
Probabilistic Classi�cation

Based on the ML lecture by Raymond J. Mooney
University of Texas at Austin

1

Probabilistic Classi�cation � Idea

Imagine that

I I look out of a window and see a bird,

I it is black, approx. 25 cm long, and has a rather yellow beak.

My daughter asks: What kind of bird is this?

My usual answer: This is probably a kind of blackbird (kos £erný in

Czech).

Here probably means that out of my extensive catalogue of four
kinds of birds that I am able to recognize, "blackbird" gets the
highest degree of belief based on features of this particular bird.

Frequentists might say that the largest proportion of birds with similar features

I have ever seen were blackbirds.

The degree of belief (Bayesians), or the relative frequency
(frequentists) is the probability.

2

Basic Discrete Probability Theory

I A �nite or countably in�nite set Ω of possible outcomes, Ω is
called sample space.
Experiment: Roll one dice once. Sample space: Ω = {1, . . . , 6}

I Each element ω of Ω is assigned a "probability" value f (ω),
here f must satisfy
I f (ω) ∈ [0, 1] for all ω ∈ Ω,
I
∑
ω∈Ω f (ω) = 1.

If the dice is fair, then f (ω) = 1
6
for all ω ∈ {1, . . . , 6}.

I An event is any subset E of Ω.
I The probability of a given event E ⊆ Ω is de�ned as

P(E) =
∑
ω∈E

f (ω)

Let E be the event that an odd number is rolled, i.e., E = {1, 3, 5}. Then
P(E) = 1

2
.

I Basic laws: P(Ω) = 1, P(∅) = 0, given disjoint sets A,B we
have P(A ∪ B) = P(A) + P(B), P(Ω r A) = 1− P(A).

3

Conditional Probability and Independence

I P(A | B) is the probability of A given B (assume P(B) > 0)
de�ned by

P(A | B) = P(A ∩ B)/P(B)

(We assume that B is all and only information known.)

A fair dice: what is the probability that 3 is rolled assuming that an odd

number is rolled? ... and assuming that an even number is rolled?

I The law of total probability: Let A be an event and
B1, . . . ,Bn pairwise disjoint events such that Ω =

⋃n
i=1

Bi .
Then

P(A) =
n∑

i=1

P(A ∩ Bi) =
n∑

i=1

P(A | Bi) · P(Bi)

I A and B are independent if P(A ∩ B) = P(A) · P(B).

It is easy to show that if P(B) > 0, then

A, B are independent i� P(A | B) = P(A).
4

Random Variables

I A random variable X is a function X : Ω→ R.
A dice: X : {1, . . . , 6} → {0, 1} such that X (n) = n mod 2.

I A probability mass function (pmf) of X is a function p de�ned
by

p(x) := P(X = x)

Often P(X) is used to denote the pmf of X .

5

Random Vectors

I A random vector is a function X : Ω→ Rd .

We use X = (X1, . . . ,Xd) where Xi is a random variable
returning the i-th component of X .

I A joint probability mass function of X is
pX (x1, . . . , xd) := P(X1 = x1 ∧ · · · ∧ Xd = xd).
I.e., pX gives the probability of every combination of values.

Often, P(X1, · · · ,Xd) denotes the joint pmf of X1, . . . ,Xd . That is,

P(X1, · · · ,Xd) stands for probabilities P(X1 = x1 ∧ · · · ∧ Xd = xd) for all

possible combinations of x1, . . . , xd .

I The probability mass function pXi
of each Xi is called marginal

probability mass function. We have

pXi
(xi) = P(Xi = xi) =

∑
(x1,...,xi−1,xi+1,...,xd)

pX (x1, . . . , xd)

6

Random Vectors � Example

Let Ω be a space of colored geometric shapes that are divided into
two categories (positive and negative).

Assume a random vector X = (Xcolor ,Xshape ,Xcat) where

I Xcolor : Ω→ {red , blue},
I Xshape : Ω→ {circle, square},
I Xcat : Ω→ {pos, neg}.

The joint pmf is given by the following tables:

positive:
circle square

red 0.2 0.02

blue 0.02 0.01

negative:
circle square

red 0.05 0.3

blue 0.2 0.2

7

Random Vectors � Example

The probability of all possible events can be calculated by summing
the appropriate probabilities.

