
1

Tree Learning

Based on the ML lecture by Raymond J. Mooney
and Peter Flach book

2

Machine learning settings

(from Peter Flach book)

3

Machine learning settings

•  Logical approach - Decision and regression trees, rules

•  Probabilistic methods – Bayesian methods

•  Linear methods – Linear discriminant, SVM, perceptron

•  Distance-based methods – Lazy Learning (kNN), clustering

4

Learning Trees

•  Supervised method – data classified into classes, i.e. data
contains a target attribute.

•  Decision trees. Finite number of classes >= 2

•  Regression trees. Class is continuous

5

Learning Trees 2

•  Classifier is a tree that represents a hypotheses in a
disjunctive normal form

•  Finding a minimal decision tree (nodes, leaves, or depth) is
an NP-hard optimization problem.

•  Heuristic algorithm can be used to build a tree

•  Want to pick a feature that creates subsets of examples that
are – in the case of decision trees - relatively “pure” in a
single class so they are “closer” to being leaf nodes.

6

Learning Decision Trees

7

Data example

8

Decision Trees
•  Tree-based classifiers for instances represented as feature-vectors.

Nodes test features, there is one branch for each value of the feature,
and leaves specify the category.

•  Can represent arbitrary conjunction and disjunction. Can represent any
classification function over discrete feature vectors.

•  Can be rewritten as a set of rules, i.e. disjunctive normal form (DNF).
–  red ∧ circle → pos
–  red ∧ circle → A
 blue → B; red ∧ square → B
 green → C; red ∧ triangle → C

color
red blue green

shape

circle square triangle
neg pos

pos neg neg

color
red blue green

shape

circle square triangle
 B C

 A B C

9

Properties of Decision Tree Learning

•  Continuous (real-valued) features can be handled by
allowing nodes to split a real valued feature into two
ranges based on a threshold (e.g. length < 3 and length ≥3)

•  Classification trees have discrete class labels at the leaves,
regression trees allow real-valued outputs at the leaves.

•  Algorithms for finding consistent trees are efficient for
processing large amounts of training data for data mining
tasks.

•  Methods developed for handling noisy training data (both
class and feature noise).

•  Methods developed for handling missing feature values.

10

Top-Down Decision Tree Induction

•  Recursively build a tree top-down by divide and conquer.
<big, red, circle>: + <small, red, circle>: +
<small, red, square>: - <big, blue, circle>: -

color
red blue green

<big, red, circle>: +
<small, red, circle>: +
<small, red, square>: -

11

shape
circle square triangle

Top-Down Decision Tree Induction

•  Recursively build a tree top-down by divide and conquer.
<big, red, circle>: + <small, red, circle>: +
<small, red, square>: - <big, blue, circle>: -

<big, red, circle>: +
<small, red, circle>: +
<small, red, square>: -

color
red blue green

<big, red, circle>: +
<small, red, circle>: +

pos
<small, red, square>: -
neg pos

<big, blue, circle>: -
neg neg

12

Decision Tree Induction Pseudocode

DTree(examples, features) returns a tree
 If all examples are in one category, return a leaf node with that category label.
 Else if the set of features is empty, return a leaf node with the category label that
 is the most common in examples.
 Else pick a feature F and create a node R for it
 For each possible value vi of F:
 Let examplesi be the subset of examples that have value vi for F

 Add an out-going edge E to node R labeled with the value vi.

 If examplesi is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in examples.
 else call DTree(examplesi , features – {F}) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

13

Decision Tree Induction Pseudocode

DTree(examples, features) returns a tree
 If all examples are in one category, return a leaf node with that category label.
 Else if the set of features is empty, return a leaf node with the category label that
 is the most common in examples.
 Else pick a feature F and create a node R for it
 For each possible value vi of F:
 Let examplesi be the subset of examples that have value vi for F

 Add an out-going edge E to node R labeled with the value vi.

 If examplesi is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in examples.
 else call DTree(examplesi , features – {F}) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

14

Picking a Good Split Feature

•  Goal is to have the resulting tree be as small as possible,
per Occam’s razor.

•  Finding a minimal decision tree (nodes, leaves, or depth) is
an NP-hard optimization problem.

•  Top-down divide-and-conquer method does a greedy
search for a simple tree but does not guarantee to find the
smallest.
–  General lesson in ML: “Greed is good.”

