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Theory of Machine learning 
Peter Flach Book pp.124-126, Tom Mitchell, Machine Learning Chapter 7 

We seek theory to relate: 

•  Probability of successful learning 

•  Number of training examples 

•  Complexity of hypothesis space 

•  Accuracy to which target concept is approximated 

•  Manner in which training examples presented 
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Two roles for Bayesian methods 
Tom Mitchell, Machine Learning Chapter 6 

•  Provides practical learning algorithm 

•  Provides conceptual frameworks 

  gold standard for evaluationg other learning algorithms  
  insight to Occam;s razor 
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Brute Force MAP Hypothesis Learner 

H … hypotheses 
D … learning data 
hMAP … maximum a posteriori hypothesis 
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Bias-variance dilemma 

•  bias–variance dilemma: a low-complexity model suffers 
less from variability due to random variations in the 
training data, but 

•  may introduce a systematic bias that even large amounts of 
training data can’t resolve;  

•  Example(s): 
•  on the other hand, 
•  a high-complexity model eliminates such bias but can 

suffer non-systematic errors due to variance. 
•  Example(s): 
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What Machine learning is 
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Ensembles 

Based on Ray Mooney CS 391L 
University of Texas at Austin 
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Learning Ensembles 

•  Learn multiple alternative definitions of a concept using 
different training data or different learning algorithms. 

•  Combine decisions of multiple definitions, e.g. using 
weighted voting. 

Training Data 

Data1 Data m Data2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Learner1 Learner2 Learner m ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Model1 Model2 Model m ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Model Combiner  Final Model 
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Value of Ensembles 

•  When combing multiple independent and 
diverse decisions each of which is at least 
more accurate than random guessing, 
random errors cancel each other out, correct 
decisions are reinforced. 

•  Human ensembles are demonstrably better 
– How many jelly beans in the jar?: Individual 

estimates vs. group average. 
– Who Wants to be a Millionaire: Expert friend 

vs. audience vote. 
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Homogenous Ensembles 

•  Use a single, arbitrary learning algorithm but 
manipulate training data to make it learn multiple 
models. 
–  Data1 ≠ Data2 ≠ … ≠ Data m 
–  Learner1 = Learner2 = … = Learner m 

•  Different methods for changing training data: 
–  Bagging: Resample training data 
–  Boosting: Reweight training data 
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Bagging 

•  Create ensembles by repeatedly randomly resampling the 
training data (Brieman, 1996). 

•  Given a training set of size n, create m samples of size n by 
drawing n examples from the original data, with 
replacement. 
–  Each bootstrap sample will on average contain 63.2% of the 

unique training examples, the rest are replicates. 
•  Combine the m resulting models using simple majority 

vote.  
•  Decreases error by decreasing the variance in the results 

due to unstable learners, algorithms (like decision trees) 
whose output can change dramatically when the training 
data is slightly changed. 
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Bagging : Algorithms 



12 

Boosting 

•  Originally developed by computational learning theorists to 
guarantee performance improvements on fitting training data for 
a weak learner that only needs to generate a hypothesis with a 
training accuracy greater than 0.5 (Schapire, 1990; Goedel 
Prize) 
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Boosting 

•  Revised to be a practical algorithm, AdaBoost, for building 
ensembles that empirically improves generalization 
performance (Freund & Shapire, 1996). 

•  Examples are given weights. At each iteration, a new 
hypothesis is learned and the examples are reweighted to 
focus the system on examples that the most recently 
learned classifier got wrong. 
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Boosting: Basic Algorithm 

•  General Loop: 
    Set all examples to have equal uniform weights. 
      For t from 1 to T do: 
             Learn a hypothesis, ht, from the weighted examples 
             Decrease the weights of examples ht classifies correctly 
•  Base (weak) learner must focus on correctly 

classifying the most highly weighted examples 
while strongly avoiding over-fitting. 

•  During testing, each of the T hypotheses get a 
weighted vote proportional to their accuracy on 
the training data. 
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Note on ensemble construction 

•  Ensemble construction can be defined as a 
learning problem 

•  given the predictions of some base classifiers as 
features, learn a meta-model that best combines 
their predictions.  

•  E.g. in Bagging, what classifiers to use and with 
what weights (weighted voting) 

•  In Boosting we could learn the weights rather than 
deriving them from each base model’s error rate. 



Random Forests 

●  an ensemble of classification or regression random trees. 