P(red ∧ circle) = P(Xcolor = red ∧ Xshape = circle)

= P(red ∧ circle ∧ positive)+

+ P(red ∧ circle ∧ negative)

= 0.2 + 0.05 = 0.25

P(red) = 0.2 + 0.02 + 0.05 + 0.3 = 0.57

Thus also all conditional probabilities can be computed:

P(positive | red∧cicle) =
P(positive ∧ red ∧ circle)

P(red ∧ circle)
=

0.2

0.25
= 0.8

8

Conditional Probability Mass Functions

We often have to deal with a pmf of a random vector X
conditioned on values of a random vector Y .

I.e., we are interested in P(X = x | Y = y) for all x and y .

We write P(X | Y) to denote the pmf of X conditioned on Y .

Technically, P(X | Y) is a function which takes a possible value x
of X and a possible value y of Y and returns P(X = x | Y = y).

This allows us to say, e.g., that two variables X1 and X2 are
independent conditioned on Y by

P(X1,X2 | Y) = P(X1 | Y) · P(X2 | Y)

Technically this means that for all possible values x1 of X1, all
possible values x2 of X2, and all possible values y of Y we have

P(X1 = x1 ∧ X2 = x2 | Y = y) =

P(X1 = x1 | Y = y) · P(X2 = x2 | Y = y)

9

Bayesian Classi�cation

Let Ω be a sample space (a universum) of all objects that can be
classi�ed.
We assume a probability P on Ω.
A training set will be a subset of Ω randomly sampled according to P.

I Let Y be the random variable for the category which takes
values in {y1, . . . , ym}.

I Let X be the random vector describing n features of a given
instance, i.e., X = (X1, . . . ,Xn)
I Denote by xk possible values of X ,
I and by xij possible values of Xi .

Bayes classi�er: Given a vector of feature values xk ,

CBayes(xk) := y` where ` = arg max
i∈{1,...,m}

P(Y = yi | X = xk)

Intuitively, CBayes assigns xk to the most probable category it might
be in.

10

Bayesian Classi�cation � Example

Imagine a conveyor belt with apples and apricots.

A machine is supposed to correctly distinguish apples from apricots
based on their weight and diameter.

That is,

I Y = {apple, apricot},
I X = (Xweight ,Xdiam).

Assume that we are given a fruit that weighs 40g with 5cm
diameter.

The Bayes classi�er compares P(Y = apple | X = (40g , 5cm))
with P(Y = apricot | X = (40g , 5cm)) and selects the more
probable category given the features.

11

Optimality of the Bayes Classi�er

Let C be an arbitrary classi�er, that is a function that to every xk
assigns a class out of {y1, . . . , ym}.

Slightly abusing notation, we use C to also denote the random
variable which assigns a category to every instance.
(Technically this is a composition C ◦ X of C and X which �rst determines

the features using X and then classi�es according to C).

De�ne the error of the classi�er C by

EC = P(Y 6= C)

V¥ta
The Bayes classi�er CBayes minimizes EC , that is

ECBayes := min
C is a classi�er

EC

12

Optimality of the Bayes Classi�er

EC =
m∑
i=1

P(Y = yi ∧ C 6= yi)

= 1−
m∑
i=1

P(Y = yi ∧ C = yi)

= 1−
m∑
i=1

∑
xk

P(Y = yi ∧ C = yi | X = xk)P(X = xk)

= 1−
∑
xk

P(X = xk)
m∑
i=1

P(Y = yi ∧ C = yi | X = xk)

= 1−
∑
xk

P(X = xk)P(Y = C (xk) | X = xk)

(Here the last equality follows from the fact that C is determined by xk .)

Choosing

C (xk) = CBayes(xk) = y` where ` = arg max
i∈{1,...,m}

P(Y = yi | X = xk)

maximizes P(Y = C (xk) | X = xk) and thus minimizes EC .
13

Practical Use of Bayes Classi�er

The crucial problem: How to compute P(Y = yi | X = xk) ?

Given no other assumptions, this requires a table giving
the probability of each category for each possible vector of feature
values, which is impossible to accurately estimate from
a reasonably-sized training set.

Concretely, if all Y ,X1, . . . ,Xn are binary, we need 2n numbers to
specify P(Y = 0 | X = xk) for each possible xk .
(Note that we do not need to specify

P(Y = 1 | X = xk) = 1− P(Y = 0 | X = xk)).

