Data Preprocessing

1

Based on Jiawei Han et al. Data mining book/slides, 3rd edition

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

Data Cleaning

Data Integration

Data Reduction and Transformation

Dimensionality Reduction

Summary

What is Data Preprocessing? — Major Tasks

Data cleaning

Handle missing data, smooth noisy data, identify or remove outliers, and resolve inconsistencies

Data integration

Integration of multiple databases, data cubes, or files

Data reduction

- Dimensionality reduction
- Numerosity reduction
- Data compression
- Data transformation and data discretization
 - Normalization
 - Concept hierarchy generation

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

Data Integration

Data Reduction and Transformation

Dimensionality Reduction

Summary

Data Cleaning

- Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, and transmission error
 - Incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., *Occupation* = " " (missing data)
 - Noisy: containing noise, errors, or outliers
 - □ e.g., *Salary* = "−10" (an error)
 - Inconsistent: containing discrepancies in codes or names, e.g.,
 - □ Age = "42", Birthday = "03/07/2010"
 - □ Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
 - Intentional (e.g., disguised missing data)
 - □ Jan. 1 as everyone's birthday?

Incomplete (Missing) Data

- Data is not always available
 - E.g., many tuples have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to
 - Equipment malfunction
 - Inconsistent with other recorded data and thus deleted
 - Data were not entered due to misunderstanding
 - Certain data may not be considered important at the time of entry
 - Did not register history or changes of the data
- Missing data may need to be inferred

How to Handle Missing Data?

- Ignore the tuple: usually done when class label is missing (when doing classification)—not effective when the % of missing values per attribute varies considerably
- □ Fill in the missing value manually: tedious + infeasible?
- □ Fill in it automatically with
 - a global constant : e.g., "unknown", a new class?!
 - □ the attribute mean
 - □ the attribute mean for all samples belonging to the same class: smarter
 - the most probable value: inference-based such as Bayesian formula or decision tree

Noisy Data

Noise: random error or variance in a measured variable

Incorrect attribute values may be due to

- □ Faulty data collection instruments
- Data entry problems
- Data transmission problems
- Technology limitation
- Inconsistency in naming convention

Other data problems

- Duplicate records
- Incomplete data
- Inconsistent data

How to Handle Noisy Data?

- Binning
 - First sort data and partition into (equal-frequency) bins
 - Then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - Smooth by fitting the data into regression functions
- Clustering
 - Detect and remove outliers
- Semi-supervised: Combined computer and human inspection
 - Detect suspicious values and check by human (e.g., deal with possible outliers)

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

- Data Cleaning
- Data Integration

Data Reduction and Transformation

Dimensionality Reduction

Summary

11

Correlation Analysis (for Categorical Data

- Null hypothesis: The two distributions are independent
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
 - □ The larger the X² value, the more likely the variables are related
- Note: Correlation does not imply causality
 - □ # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Chi-Square Calculation: An Example

How to derive 90?

90

450/1500 * 300 =

We can reject the

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (90)	200 (360)	450
Not like science fiction	50 (210)	1000 (840)	1050
Sum(col.)	300	1200	1500

■ X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories) $\chi^2 = \frac{(250-90)^2}{90} + \frac{(50-210)^2}{210} + \frac{(200-360)^2}{360} + \frac{(1000-840)^2}{840} = 507.93$

It shows that like_science_fiction and play_chess are correlated in the group

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

Data Cleaning

Data Integration

Data Reduction and Transformation

Dimensionality Reduction

Summary

Data Reduction

Data reduction:

- Obtain a reduced representation of the data set
 - much smaller in volume but yet produces almost the same analytical results
- Why data reduction?—A database/data warehouse may store terabytes of data
 - Complex analysis may take a very long time to run on the complete data set
 - □ Select/create features that are important for e.g. classification

Histogram Analysis

- Divide data into buckets (bins) and store average (sum) for each bucket
- □ Partitioning rules:
 - Equal-width
 - Equal-frequency

Clustering

- Partition data set into clusters based on similarity, and store cluster representation (e.g., centroid and diameter) only
- Can be very effective if data is clustered but not if data is "smeared" (fuzzy)
- Can have hierarchical clustering and be stored in multi-dimensional index tree structures
- There are many choices of clustering definitions and clustering algorithms

Sampling

- Sampling: obtaining a small sample *s* to represent the whole data set *N*
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data
- □ Key principle: Choose a **representative** subset of the data
 - Simple random sampling may have very poor performance in the presence of skew
 - Develop adaptive sampling methods, e.g., stratified sampling