●  each Random tree is constructed by a  
●  different bootstrap sample from the original data  
●  with a subset of features 

●  1/3 of all samples are left out (a cause of bootstrap) – OOB 
(out of bag) data – for classification error estimation 

●  majority voting, = a variant of bagging 
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Ensembles and bias-variance dilemma 

•  Bagging decreases variance 
     variance -> variance/num_of_ensembleMembers 

•  Boosting decreases bias 
      (as hypothesis complexity is increasing) 
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Rule learning 

Based partially on  J. Fürnkranz ML course, U. Darmstadt  
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Example 
@relation weather.symbolic 

@attribute outlook {sunny, overcast, rainy} 
@attribute temperature {hot, mild, cool} 
@attribute humidity {high, normal} 
@attribute windy {TRUE, FALSE} 
@attribute play {yes, no} 

@data 
sunny,hot,high,FALSE,no 
sunny,hot,high,TRUE,no 
overcast,hot,high,FALSE,yes 
rainy,mild,high,FALSE,yes 
rainy,cool,normal,FALSE,yes 
rainy,cool,normal,TRUE,no 
overcast,cool,normal,TRUE,yes 
… 
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From trees to rules 
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C4.5rules 



Introduction to Inductive Logic Programming 

In collaboration with Olga Štěpánková 



Example:  
Can we recognize robots after short experience?  

friendly unfriendly 



Example:  
Robots and an atribute-value description 

 head  smile  neck   body In hand  friendly 

Circle ne Tie Rectangle Sword no 

Rectangle ano Butterfly Rectangle Nothing yes 

Circle ne Butterfly Circle Sword yes 

Triangle ne Tie Rectangle Ball no 

Circle ano Nothing Triangle Flower no 

Triangle ne Nothing Triangle Ball yes 

Triangle ano Tie Circle Nothing no 

Circle ano Tie Circle Nothing yes 



Example: hypothesis and testing 



Example: hypothesis and testing (cont.) 



When an attribute-value representation is insufficcient? 

•  Examples do not have a uniform description (e.g. are of a 
different length)  

•  A structure of examples is important  

•  Domain knowledge is (multi-)relational 



Inductive logic programming: Basic task 

(Muggleton94) 

A set of positive E+  and negative  E- examples 
Domain knowledge B (a logic program) 

goal: to find a logic program P that together with B covers 
      (almost all) positive examples and 
      not cover (almost no) negative example 
------ 

+: much more flexible 
    data of any structure can be processed 

-: some effort needed  
   more time consuming( even though << NeuroN) 



Example 

Example: find a path in an oriented graph 

    path(X,Y) :- edge(X,Y).  
    path(X,Y) :- path(X,U),edge(U,Y). 

    edge(1,2). edge(1,3). edge(2,3). edge(2,4).  …     
      = domain knowledge 



Specialization and generalization 

A formula G is a specialization of a formula G iff  
 F is a logical consequence of G 
 G |= F (any model of G is also a model of F).  

Specialization operator (refinement operator)  
 assigns to a clause a set of all its specializations  

Most of ILP systems use two basic operations of specialization 
 binding two variables          

 spec(path(X, Y )) = path(X, X) 
 adding a goal into a clause body 

 spec(path(X,Y)) = (path(X,Y):-edge(U,V)) 
and also 
substitution a  variable with a  constant 

 spec(number(X)) = number(0)   
substitution a  variable with a most general term 

 spec(number(X) = number(s(Y)) .  



Example: path(From,To) in a graph 

Learning set 
 positive examples :  path(1,2). path(1,3). path(1,4). path(2,3).  
 negative examples:  path(2,1). path(2,5). 

Domain knowledge 
 edge(1,2). edge(1,3). edge(2,3). edge(2,4). 

Specialization (refinement) tree 
path(X,Y). 
path(X,X).        path(X,Y) :- edge(Z,U).      path(X,Y):-path(Z,U). 
                          path(X,Y) :- edge(X,U).      path(X,Y):-path(X,U). 
                          path(X,Y) :- edge(X,Y).       … 
                                                                         path(X,Y):-path(X,U),edge(V,W). 
                                                                         path(X,Y):-path(X,U),edge(X,W). 
                                                                           … 
                                                                         path(X,Y):-path(X,U),edge(U,W). 
                                                                           … 
                                                                         path(X,Y):-path(X,U),edge(U,Y). 