It is a bit better than 2n+1 − 1 entries for speci�cation of the
complete joint pmf P(Y ,X1, . . . ,Xn).

However, it is still too large for most classi�cation problems.

14

Let's Look at It the Other Way Round

V¥ta (Bayes,1764)

P(A | B) =
P(B | A) · P(A)

P(B)

D·kaz.

P(A | B) =
P(A ∩ B)

P(B)
=

P(A∩B)
P(A) · P(A)

P(B)
=

P(B | A) · P(A)

P(B)

15

Bayesian Classi�cation

Determine the category for xk by �nding yi maximizing

P(Y = yi | X = xk) =
P(Y = yi) · P(X = xk | Y = yi)

P(X = xk)

So in order to make the classi�er we need to compute:

I The prior P(Y = yi) for every yi
I The conditionals P(X = xk | Y = yi) for every xk and yi

16

Estimating the Prior and Conditionals

I P(Y = yi) can be easily estimated from data:
I Given a set of p training examples where
I ni of the examples are in the category yi ,
I we set

P(Y = yi) =
ni
p

I If the dimension of features is small, P(X = xk | Y = yi) can
be estimated from data similarly as for P(Y = yi).

Unfortunately, for higher dimensional data too many examples
are needed to estimate all P(X = xk | Y = yi) (there are too
many xk 's).
So where is the advantage of using the Bayes thm.?

We introduce independence assumptions about the features!

17

Naive Bayes

I We assume that features of an instance are (conditionally)
independent given the category:

P(X | Y) = P(X1, · · · ,Xn | Y) =
n∏

i=1

P(Xi | Y)

I Therefore, we only need to specify P(Xi | Y), that is
P(Xi = xij | Y = yk) for each possible pair of a feature-value
xij and a class yk .

Note that if Y and all Xi are binary (values in {0, 1}), this
requires specifying only 2n parameters:

P(Xi = 1 | Y = 1) and P(Xi = 1 | Y = 0) for each Xi

since P(Xi = 0 | Y) = 1− P(Xi = 1 | Y).

Compared to specifying 2n parameters without any independence assumptions.
18

Naive Bayes � Example

positive negative

P(Y) 0.5 0.5

P(small | Y) 0.4 0.4

P(medium | Y) 0.1 0.2

P(large | Y) 0.5 0.4

P(red | Y) 0.9 0.3

P(blue | Y) 0.05 0.3

P(green | Y) 0.05 0.4

P(square | Y) 0.05 0.4

P(triangle | Y) 0.05 0.3

P(circle | Y) 0.9 0.3

Is (medium, red , circle) positive?

19

positive negative

P(Y) 0.5 0.5

P(medium | Y) 0.1 0.2

P(red | Y) 0.9 0.3

P(circle | Y) 0.9 0.3

Denote xk = (medium, red , circle).

P(pos | X = xk) =

= P(pos) · P(medium | pos) · P(red | pos) · P(circle | pos) /P(X = xk)

= 0.5 · 0.1 · 0.9 · 0.9 /P(X = xk) = 0.0405/P(X = xk)

P(neg | X = xk) =

= P(neg) · P(medium | neg) · P(red | neg) · P(circle | neg) /P(X = xk)

= 0.5 · 0.2 · 0.3 · 0.3 /P(X = xk) = 0.009/P(X = xk)

Apparently,

P(pos | X = xk) = 0.0405/P(X = xk) > 0.009/P(X = xk) = P(neg | X = xk)

So we classify xk as positive.

20

Estimating Probabilities (In General)

I Normally, probabilities are estimated on observed frequencies
in the training data (see the previous example).

I Let us have
I nk training examples in class yk ,
I nijk of these nk examples have the value for Xi equal to xij .

Then we put P̄(Xi = xij | Y = yk) =
nijk
nk

.

I A problem: If, by chance, a rare value xij of a feature Xi

never occurs in the training data, we get

P̄(Xi = xij | Y = yk) = 0 for all k ∈ {1, . . . ,m}

But then P̄(X = xk) = 0 for xk containing the value xij for Xi ,
and thus P̄(Y = yk | X = xk) is not well de�ned.
Moreover, P̄(Y = yk) · P̄(X = xk | Y = yk) = 0 (for all yk) so
even this cannot be used for classi�cation.

