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Inductive Classification 

Based on the ML lecture by Raymond J. Mooney 
University of Texas at Austin 
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Classification (Categorization) 

•  Given: 
–  A description of an instance, x∈X, where X is the 

instance language or instance space. 
–  A fixed set of categories: C={c1, c2,…cn} 

•  Determine: 
–  The category of x: c(x)∈C, where c(x) is a 

categorization function whose domain is X and whose 
range is C. 

–  If c(x) is a binary function C={0,1} ({true,false}, 
{positive, negative}) then it is called a concept. 
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Learning for Categorization 

•  A training example is an instance x∈X, 
paired with its correct category c(x):         
<x, c(x)> for an unknown categorization 
function, c.  

•  Given a set of training examples, D. 
•  Find a hypothesized categorization function, 

h(x), such that: 
)()(: )(, xcxhDxcx =∈><∀

Consistency 
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Sample Category Learning Problem 

•  Instance language: <size, color, shape> 
–  size ∈ {small, medium, large} 
–  color ∈ {red, blue, green} 
–  shape ∈ {square, circle, triangle} 

•  C = {positive, negative} 

•  D: Example Size Color Shape Category 
1 small red circle positive 

2 large red circle positive 

3 small red triangle negative 

4 large blue circle negative 
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Hypothesis Selection 

•  Many hypotheses are usually consistent with 
the training data. 

–  red & circle 
–  (small & circle) or (large & red)  
–  (small & red & circle) or (large & red & circle) 



6 

Generalization 

•  Hypotheses must generalize to correctly 
classify instances not in the training data. 

•  Simply memorizing training examples is a 
consistent hypothesis that does not 
generalize. But … 
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Hypothesis Space 

•  For learning concepts on instances described by n discrete-
valued features, consider the space of conjunctive 
hypotheses represented by a vector of n constraints 

    <c1, c2, … cn> where each ci is either: 
–  ?, a wild card indicating no constraint on the ith feature 
–  A specific value from the domain of the ith feature 
–  Ø indicating no value is acceptable 

•  Other notations 
  (Size = big) AND (Color = red) 
  size(Id, big), color(Id,red)  
  size(Id, X), color(Id,Y),  shape(Id, Z) . . . In Prolog 

•  Sample conjunctive hypotheses are 
–  <big, red, ?> 
–  <?, ?, ?> (most general hypothesis) 
–  < Ø, Ø, Ø> (most specific hypothesis) 
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Sample Hypothesis Space as A 
Generalization Lattice 

< Ø, Ø, Ø> 

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>   

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr> 

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr> 

<?, ?, ?> 

Attributes (features):  Size: {sm, big}    Color: {red, blue}    Shape: {circ, squr} 
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Inductive Learning Hypothesis 

•  Any function that is found to approximate the target 
concept well on a sufficiently good (large) set of training 
examples will also approximate the target function well on 
unobserved examples. 

•  Assumes that the training and test examples are drawn 
independently from the same underlying distribution. 

•  This is a fundamentally improvable hypothesis unless 
additional assumptions are made about the target concept 
and the notion of “approximating the target function well 
on unobserved examples” is defined appropriately (cf. 
computational learning theory). 
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Evaluation of Classification Learning 

•  Classification accuracy (% of instances classified 
correctly). 
–  Measured on an independent test data. 

•  Training time (efficiency of training algorithm). 
•  Complexity of the hypotthesis that has been 

learned 
•  Testing time (efficiency of subsequent 

classification). 



11 

Category Learning as Search 

•  Category learning can be viewed as searching the 
hypothesis space for one (or more) hypotheses that 
are consistent with the training data. 

•  Consider an instance space consisting of n binary 
features which therefore has 2n instances. 

•  For conjunctive hypotheses, there are 4 choices for 
each feature: Ø, T, F, ?, so there are 4n 
syntactically distinct hypotheses. 

•  However, all hypotheses with 1 or more Øs are 
equivalent, so there are 3n+1 semantically distinct 
hypotheses. 
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Category Learning as Search (cont.) 

•  The target binary categorization function in 
principle could be any of the possible 22^n 
functions on n input bits. 

•  Therefore, conjunctive hypotheses are a small 
subset of the space of possible functions, but both 
are intractably large. 

•  All reasonable hypothesis spaces are intractably 
large or even infinite. 
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How to learn? 

•  Learning in a limit 

•  Learning by enumeration 

•  Or … efficient learning? 
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Learning by Enumeration 

•  For any finite or countably infinite hypothesis 
space, one can simply enumerate and test 
hypotheses one at a time until a consistent one is 
found. 