•  Want to pick a feature that creates subsets of examples that
are relatively “pure” in a single class so they are “closer”
to being leaf nodes.

•  There are a variety of heuristics for picking a good test, a
popular one is based on information gain that originated
with the ID3 system of Quinlan (1979).

15

Entropy

•  Entropy (disorder, impurity) of a set of examples, S, relative to a binary
classification is:

 where p1 is the fraction of positive examples in S and p0 is the fraction
of negatives.

•  If all examples are in one category, entropy is zero (we define
0⋅log(0)=0)

•  If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1.
•  Entropy can be viewed as the number of bits required on average to

encode the class of an example in S where data compression (e.g.
Huffman coding) is used to give shorter codes to more likely cases.

•  For multi-class problems with c categories, entropy generalizes to:

)(log)(log)(020121 ppppSEntropy −−=

∑
=

−=
c

i
ii ppSEntropy

1
2)(log)(

16

Entropy Plot for Binary Classification

17

Information Gain
•  The information gain of a feature F is the expected reduction in

entropy resulting from splitting on this feature.

 where Sv is the subset of S having value v for feature F.
•  Entropy of each resulting subset weighted by its relative size.
•  Example:

–  <big, red, circle>: + <small, red, circle>: +
–  <small, red, square>: - <big, blue, circle>: -

)()(),(
)(

v
FValuesv

v SEntropy
S
S

SEntropyFSGain ∑
∈

−=

2+, 2 -: E=1
 size

big small
1+,1- 1+,1-
E=1 E=1

Gain=1-(0.5⋅1 + 0.5⋅1) = 0

2+, 2 - : E=1
 color

red blue
2+,1- 0+,1-
E=0.918 E=0

Gain=1-(0.75⋅0.918 +
 0.25⋅0) = 0.311

2+, 2 - : E=1
 shape

circle square
2+,1- 0+,1-
E=0.918 E=0

Gain=1-(0.75⋅0.918 +
 0.25⋅0) = 0.311

18

Hypothesis Space Search

•  Performs batch learning that processes all training
instances at once rather than incremental learning
that updates a hypothesis after each example.

•  Performs hill-climbing (greedy search) that may
only find a locally-optimal solution. Guaranteed to
find a tree consistent with any conflict-free
training set (i.e. identical feature vectors always
assigned the same class), but not necessarily the
simplest tree.

•  Finds a single discrete hypothesis, so there is no
way to provide confidences or create useful
queries.

19

Continuous features

Use binary split of the current interval using the same impurity measure
 as for discrete attributes

20

Missing feature values

•  Remove the instance
•  Replace with the most common (mode,

mean) value
•  Replace with the most common (mode,

mean) value w.r.t. a class
•  Decision trees: use weighted Impurity

measure (add relative increment to each
atribute value

21

Bias in Decision-Tree Induction

•  Information-gain gives a bias for trees with
minimal depth.

•  Implements a search (preference) bias
instead of a language (restriction) bias.

22

Learning Regression Trees

23

Learning Regression Trees

Goal: to construct a regression tree that will help you determine
a reasonable price for your next purchase.

24

Regression Trees: Impurity measure

•  Need for another impurity measure

•  Weighted average variance

• 25

Regression tree growing

•  To minimize the square error on the learning sample,
the prediction at a leaf is the average output of the
learning cases reaching that leaf

•  Impurity of a sample is defined by the variance of the
output in that sample:

 I(LS)=vary|LS{y}=Ey|LS{(y-Ey|LS{y})2}
•  The best split is the one that reduces the most variance:

} { var
| |
| | } { var) , (| | y

LS

LS y A LS I
a LS y

a

a
LS y ∑ - = Δ

26

Learning Regression Trees

There are three features, hence three possible splits:

Model [A100,B3,E112,M102,T202]
 [1051,1770,1900][4513][77][870][99,270,625]

Condition [excellent,good, fair]
 [1770,4513][270,870,1051,1900][77,99,625]

Leslie [yes,no]
 [625,870,1900][77,99,270,1051,1770,4513]

27

Learning Regression Trees
There are three features, hence three possible splits:

Model [A100,B3,E112,M102,T202]
 [1051,1770,1900][4513][77][870][99,270,625]
 means : 1574, 4513, 77, 870 and 331,
 weighted average of squared means 3.21*106