21

Probability Estimation Example

Training data:
Size Color Shape Class

small red circle pos

large red circle pos

small red triangle neg

large blue circle neg

Learned probabilities:
positive negative

P̄(Y) 0.5 0.5

P̄(small | Y) 0.5 0.5

P̄(medium | Y) 0 0

P̄(large | Y) 0.5 0.5

P̄(red | Y) 1 0.5

P̄(blue | Y) 0 0.5

P̄(green | Y) 0 0

P̄(square | Y) 0 0

P̄(triangle | Y) 0 0.5

P̄(circle | Y) 1 0.5

Note that P̄(medium ∧ red ∧ circle) = 0.

So what is P̄(pos | medium ∧ red ∧ circle) ?

22

Smoothing

I To account for estimation from small samples, probability
estimates are adjusted or smoothed.

I Laplace smoothing using an m-estimate works as if
I each feature is given a prior probability p,
I such feature have been observed with this probability p in

a sample of size m (recall that m is the number of classes).

We get

P̄(Xi = xij | Y = yk) =
nijk + mp

nk + m

(Recall that nk is the number of training examples of class yk ,
and nijk is the number of training examples of class yk for
which the i-th feature Xi has the value xij .)

23

Laplace Smothing Example

I Assume training set contains 10 positive examples:
I 4 small
I 0 medium
I 6 large

I Estimate parameters as follows (m = 2 and p = 1/3)
I P̄(small | positive) = (4 + 2/3)/(10 + 2) = 0.389
I P̄(medium | positive) = (0 + 2/3)/(10 + 2) = 0.056
I P̄(large | positive) = (6 + 2/3)/(10 + 2) = 0.556

24

Continuous Features

Ω may be (potentially) continuous, Xi may assign a continuum of
values in R.
I The probabilities are computed using probability density

p : R→ R+ instead of pmf.
A random variable X : Ω→ R+ has a density p : R→ R+ if for every
interval [a, b] we have

P(a ≤ X ≤ b) =

∫ b

a

p(x)dx

Usually, P(Xi | Y = yk) is used to denote the density of Xi

conditioned on Y = yk .
I The densities P(Xi | Y = yk) are usually estimated using

Gaussian densities as follows:
I Estimate the mean µik and the standard deviation σik based

on training data.
I Then put

P̄(Xi | Y = yk) =
1

σik
√
2π

exp

(
−(Xi − µik)2

2σ2ik

)
25

Comments on Naive Bayes

I Tends to work well despite rather strong assumption of
conditional independence of features.

I Experiments show it to be quite competitive with other
classi�cation methods.
Even if the probabilities are not accurately estimeted, it often picks the

correct maximum probability category.

I Directly constructs a hypothesis from parameter estimates that
are calculated from the training data.

I Typically handles noise well.

I Missing values are easy to deal with (simply average over all
missing values in feature vectors).

26

Bayes Classi�er vs MAP vs MLE

Recall that the Bayes classi�er chooses the category as follows:

CBayes(xk) = arg max
i∈{1,...,m}

P(Y = yi | X = xk)

= arg max
i∈{1,...,m}

P(Y = yi) · P(X = xk | Y = yi)

P(X = xk)

As the denominator P(X = xk) is not in�uenced by i , the Bayes is
equivalent to the Maximum Aposteriori Probability rule:

CMAP(xk) = arg max
i∈{1,...,m}

P(Y = yi) · P(X = xk | Y = yi)

If we do not care about the prior (or assume uniform) we may use
the Maximum Likelihood Estimate rule:

CMLE (xk) = arg max
i∈{1,...,m}

P(X = xk | Y = yi)

(Intuitively, we maximize the probability that the data xk have been generated

into the category yi .)
27

Bayesian Networks (Basic Information)

In the Naive Bayes we have assumed that all features X1, . . . ,Xn

are independent.

This is usually not realistic.
E.g. Variables "rain" and "grass wet" are (usually) strongly dependent.

What if we return some dependencies back?
(But now in a well-de�ned sense.)

Bayesian networks are a graphical model that uses a directed
acyclic graph to specify dependencies among variables.

28

Bayesian Networks � Example

Now, e.g.,

P(C ,S ,W ,B,A) = P(C) · P(S) · P(W | C) · P(B | C , S) · P(A | B)

Now we may e.g. infer what is the probability P(C = T | A = T) that we sit in

a bad chair assuming that our back aches.

