k} be the topmost symbol of w_{i_k} for each $k \ge 0$
- as the number of pairs (p_{i_k}, γ_{i_k}) is bounded by $|P \times \Gamma|$, there has to be a pair (p, γ) repeated infinitely many times
- moreover, since some $g \in G$ becomes a control location infinitely often, we can select two indeces $j_1 < j_2$ out of i_0, i_1, \ldots such that

$$\langle \boldsymbol{p}_{j_1}, \boldsymbol{w}_{j_1} \rangle = \langle \boldsymbol{p}, \gamma \boldsymbol{w} \rangle \stackrel{r}{\Rightarrow} \langle \boldsymbol{p}_{j_2}, \boldsymbol{w}_{j_2} \rangle = \langle \boldsymbol{p}, \gamma \boldsymbol{v} \boldsymbol{w} \rangle$$

for some $w, v \in \Gamma^*$

- as *w* is never looked at or changed in the rest of the run, we have that $\langle \boldsymbol{p}, \gamma \rangle \stackrel{r}{\Rightarrow} \langle \boldsymbol{p}, \gamma \boldsymbol{v} \rangle$
- this proves "⇒"

Lemma

Let c be a configuration of a Büchi pushdown system \mathcal{BP} . \mathcal{BP} has an accepting run starting from $c \iff$ there exists a repeating head $\langle p, \gamma \rangle$ such that $c \Rightarrow \langle p, \gamma w \rangle$ for some $w \in \Gamma^*$.

- the set of all configurations violating the considered formula φ can be computed as pre^{*}(RΓ^{*}), where RΓ^{*} = {⟨p, γw⟩ | ⟨p, γ⟩ ∈ R, w ∈ Γ^{*}}
- as R is finite, RΓ* is clearly regular
- *pre*^{*}(*C*) can be easily computed for regular sets *C*
- the only remaining step to solve the model checking problem is the algorithm computing R

Computing *R* is reduced to a graph-theoretic problem.

Given a $\mathcal{BP} = (P, \Gamma, \Delta, G)$, we construct a graph $\mathcal{G} = (P \times \Gamma, E)$ representing the reachability relation between heads, i.e.

• nodes are the heads of \mathcal{BP} ,

E ⊆ (P × Γ) × {0,1} × (P × Γ) is the smallest relation satisfying the following rule:

Rule

If
$$\langle p, \gamma \rangle \hookrightarrow \langle p'', v_1 \gamma' v_2 \rangle$$
 and $\langle p'', v_1 \rangle \Rightarrow \langle p', \varepsilon \rangle$ then
1 $((p, \gamma), 1, (p', \gamma')) \in E$ if $\langle p'', v_1 \rangle \stackrel{r}{\Rightarrow} \langle p', \varepsilon \rangle$ or $p \in G$
2 $((p, \gamma), 0, (p', \gamma')) \in E$ otherwise.

Rule

If
$$\langle p, \gamma \rangle \hookrightarrow \langle p'', v_1 \gamma' v_2 \rangle$$
 and $\langle p'', v_1 \rangle \Rightarrow \langle p', \varepsilon \rangle$ then
1 $((p, \gamma), 1, (p', \gamma')) \in E$ if $\langle p'', v_1 \rangle \stackrel{r}{\Rightarrow} \langle p', \varepsilon \rangle$ or $p \in G$
2 $((p, \gamma), 0, (p', \gamma')) \in E$ otherwise.

Edges are labelled with 1 if an accepting control state is passed between the heads, by 0 otherwise.

Conditions $\langle p'', v_1 \rangle \Rightarrow \langle p', \varepsilon \rangle$ or $\langle p'', v_1 \rangle \stackrel{r}{\Rightarrow} \langle p', \varepsilon \rangle$ can be checked by the algorithm for $pre^*(\{\langle p', \varepsilon \rangle\})$ or its small modification, respectively.