Condition [excellent,good, fair]
 [1770,4513][270,870,1051,1900][77,99,625]
 means : 3142, 1023 and 267, weighted average 2.68*106

Leslie [yes,no]
 [625,870,1900][77,99,270,1051,1770,4513]
 means : 1132 and 1297, weighted average 1.55*106

28

Learning Regression Trees

Continue in the same manner and receive

There are three features, hence three possible splits:

Model [A100,B3,E112,M102,T202]
 [1051,1770,1900][4513][77][870][99,270,625]
 means : 1574, 4513, 77, 870 and 331,
 weighted average of squared means 3.21*106 Model is a winner

Condition [excellent,good, fair]
 [1770,4513][270,870,1051,1900][77,99,625]
 means : 3142, 1023 and 267, weighted average 2.68*106

Leslie [yes,no]
 [625,870,1900][77,99,270,1051,1770,4513]
 means : 1132 and 1297, weighted average 1.55*106

29

Result

• 30

Regression trees (2)

•  A regression tree is a piecewise constant function of the
input attributes

X1≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4 r1 r2 r3

r4 r5

r2

r1

r3

r5

r4
t2

t1 t3 X1

X2

31

Regression Trees: Evaluation

•  descend the path from root to a leaf

•  how accurate the prediction is?

•  measure a difference between a correct value and the value
in the leaf

32

Differences from classification trees

•  Prediction is computed as the average of
numerical target variable in the rectangle (in
CT it is majority vote)

•  Impurity measured by sum of squared
deviations from leaf mean

•  Performance measured by RMSE (root
mean squared error)

• 33

34

History of Decision-Tree Research

•  Hunt and colleagues use exhaustive search decision-tree
methods (CLS) to model human concept learning in the
1960’s.

•  In the late 70’s, Quinlan developed ID3 with the
information gain heuristic to learn expert systems from
examples.

•  Simulataneously, Breiman and Friedman and colleagues
develop CART (Classification and Regression Trees),
similar to ID3.

•  In the 1980’s a variety of improvements are introduced to
handle noise, continuous features, missing features, and
improved splitting criteria. Various expert-system
development tools results.

•  Quinlan’s updated decision-tree package (C4.5) released in
1993.

•  Weka includes Java version of C4.5 called J48.

35

Computational Complexity

•  Worst case builds a complete tree where every path test
every feature. Assume n examples and m features.

•  At each level, i, in the tree, must examine the remaining m-
i features for each instance at the level to calculate info
gains.

•  However, learned tree is rarely complete (number of leaves
is ≤ n). In practice, complexity is linear in both number of
features (m) and number of training examples (n).

F1

Fm

⋅ ⋅ ⋅ ⋅ ⋅ Maximum of n examples spread across
all nodes at each of the m levels

)(
1

2∑
=

=⋅
m

i
nmOni

36

Overfitting

•  Learning a tree that classifies the training data perfectly may
not lead to the tree with the best generalization to unseen data.
–  There may be noise in the training data that the tree is erroneously

fitting.
–  The algorithm may be making poor decisions towards the leaves of the

tree that are based on very little data and may not reflect reliable
trends.

•  A hypothesis, h, is said to overfit the training data is there
exists another hypothesis which, h´, such that h has less error
than h´ on the training data but greater error on independent
test data.

hypothesis complexity

ac
cu

ra
cy

 on training data

on test data

37

Overfitting Example

voltage (V)

cu
rr

en
t (

I)

Testing Ohms Law: V = IR (I = (1/R)V)

Ohm was wrong, we have found a more accurate function!

Perfect fit to training data with an 9th degree polynomial
(can fit n points exactly with an n-1 degree polynomial)

Experimentally
measure 10 points

Fit a curve to the
Resulting data.

38

Overfitting Example

voltage (V)

cu
rr

en
t (

I)

Testing Ohms Law: V = IR (I = (1/R)V)

Better generalization with a linear function
that fits training data less accurately.

39

Bias-variance tradeoff

Another example

40

Bias-variance tradeoff

Linear function works well but
Cubic seems better

Is there any general view to the problem,
preferably with a theoretical background?