We have to store only 10 numbers as opposed to 25 − 1 if the whole joint

pmf is stored.
29

Bayesian Networks � Learning & Naive Bayes

Many algorithms have been developed for learning:

I the structure of the graph of the network,

I the conditional probability tables.

The methods are based on maximum-likelihood estimation,
gradient descent, etc.

Automatic procedures are usually combined with expert knowledge.

Can you express the naive Bayes for Y ,X1, . . . ,Xn using a Bayesian
network?

30

Numerical features

I Throughout this lecture we assume that all features are
numerical, i.e. feature vectors belong to Rn.

I Most non-numerical features can be conveniently transformed
to numerical ones.

For example:
I Colors {blue, red , yellow} can be represented by

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(one-hot encoding)

I A black-and-white picture of x × y pixels can be encoded as
a vector of xy numbers that capture the shades of gray of
the pixels.

31

Basic Problems

We consider two basic problems:

I (Binary) classi�cation

Our goal: Classify inputs into
two categories.

I Function approximation
(regression)

Our goal: Find a (hypothesized)
functional dependency in data.

32

Binary classi�cation in Rn

I Assume
I a set of instances X ⊆ Rn,
I an unknown categorization function c : X → {0, 1}.

I Our goal:
I Given a set D of training examples of the form (~x , c(~x)) where

~x ∈ X ,
I construct a hypothesized categorization function h ∈ H that is

consistent with c on the training examples, i.e.,

h(~x) = c(~x) for all training examples (~x , c(~x)) ∈ D

Comments:

I In practice, we often do not strictly demand h(~x) = c(~x) for all training
examples (~x , c(~x)) ∈ D (often it is impossible)

I We are more interested in good generalization, that is how well h

classi�es new instances that do not belong to D.

I Recall that we usually evaluate accuracy of the resulting

hypothesized function h on a test set.

33

Hypothesis Spaces

We consider two kinds of hypothesis spaces:

I Linear (a�ne) classi�ers (this lecture)

I Classi�ers based on combinations of linear and sigmoidal
functions (classical neural networks) (next lecture)

34

Length and Scalar Product of Vectors

I We consider vectors ~x = (x1, . . . , xm) ∈ Rm.

I Typically, we use Euclidean metric on vectors: |~x | =
√∑m

i=1
x2i

The distance between two vectors (points) ~x , ~y is |~x − ~y |.
I We use the scalar product ~x · ~y of vectors ~x = (x1, . . . , xm)

and ~y = (y1, . . . , ym) de�ned by

~x · ~y =
m∑
i=1

xiyi

I Recall that ~x · ~y = |~x ||~y | cos θ where θ is the angle between ~x
and ~y . That is ~x · ~y is the length of the projection of ~y on ~x
multiplied by |~x |.

I Note that ~x · ~x = |~x |2

35

Linear classi�er - example

0

0

0 0

1

1

1

I classi�cation in plane using
a linear classi�er

I if a point is incorrectly classi�ed,
the learning algorithm turns the
line (hyperplane) to improve the
classi�cation.

36

Linear Classi�er

A linear classi�er h[~w] is determined by a vector of weights
~w = (w0,w1, . . . ,wn) ∈ Rn+1 as follows:

Given ~x = (x1, . . . , xn) ∈ X ⊆ Rn,

h[~w](~x) :=

{
1 w0 +

∑n
i=1

wi · xi ≥ 0

0 w0 +
∑n

i=1
wi · xi < 0

More succinctly:

h(~x) = sgn

(
w0 +

n∑
i=1

wi · xi

)
where sgn(y) =

{
1 y ≥ 0

0 y < 0

37

Linear Classi�er � Geometry

38

Linear Classi�er � Notation

Given ~x = (x1, . . . , xn) ∈ Rn we de�ne an augmented feature vector

~x = (x0, x1, . . . , xn) where x0 = 1

This makes the notation for the linear classi�er more succinct:

h[~w](~x) = sgn(~w ·~x)

39

Perceptron Learning

I Given a training set

D = {(~x1, c(~x1)) , (~x2, c(~x2)) , . . . , (~xp, c(~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ X ⊆ Rn and c(~xk) ∈ {0, 1}.