Types of Sampling

Simple random sampling: equal probability of selecting any particular item

Sampling without replacement

Once an object is selected, it is removed from the population

Gampling with replacement

A selected object is not removed from the population

Stratified sampling

Partition (or cluster) the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)

Wavelet Transform: A Data Compression Technique

Wavelet Transform

- Decomposes a signal into different frequency subbands
- □ Applicable to n-dimensional signals
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allow natural clusters to become more distinguishable
- Used for image compression

- Discrete wavelet transform (DWT) for linear signal processing, multiresolution analysis
- Compressed approximation: Store only a small fraction of the strongest of the wavelet coefficients
- Similar to discrete Fourier transform (DFT), but better lossy compression, localized in space
- Method:

21

- Length, L, must be an integer power of 2 (padding with 0's, when necessary)
- Each transform has 2 functions: smoothing, difference
- □ Applies to pairs of data, resulting in two set of data of length L/2
- Applies two functions recursively, until reaches the desired length

Wavelet Decomposition

- Wavelets: A math tool for space-efficient hierarchical decomposition of functions
- □ S = [2, 2, 0, 2, 3, 5, 4, 4] can be transformed to S_^ = $[2^3/_4, -1^1/_4, 1/_2, 0, 0, -1, -1, 0]$
- Compression: many small detail coefficients can be replaced by 0's, and only the significant coefficients are retained

Resolution	Averages	Detail Coefficients
8	[2, 2, 0, 2, 3, 5, 4, 4]	
4	[2, 1, 4, 4]	[0, -1, -1, 0]
2	$[1\frac{1}{2}, 4]$	$[\frac{1}{2}, 0]$
1	$[\tilde{2}\frac{3}{4}]$	$[-1\frac{1}{4}]$

Why Wavelet Transform?

- Use hat-shape filters
 - Emphasize region where points cluster
 - Suppress weaker information in their boundaries
- Effective removal of outliers
 - Insensitive to noise, insensitive to input order
- Multi-resolution
 - Detect arbitrary shaped clusters at different scales
- Efficient
 - Complexity O(N)
- Only applicable to low dimensional data

Data Transformation

- Maping the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction
 - New attributes constructed from the given ones
 - Aggregation: Summarization, data cube construction
 - □ Normalization: Scaled to fall within a smaller, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Discretization: Concept hierarchy climbing

Normalization

 $v' = \frac{v - min_A}{max_A - min_A} (new max_A - new min_A) + new min_A$

Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0] $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$

□ Then \$73,000 is mapped to

Z-score normalization (μ : mean, σ : standard deviation):

$$\nu' = \frac{\nu - \mu_A}{\sigma_A}$$

Ex. Let $\mu = 54,000$, $\sigma = 16,000$. Then

1

 $\frac{73,600 - 54,000}{16,000} = 1.225$

Z-score: The distance between the raw score and the population mean in the unit of the standard deviation

25

Discretization

- □ Three types of attributes
 - Nominal—values from an unordered set, e.g., color, profession
 - Ordinal—values from an ordered set, e.g., military or academic rank
 - Numeric—real numbers, e.g., integer or real numbers
- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Supervised vs. unsupervised
 - □ Split (top-down) vs. merge (bottom-up)
 - □ Prepare for further analysis, e.g., classification

Data Discretization Methods

Binning

- Top-down split, unsupervised
- Histogram analysis
 - Top-down split, unsupervised
- Clustering analysis
 - Unsupervised, top-down split or bottom-up merge
- Decision-tree analysis
 - Supervised, top-down split
- **Correlation** (e.g., χ^2) analysis
 - Unsupervised, bottom-up merge
- Note: All the methods can be applied recursively

Simple Discretization: Binning

- **Equal-width** (distance) partitioning
 - Divides the range into *N* intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - □ The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well
- **Equal-depth** (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Example: Binning Methods for Data Smoothing

□ Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34

- * Partition into equal-frequency (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by **bin means**:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by **bin boundaries**:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Discretization by Classification & Correlation Analysis

Classification (e.g., decision tree analysis)

- □ Supervised: Given class labels, e.g., cancerous vs. benign
- Using entropy to determine split point (discretization point)
- Top-down, recursive split
- See Tree learning lecture
- **\Box** Correlation analysis (e.g., Chi-merge: χ^2 -based discretization)
 - Supervised: use class information
 - Bottom-up merge: Find the best neighboring intervals (those having similar distributions of classes, i.e., low χ² values) to merge
 - □ Merge performed recursively, until a predefined stopping condition