       For each h in H do:   
              If h is consistent with the training data D, 
                   then terminate and return h. 
•  This algorithm is guaranteed to terminate with a 

consistent hypothesis if one exists; however, it is 
obviously computationally intractable for almost 
any practical problem. 
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Efficient Learning 

•  Is there a way to learn conjunctive concepts 
without enumerating them? 

•  How do human subjects learn conjunctive 
concepts? 

•  Is there a way to efficiently find an 
unconstrained boolean function consistent 
with a set of discrete-valued training 
instances? 

•  If so, is it a useful/practical algorithm? 
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Conjunctive Rule Learning 

•  Conjunctive descriptions are easily learned by finding 
all commonalities shared by all positive examples. 

•  Must check consistency with negative examples. If 
inconsistent, no conjunctive rule exists.  

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 

Learned rule: red & circle → positive  
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Limitations of Conjunctive Rules 

•  If a concept does not have a single set of necessary 
and sufficient conditions, conjunctive learning 
fails. 
Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 

Learned rule: red & circle → positive  
Inconsistent with negative example #5! 
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Disjunctive Concepts 

•  Concept may be disjunctive. 

Example Size Color Shape Category 
1 small red circle positive 
2 large red circle positive 
3 small red triangle negative 
4 large blue circle negative 
5 medium red circle negative 

Learned rules: (small & circle → positive) OR    
      (large & red → positive) 
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Using the Generality Structure 

•  By exploiting the structure imposed by the 
generality of hypotheses, an hypothesis space can 
be searched for consistent hypotheses without 
enumerating or explicitly exploring all hypotheses. 
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Using the Generality Structure 

•  An instance, x∈X, is said to satisfy an hypothesis, 
h, iff h(x)=1 (positive) 

•  Given two hypotheses h1 and h2, h1 is more 
general than or equal to h2 (h1≥h2) iff every 
instance that satisfies h2 also satisfies h1. 

•  Given two hypotheses h1 and h2, h1 is (strictly) 
more general than h2 (h1>h2) iff h1≥h2 and it is not 
the case that h2 ≥ h1. 

•  Generality defines a partial order on hypotheses. 
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Examples of Generality 

•  Conjunctive feature vectors 
–  <?, red, ?> is more general than <?, red, circle> 
–  Neither of <?, red, ?> and <?, ?, circle> is more general 

than the other. 

•  Axis-parallel rectangles in 2-d space 

–  A is more general than B 
–  Neither of A and C are more general than the other. 

A 
B 

C 
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Sample Generalization Lattice 

< Ø, Ø, Ø> 

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>   

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr> 

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr> 

<?, ?, ?> 

Size: {sm, big}     Color: {red, blue}     Shape: {circ, squr} 

Number of hypotheses = 33 + 1 = 28 



23 

Version Space 

•  Given an hypothesis space, H, and training 
data, D, the version space is the complete 
subset of H that is consistent with D. 

•  The version space can be naively generated 
for any finite H by enumerating all 
hypotheses and eliminating the inconsistent 
ones. 

•  Can one compute the version space more 
efficiently than using enumeration? 
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Version Space with S and G 

•  The version space can be represented more compactly by 
maintaining two boundary  sets of hypotheses, S, the set of 
most specific consistent hypotheses, and G, the set of most 
general consistent hypotheses: 

•  S and G represent the entire version space via its boundaries in 
the generalization lattice: 

version 
space 

G 

S 
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Version Space Lattice 

< Ø, Ø, Ø> 

<?,?,circ>  <big,?,?> <?,red,?>  <?,blue,?>  <sm,?,?> <?,?,squr>   

< big,red,circ><sm,red,circ><big,blue,circ><sm,blue,circ>< big,red,squr><sm,red,squr><big,blue,squr><sm,blue,squr> 

< ?,red,circ><big,?,circ><big,red,?><big,blue,?><sm,?,circ><?,blue,circ> <?,red,squr><sm.?,sqr><sm,red,?><sm,blue,?><big,?,squr><?,blue,squr> 

<?, ?, ?> 

Size: {sm, big}     Color: {red, blue}     Shape: {circ, squr} 

<<big, red, squr> positive> 
<<sm, blue, circ> negative> 

Color Code: 
G 
S 

other VS 
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Candidate Elimination (Version Space) 
Algorithm 

Initialize G to the set of most-general hypotheses in H 
Initialize S to the set of most-specific hypotheses in H 
For each training example, d, do: 
       If d is a positive example then: 
             Remove from G any hypotheses that do not match d 
             For each hypothesis s in S that does not match d 
                    Remove s from S 
                    Add to S all minimal generalizations, h, of s such that: 
                             1)  h matches d 
                             2) some member of G is more general than h 
              Remove from S any h that is more general than another hypothesis in S 
       If d is a negative example then: 
             Remove from S any hypotheses that match d 
             For each hypothesis g in G that matches d 
                    Remove g from G 
                    Add to G all minimal specializations, h, of g such that: 
                             1) h does not match d 
                             2) some member of S is more specific than h 
              Remove from G any h that is more specific than another hypothesis in G 
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Properties of VS Algorithm 

•  S summarizes the relevant information in the positive 
examples (relative to H) so that positive examples do not 
need to be retained. 