We write ck instead of c(~xk).
Note that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

I A weight vector ~w ∈ Rn+1 is consistent with D if

h[~w](~xk) = sgn(~w ·~xk) = ck for all k = 1, . . . , p

D is linearly separable if there is a vector ~w ∈ Rn+1 which is
consistent with D.

I Our goal is to �nd a consistent ~w assuming that D is linearly
separable.

40

Perceptron � Learning Algorithm

Online learning algorithm:

Idea: Cyclically go through the training examples in D and adapt weights.

Whenever an example is incorrectly classi�ed, turn the hyperplane so that

the example becomes closer to it's correct half-space.

Compute a sequence of weight vectors ~w (0), ~w (1), ~w (2),
I ~w (0) is randomly initialized close to ~0 = (0, . . . , 0)
I In (t + 1)-th step, ~w (t+1) is computed as follows:

~w (t+1) = ~w (t) − ε ·
(
h[~w (t)](~xk)− ck

)
·~xk

= ~w (t) − ε ·
(
sgn
(
~w (t) ·~xk

)
− ck

)
·~xk

Here k = (t mod p) + 1, i.e. the examples are considered
cyclically, and 0 < ε ≤ 1 is a learning speed.

V¥ta (Rosenblatt)

If D is linearly separable, then there is t∗ such that ~w (t∗) is

consistent with D.
41

Example

Training set:

D = {((2,−1), 1), ((2, 1), 1), ((1, 3), 0)}

That is

~x1 = (2,−1)

~x2 = (2, 1)

~x3 = (1, 3)

~x1 = (1, 2,−1)

~x2 = (1, 2, 1)

~x3 = (1, 1, 3)

c1 = 1

c2 = 1

c3 = 0

Assume that the initial vector ~w (0) is ~w (0) = (0,−1, 1).
Consider ε = 1.

42

Example: Separating by ~w (0)

−1 1 2 3

−3

−2

−1

1

2

3

4

~x1

~x2

~x3

Denoting ~w (0) =
(w0,w1,w2) = (0,−1, 1)
the blue separating line is given
by w0 + w1x1 + w2x2 = 0.

The red vector normal to
the blue line is (w1,w2).

The points on the side of
(w1,w2) are assigned 1 by the
classi�er, the others zero.
(In this case ~x3 is assigned one
and ~x1, ~x2 are assigned zero, all
of this is inconsistent with
c1 = 1, c2 = 1, c3 = 0.)

43

Example: ~w (1)

We have

~w (0) ·~x1 = (0,−1, 1) · (1, 2,−1) = 0− 2− 1 = −3

thus

sgn
(
~w (0) ·~x1

)
= 0

and thus

sgn
(
~w (0) ·~x1

)
− c1 = 0− 1 = −1

(This means that ~x1 is not well classi�ed, and ~w (0) is not consistent with D.)

Hence,

~w (1) = ~w (0) −
(
sgn
(
~w (0) ·~x1

)
− c1

)
·~x1

= ~w (0) +~x1

= (0,−1, 1) + (1, 2,−1)

= (1, 1, 0)

44

Example

−1 1 2 3

−3

−2

−1

1

2

3

4

~x1

~x2

~x3

45

Example: Separating by ~w (1)

We have

~w (1) ·~x2 = (1, 1, 0) · (1, 2, 1) = 1 + 2 = 3

thus

sgn
(
~w (1) ·~x2

)
= 1

and thus

sgn
(
~w (1) ·~x2

)
− c2 = 1− 1 = 0

(This means that ~x2 is currently well classi�ed by ~w (1). However, as we will see,

~x3 is not well classi�ed.)

Hence,

~w (2) = ~w (1) = (1, 1, 0)

46

Example: ~w (3)

We have

~w (2) ·~x3 = (1, 1, 0) · (1, 1, 3) = 1 + 1 = 2

thus

sgn
(
~w (2) ·~x3

)
= 1

and thus

sgn
(
~w (2) ·~x3

)
− c3 = 1− 0 = 1

(This means that ~x3 is not well classi�ed, and ~w (2) is not consistent with D.)