41

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

42

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

43

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

44

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

45

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

46

Bias-variance tradeoff

y = f(x) + e, E[e] = 0, Var[e] = s2

f’() … estimate of f() learned by a classifier

E[(y-f’(x))2] = Bias[f’(x)] + Var[f’(x)] + s2

47

Overfitting Noise in Decision Trees

•  Category or feature noise can easily cause overfitting.
–  Add noisy instance <medium, blue, circle>: pos (but really neg)

shape
circle square triangle

color
red blue green

pos neg pos

neg neg

48

Overfitting Noise in Decision Trees

•  Category or feature noise can easily cause overfitting.
–  Add noisy instance <medium, blue, circle>: pos (but really neg)

shape
circle square triangle

color
red blue green

pos neg pos

neg
<big, blue, circle>: -
<medium, blue, circle>: +

small med big

pos neg neg

•  Noise can also cause different instances of the same feature
vector to have different classes. Impossible to fit this data
and must label leaf with the majority class.
–  <big, red, circle>: neg (but really pos)

•  Conflicting examples can also arise if the features are
incomplete and inadequate to determine the class or if the
target concept is non-deterministic.

49

Overfitting Prevention (Pruning) Methods

•  Two basic approaches for decision trees
–  Prepruning: Stop growing tree as some point during top-down

construction when there is no longer sufficient data to make
reliable decisions.

–  Postpruning: Grow the full tree, then remove subtrees that do not
have sufficient evidence.

•  Label leaf resulting from pruning with the majority class of
the remaining data, or a class probability distribution.

•  Method for determining which subtrees to prune:
–  Cross-validation: Reserve some training data as a hold-out set

(validation set, tuning set) to evaluate utility of subtrees.
–  Statistical test: Use a statistical test on the training data to

determine if any observed regularity can be dismisses as likely due
to random chance.

–  Minimum description length (MDL): Determine if the additional
complexity of the hypothesis is less complex than just explicitly
remembering any exceptions resulting from pruning.

50

Reduced Error Pruning

•  A post-pruning, cross-validation approach.
Partition training data in “grow” and “validation” sets.
Build a complete tree from the “grow” data.
Until accuracy on validation set decreases do:
 For each non-leaf node, n, in the tree do:
 Temporarily prune the subtree below n and replace it with a
 leaf labeled with the current majority class at that node.
 Measure and record the accuracy of the pruned tree on the validation set.
 Permanently prune the node that results in the greatest increase in accuracy on
 the validation set.

51

Issues with Reduced Error Pruning

•  The problem with this approach is that it
potentially “wastes” training data on the validation
set.

•  Severity of this problem depends where we are on
the learning curve:

te
st

 a
cc

ur
ac

y

number of training examples

52

Cross-Validating without
Losing Training Data

•  If the algorithm is modified to grow trees breadth-
first rather than depth-first, we can stop growing
after reaching any specified tree complexity.

•  First, run several trials of reduced error-pruning
using different random splits of grow and
validation sets.

•  Record the complexity of the pruned tree learned
in each trial. Let C be the average pruned-tree
complexity.

•  Grow a final tree breadth-first from all the training
data but stop when the complexity reaches C.

•  Similar cross-validation approach can be used to
set arbitrary algorithm parameters in general.

53

Additional Decision Tree Issues

•  Better splitting criteria
–  Information gain (IG) prefers features with many values.
–  Gain Ratio : taking into account the number and size of daughter

nodes into which an attribute splits the dataset, disregarding any
information about the class (= SplitInfo, using entropy measure
used again), GR = IG/SplitInfo

–  Gini 2*ppos*(1-ppos) , sqrt(Gini), Variance, …
•  Features with costs
•  Misclassification costs
•  Incremental learning
•  Mining large databases that do not fit in main memory
•  Most common: C4.5 (here) and CART (at tutorials)

54

C4.5

•  Based on ID3 algorithm (Ross Quinlan)
•  gain ratio used
•  C4.5 ver.8 -> j48 (java)

Scheme of C4.5 algorithm:
 Run several time and choose the best tree
 Inner: Take L% of learning data randomly
 Call ID3 (pre-pruning, see –m parameter)
 Prune the tree (post-pruning, -cf)
 Take T% of unseen learning data for validation
 If validation criterion holds, exit
 Otherwise add L% to L and go to Inner