Once G is constructed, R can be computed using the fact that:

a head $\langle p, \gamma \rangle$ is repeating \iff (p, γ) is in a strongly connected a head $\langle p, \gamma \rangle$ is repeating \iff component of \mathcal{G} which has an internal edge labelled with 1

The graph \mathcal{G} for $\mathcal{BP} = (\{p_0, p_1, p_2\}, \{\gamma_0, \gamma_1, \gamma_2\}, \Delta, \{p_2\})$, where

$$\begin{split} \Delta &= \{ \quad \langle \pmb{p}_0, \gamma_0 \rangle \hookrightarrow \langle \pmb{p}_1, \gamma_1 \gamma_0 \rangle, \quad \langle \pmb{p}_2, \gamma_2 \rangle \hookrightarrow \langle \pmb{p}_0, \gamma_1 \rangle, \\ & \langle \pmb{p}_1, \gamma_1 \rangle \hookrightarrow \langle \pmb{p}_2, \gamma_2 \gamma_0 \rangle, \quad \langle \pmb{p}_0, \gamma_1 \rangle \hookrightarrow \langle \pmb{p}_0, \varepsilon \rangle \ \}. \end{split}$$

Rule

If
$$\langle p, \gamma \rangle \hookrightarrow \langle p'', v_1 \gamma' v_2 \rangle$$
 and $\langle p'', v_1 \rangle \Rightarrow \langle p', \varepsilon \rangle$ then
1 $((p, \gamma), 1, (p', \gamma')) \in E$ if $\langle p'', v_1 \rangle \stackrel{r}{\Rightarrow} \langle p', \varepsilon \rangle$ or $p \in G$
2 $((p, \gamma), 0, (p', \gamma')) \in E$ otherwise.

The graph \mathcal{G} for $\mathcal{BP} = (\{p_0, p_1, p_2\}, \{\gamma_0, \gamma_1, \gamma_2\}, \Delta, \{p_2\})$, where

$$\begin{split} \Delta &= \{ \quad \langle \pmb{p}_0, \gamma_0 \rangle \hookrightarrow \langle \pmb{p}_1, \gamma_1 \gamma_0 \rangle, \quad \langle \pmb{p}_2, \gamma_2 \rangle \hookrightarrow \langle \pmb{p}_0, \gamma_1 \rangle, \\ \langle \pmb{p}_1, \gamma_1 \rangle \hookrightarrow \langle \pmb{p}_2, \gamma_2 \gamma_0 \rangle, \quad \langle \pmb{p}_0, \gamma_1 \rangle \hookrightarrow \langle \pmb{p}_0, \varepsilon \rangle \ \}. \end{split}$$

The graph \mathcal{G} for $\mathcal{BP} = (\{p_0, p_1, p_2\}, \{\gamma_0, \gamma_1, \gamma_2\}, \Delta, \{p_2\})$, where

$$\begin{aligned} \Delta &= \{ \quad \langle \pmb{p}_0, \gamma_0 \rangle \hookrightarrow \langle \pmb{p}_1, \gamma_1 \gamma_0 \rangle, \quad \langle \pmb{p}_2, \gamma_2 \rangle \hookrightarrow \langle \pmb{p}_0, \gamma_1 \rangle, \\ \langle \pmb{p}_1, \gamma_1 \rangle \hookrightarrow \langle \pmb{p}_2, \gamma_2 \gamma_0 \rangle, \quad \langle \pmb{p}_0, \gamma_1 \rangle \hookrightarrow \langle \pmb{p}_0, \varepsilon \rangle \ \}. \end{aligned}$$

Repeating heads: $\langle p_0, \gamma_0 \rangle, \langle p_1, \gamma_1 \rangle$

Algorithm: notes

We give an algorithm computing R for a given \mathcal{BP} in normal form.

The algorithm runs in two phases.

1 It computes \mathcal{A}_{pre^*} recognizing $pre^*(\{\langle p, \varepsilon \rangle \mid p \in P\})$. Every transition (p, γ, p') of \mathcal{A}_{pre^*} signifies that $\langle p, \gamma \rangle \Rightarrow \langle p', \varepsilon \rangle$.

We enrich the transitions of \mathcal{A}_{pre^*} : transitions (p, γ, p') are replaced by $(p, [\gamma, b], p')$ where *b* is a boolean. The meaning of $(p, [\gamma, 1], p')$ should be that $\langle p, \gamma \rangle \stackrel{r}{\Rightarrow} \langle p', \varepsilon \rangle$.