Hence,

~w (3) = ~w (2) −
(
sgn
(
~w (2) ·~x3

)
− c3

)
·~x3

= ~w (2) −~x3
= (1, 1, 0)− (1, 1, 3)

= (0, 0,−3)

47

Example: Separating by ~w (3)

−1 1 2 3

−3

−2

−1

1

2

3

4

~x1

~x2

~x3

48

Example: ~w (4)

We have

~w (3) ·~x1 = (0, 0,−3) · (1, 2,−1) = 3

thus

sgn
(
~w (3) ·~x1

)
= 1

and thus

sgn
(
~w (3) ·~x1

)
− c1 = 1− 1 = 0

(This means that ~x1 is currently well classi�ed by ~w (3). However, as we will see,

~x2 is not.)

Hence,

~w (4) = ~w (3) = (0, 0,−3)

49

Example: ~w (5)

We have

~w (4) ·~x2 = (0, 0,−3) · (1, 2, 1) = −3

thus

sgn
(
~w (4) ·~x2

)
= 0

and thus

sgn
(
~w (4) ·~x2

)
− c2 = 0− 1 = −1

(This means that ~x2 is not well classi�ed, and ~w (4) is not consistent with D.)

Hence,

~w (5) = ~w (4) −
(
sgn
(
~w (4) ·~x2

)
− c2

)
·~x2

= ~w (4) +~x2

= (0, 0,−3) + (1, 2, 1)

= (1, 2,−2)

50

Example: Separating by ~w (5)

−1 1 2 3

−3

−2

−1

1

2

3

4

~x1

~x2

~x3

51

Example: The result

The vector ~w (5) is consistent with D:

sgn
(
~w (5) ·~x1

)
= sgn ((1, 2,−2) · (1, 2,−1)) = sgn(7) = 1 = c1

sgn
(
~w (5) ·~x2

)
= sgn ((1, 2,−2) · (1, 2, 1)) = sgn(3) = 1 = c2

sgn
(
~w (5) ·~x3

)
= sgn ((1, 2,−2) · (1, 1, 3)) = sgn(−3) = 0 = c3

52

Perceptron � Learning Algorithm

Batch learning algorithm:

Compute a sequence of weight vectors ~w (0), ~w (1), ~w (2),

I ~w (0) is randomly initialized close to ~0 = (0, . . . , 0)

I In (t + 1)-th step, ~w (t+1) is computed as follows:

~w (t+1) = ~w (t) − ε ·
p∑

k=1

(
h[~w (t)](~xk)− ck

)
·~xk

= ~w (t) − ε ·
p∑

k=1

(
sgn
(
~w (t) ·~xk

)
− ck

)
·~xk

Here k = (t mod p) + 1, i.e. the examples are considered
cyclically, and 0 < ε ≤ 1 is a learning speed.

53

Function Approximation � Oaks in Wisconsin
This example is from How to Lie with Statistics by Darrell Hu� (1954)

NO!

possibly YES!

54

Function Approximation

I Assume
I a set X ⊆ Rn of instances,
I an unknown function f : X → R.

I Our goal:
I Given a set D of training examples of the form (~x , f (~x)) where

~x ∈ X ,
I construct a hypothesized function h ∈ H such that

h(~x) ≈ f (~x) for all training examples (~x , f (~x)) ∈ D
Here ≈ means that the values are somewhat close to each
other w.r.t. an appropriate error function E .

I In what follows we use the least squares de�ned by

E =
1

2

∑
(~x ,f (~x))∈D

(f (~x)− h(~x))2

Our goal is to minimize E .

The main reason is that this function has nice mathematical properties

(as opposed e.g. to
∑

(~x,f (~x))∈D |f (~x)− h(~x)|).
55

Least Squares � Oaks in Wisconsin

56

Linear Function Approximation

I Given a set D of training examples:

D = {(~x1, f (~x1)) , (~x2, f (~x2)) , . . . , (~xp, f (~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ Rn and fk(~x) ∈ R.
Recall that ~xk = (xk0, xk1 . . . , xkn).

Our goal: Find ~w so that h[~w](~x) = ~w ·~x approximates the
function f some of whose values are given by the training set.

I Least Squares Error Function:

E (~w) =
1

2

p∑
k=1

(~w ·~xk − fk)2 =
1

2

p∑
k=1

(
n∑

i=0

wixki − fk

)2

57

Gradient of the Error Function

Consider the gradient of the error function:

∇E (~w) =

(
∂E

∂w0

(~w), . . . ,
∂E

∂wn
(~w)

)
=

p∑
k=1

(~w ·~xk − fk) ·~xk

What is the gradient ∇E(~w) ? It is a vector in Rn+1 which points in the

direction of the steepest ascent of E (it's length corresponds to the steepness).