•  G summarizes the relevant information in the negative 
examples, so that negative examples do not need to be 
retained. 

•  Result is not affected by the order in which examples are 
processes but computational efficiency may. 

•  Positive examples move the S boundary up; Negative 
examples move the G boundary down. 

•  If S and G converge to the same hypothesis, then it is the 
only one in H that is consistent with the data. 

•  If S and G become empty (if one does the other must also) 
then there is no hypothesis in H consistent with the data. 
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Correctness of Learning 

•  Since the entire version space is maintained, given 
a continuous stream of noise-free training 
examples, the VS algorithm will eventually 
converge to the correct target concept if it is in the 
hypothesis space, H, or eventually correctly 
determine that it is not in H. 

•  Convergence is correctly indicated when S=G.  
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Computational Complexity of VS 

•  Computing the S set for conjunctive feature 
vectors is linear in the number of features and the 
number of training examples. 

•  Computing the G set for conjunctive feature 
vectors is exponential in the number of training 
examples in the worst case. 

•  In more expressive languages, both S and G can 
grow exponentially. 

•  The order in which examples are processed can 
significantly affect computational complexity. 
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No Panacea 
•  No Free Lunch (NFL) Theorem (Wolpert, 1995) 
      Law of Conservation of Generalization Performance (Schaffer, 1994) 

–  One can prove that improving generalization performance on unseen data 
for some tasks will always decrease performance on other tasks (which 
require different labels on the unseen instances). 

–  Averaged across all possible target functions, no learner generalizes to 
unseen data any better than any other learner. 

•  There does not exist a learning method that is uniformly better than 
another for all problems. 

•  Given any two learning methods A and B and a training set, D, there 
always exists a target function for which A generalizes better (or at 
least as well) as B. 
-    Train both methods on D to produce hypotheses hA and hB. 
–  Construct a target function that labels all unseen instances according to the 

predictions of hA. 
–  Test hA and hB on any unseen test data for this target function and conclude 

that hA is better. 
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Logical View of Induction 

•  Deduction is inferring sound specific conclusions from 
general rules (axioms) and specific facts. 

•  Induction is inferring general rules and theories from 
specific empirical data. 

•  Induction can be viewed as inverse deduction. 
–  Find a hypothesis h from data D such that 

•  h ∪ B |― D 
   where B is optional background knowledge 

•  Abduction is similar to induction, except it involves 
finding a specific hypothesis, h, that best explains a set of 
evidence, D, or inferring cause from effect. Typically, in 
this case B is quite large compared to induction and h is 
smaller and more specific to a particular event. 



32 

Induction and the Philosophy of Science 

•  Bacon (1561-1626), Newton (1643-1727) and the sound 
deductive derivation of knowledge from data. 

•  Hume (1711-1776) and the problem of induction. 
–  Inductive inferences can never be proven and are always subject to 

disconfirmation. 
•  Popper (1902-1994) and falsifiability. 

–  Inductive hypotheses can only be falsified not proven, so pick 
hypotheses that are most subject to being falsified. 

•  Kuhn (1922-1996) and paradigm shifts. 
–  Falsification is insufficient, an alternative paradigm must be 

available that is clearly elegant and more explanatory. 
•  Ptolmaic epicycles and the Copernican revolution 
•  Orbit of Mercury and general relativity 
•  Solar neutrino problem and neutrinos with mass 

•  Postmodernism: Objective truth does not exist; relativism; 
science is a social system of beliefs that is no more valid 
than others (e.g. religion). 
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Ockham (Occam)’s Razor 

•  William of Ockham (1295-1349) was a Franciscan 
friar who applied the criteria to theology: 
–  “Entities should not be multiplied beyond 

necessity” (Classical version but not an actual quote) 
–  “The supreme goal of all theory is to make the 

irreducible basic elements as simple and as few as 
possible without having to surrender the adequate 
representation of a single datum of 
experience.” (Einstein) 

•  Requires a precise definition of simplicity. 
•  Acts as a bias which assumes that nature itself is 

simple. 
•  Role of Occam’s razor in machine learning 

remains controversial. 