It constructs the graph G, identifies its strongly conected components (e.g. using Tarjan's algorithm), and determines the set of repeating heads.

We define G(p) = 1 if $p \in G$ and G(p) = 0 otherwise.

Algorithm

Input: $\mathcal{BP} = (P, \Gamma, \Delta, G)$ in normal form

Output: the set of repeating heads in \mathcal{BP}

1 rel := \emptyset : trans := \emptyset : Δ' := \emptyset : forall $\langle p, \gamma \rangle \hookrightarrow \langle p', \varepsilon \rangle \in \Delta$ do trans := trans $\cup \{(p, [\gamma, G(p)], p')\};$ 2 3 while trans $\neq \emptyset$ do pop $t = (p, [\gamma, b], p')$ from trans; 4 5 if *t* ∉ *rel* then 6 7 $rel := rel \cup \{t\}$: forall $\langle p_1, \gamma_1 \rangle \hookrightarrow \langle p, \gamma \rangle \in \Delta$ do trans := trans $\cup \{(p_1, [\gamma_1, b \lor G(p_1)], p')\};$ forall $\langle p_1, \gamma_1 \rangle \xrightarrow{b'} \langle p, \gamma \rangle \in \Delta'$ do trans := trans $\cup \{(p_1, [\gamma_1, b \lor b'], p')\};$ 8 9 forall $\langle p_1, \gamma_1 \rangle \hookrightarrow \langle p, \gamma \gamma_2 \rangle \in \Delta$ do $\Delta' := \Delta' \cup \{ \langle p_1, \gamma_1 \rangle \stackrel{b \lor G(p_1)}{\hookrightarrow} \langle p', \gamma_2 \rangle \};$ 10 11 forall $(p', [\gamma_2, b'], p'') \in rel$ do 12 $\textit{trans} := \textit{trans} \cup \{(p_1, [\gamma_1, b \lor b' \lor G(p_1)], p'')\}; \text{ \ \% end of part 1}$ 13 $R := \emptyset: E := \emptyset:$ % beginning of part 2 forall $\langle p, \gamma \rangle \hookrightarrow \langle p', \gamma' \rangle \in \Delta$ do $E := E \cup \{((p, \gamma), G(p), (p', \gamma'))\};$ 14 forall $\langle p, \gamma \rangle \stackrel{b}{\longleftrightarrow} \langle p', \gamma' \rangle \in \Delta'$ do $E := E \cup \{((p, \gamma), b, (p', \gamma'))\};$ 15 16 forall $\langle p, \gamma \rangle \hookrightarrow \langle p', \gamma' \gamma'' \rangle \in \Delta$ do $E := E \cup \{((p, \gamma), G(p), (p', \gamma'))\};$ find all strongly connected components in $\mathcal{G} = ((P \times \Gamma), E)$; 17 18 forall components C do 19 if C has a 1-edge then $R := R \cup C$; return R 20

Theorem

Let $\mathcal{BP} = (P, \Gamma, \Delta, G)$ be a Büchi pushdown system. The set of repeating heads R can be computed in $\mathcal{O}(|P|^2 \cdot |\Delta|)$ time and $\mathcal{O}(|P| \cdot |\Delta|)$ space.

The first part is similar to the algorithm computing A_{pre^*} . The size of \mathcal{G} is in $\mathcal{O}(|P| \cdot |\Delta|)$. Determining the strongly connected components takes linear time in the size of the graph *[Tarjan1972]*. The same holds for searching each component for an internal 1-edge.

Theorem

Let \mathcal{P} be a pushdown system and φ be an LTL formula. The global model checking problem can be solved in $\mathcal{O}(|\mathcal{P}|^3 \cdot |\mathcal{B}|^3)$ time and $\mathcal{O}(|\mathcal{P}|^2 \cdot |\mathcal{B}|^2)$ space, where \mathcal{B} is a Büchi automaton corresponding to $\neg \varphi$.

Partial order reduction

- When can a state/transition be safely removed from a Kripke structure?
- What is a stuttering principle?
- Can we effectively compute the reduction?