Chapter 3: Data Preprocessing

Data Preprocessing: An Overview

Data Cleaning

Data Integration

Data Reduction and Transformation

Dimensionality Reduction

Summary

Dimensionality Reduction

Curse of dimensionality

- When dimensionality increases, data becomes increasingly sparse
- Density and distance between points, which is critical to clustering, outlier analysis, becomes less meaningful
- □ The possible combinations of subspaces will grow exponentially

Dimensionality reduction

Reducing the number of random variables under consideration, via obtaining a set of principal variables

Advantages of dimensionality reduction

- Avoid the curse of dimensionality
- Help eliminate irrelevant features and reduce noise
- Reduce time and space required in data mining
- Allow easier visualization

Dimensionality Reduction Techniques

- Dimensionality reduction methodologies
 - Feature selection: Find a subset of the original variables (or features, attributes)
 - Feature extraction: Transform the data in the high-dimensional space to a space of fewer dimensions
- Some typical dimensionality methods
 - Principal Component Analysis
 - Supervised and nonlinear techniques
 - Feature subset selection
 - Feature creation

Principal Component Analysis (PCA)

- PCA: A statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called *principal components*
- The original data are projected onto a much smaller space, resulting in dimensionality reduction
- Method: Find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Ball travels in a straight line. Data from three cameras contain much redundancy

Principal Component Analysis (Method)

- Given *N* data vectors from *n*-dimensions, find $k \le n$ orthogonal vectors (*principal components*) best used to represent data
 - □ Normalize input data: Each attribute falls within the same range
 - Compute *k* orthonormal (unit) vectors, i.e., *principal components*
 - Each input data (vector) is a linear combination of the k principal component vectors
 - The principal components are sorted in order of decreasing "significance" or strength
 - Since the components are sorted, the size of the data can be reduced by eliminating the *weak components*, i.e., those with low variance (i.e., using the strongest principal components, to reconstruct a good approximation of the original data)
- Works for numeric data only

Ack. Wikipedia: Principal Component Analysis

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - Ex. A student's ID is often irrelevant to the task of predicting his/her GPA

Heuristic Search in Attribute Selection

- **\Box** There are 2^d possible attribute combinations of d attributes
- **Typical heuristic attribute selection methods:**
 - Best single attribute under the attribute independence assumption: choose by significance tests
 - Best step-wise feature selection:
 - □ The best single-attribute is picked first
 - □ Then next best attribute condition to the first, ...
 - **Step-wise attribute elimination:**
 - **Repeatedly eliminate the worst attribute**
 - Best combined attribute selection and elimination
 - Optimal branch and bound:
 - Use attribute elimination and backtracking

Attribute Creation (Feature Generation)

- Create new attributes (features) that can capture the important information in a data set more effectively than the original ones
- □ Three general methodologies
 - Attribute extraction
 - Domain-specific
 - □ Mapping data to new space (see: data reduction)
 - E.g., Fourier transformation, wavelet transformation, manifold approaches (not covered)
 - Attribute construction
 - Combining features (see: discriminative frequent patterns in Chapter on "Advanced Classification")
 - Data discretization

Summary

- Data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- **Data cleaning**: e.g. missing/noisy values, outliers
- **Data integration** from multiple sources:
 - Entity identification problem; Remove redundancies; Detect inconsistencies
- **Data reduction, data transformation and data discretization**
 - Numerosity reduction; Data compression
 - Normalization; Concept hierarchy generation
- **Dimensionality reduction**

References

- D. P. Ballou and G. K. Tayi. Enhancing data quality in data warehouse environments. Comm. of ACM, 42:73-78, 1999
- T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
- T. Dasu, T. Johnson, S. Muthukrishnan, V. Shkapenyuk.
 Mining Database Structure; Or, How to Build a Data Quality Browser. SIGMOD'02
- H. V. Jagadish et al., Special Issue on Data Reduction Techniques. Bulletin of the Technical Committee on Data Engineering, 20(4), Dec. 1997
- D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
- E. Rahm and H. H. Do. Data Cleaning: Problems and Current Approaches. IEEE Bulletin of the Technical Committee on Data Engineering. Vol.23, No.4
- V. Raman and J. Hellerstein. Potters Wheel: An Interactive Framework for Data Cleaning and Transformation, VLDB'2001
- T. Redman. Data Quality: Management and Technology. Bantam Books, 1992
- R. Wang, V. Storey, and C. Firth. A framework for analysis of data quality research. IEEE Trans. Knowledge and Data Engineering, 7:623-640, 1995