Note that here the vectors ~xk are �xed parameters of E !

Fakt
If ∇E (~w) = ~0 = (0, . . . , 0), then ~w is a global minimum of E .

This follows from the fact that E is a convex
paraboloid that has a unique extreme which is a
minimum.

58

Gradient � illustration

59

Function Approximation � Learning

Gradient Descent:

I Weights ~w (0) are initialized randomly close to ~0.

I In (t + 1)-th step, ~w (t+1) is computed as follows:

~w (t+1) = ~w (t) − ε · ∇E (~w (t))

= ~w (t) − ε ·
p∑

k=1

(
~w (t) ·~xk − fk

)
·~xk

= ~w (t) − ε ·
p∑

k=1

(
h[~w (t)](~xk)− fk

)
·~xk

Here k = (t mod p) + 1 and 0 < ε ≤ 1 is the learning speed.

Note that the algorithm is almost similar to the batch perceptron algorithm!

Tvrzení
For su�ciently small ε > 0 the sequence ~w (0), ~w (1), ~w (2), . . .
converges (component-wisely) to the global minimum of E .

60

Finding the Minimum in Dimension One

Assume n = 1. Then the error function E is

E (w0,w1) =
1

2

p∑
k=1

(w0 + w1xk − fk)2

Minimize E w.r.t. w0 a w1:

δE

δw0

= 0 ⇔ w0 = f̄ − w1x̄ ⇔ f̄ = w0 + w1x̄

where x̄ = 1

p

∑p
k=1

xk a f̄ = 1

p

∑p
k=1

fk

δE

δw1

= 0 ⇔ w1 =

1

p

∑p
k=1

(fk − f̄)(xk − x̄)
1

p

∑p
k=1

(xk − x̄)2

i.e. w1 = cov(f , x)/var(x)

61

Finding the Minimum in Arbitrary Dimension

Let A be a matrix p × (n + 1) (p rows, n + 1 columns) whose k-th
row is the vector ~xk .

Let ~f = (f1, . . . , fp)> be the column vector formed by values of f in
the training set.

Then

∇E (~w) = 0 ⇔ ~w = (A>A)−1A>~f

if (A>A)−1 exists

(Then (A>A)−1A> is the so called Moore-Penrose pseudoinverse of A.)

62

Normal Distribution � Reminder

Distribution of continuous random variables.

Density (one dimensional, that is over R):

p(x) =
1

σ
√
2π

exp

{
−(x − µ)2

2σ2

}
=: N[µ, σ2](x)

µ is the expected value (the mean), σ2 is the variance.

63

Maximum Likelihood vs Least Squares (Dim 1)

Fix a training set D = {(x1, f1) , (x2, f2) , . . . , (xp, fp)}
Assume that each fk has been generated randomly by

fk = (w0 + w1 · xk) + εk

Here

I w0,w1 are unknown numbers

I εk are normally distributed with mean 0 and an unknown variance σ2

Assume that ε1, . . . , εp were generated independently.

Denote by p(f1, . . . , fp | w0,w1, σ
2) the probability density according to

which the values f1, . . . , fn were generated assuming �xed

w0,w1, σ
2, x1, . . . , xp.

(For interested: The independence and normality imply

p(f1, . . . , fp | w0,w1, σ
2) =

p∏
k=1

N[w0 + w1xk , σ
2](fk)

where N[w0 + w1xk , σ
2](fk) is a normal distribution with the mean w0 + w1xk

and the variance σ2.)
64

Maximum Likelihood vs Least Squares

Our goal is to �nd (w0,w1) that maximizes the likelihood that the
training set D with �xed values f1, . . . , fn has been generated:

L(w0,w1, σ
2) := p(f1, . . . , fp | w0,w1, σ

2)

V¥ta
(w0,w1) maximizes L(w0,w1, σ

2) for arbitrary σ2 i� (w0,w1)
minimizes E (w0,w1), i.e. the least squares error function.

Note that the maximizing/minimizing (w0,w1) does not depend on
σ2.

Maximizing σ2 satis�es σ2 = 1

p

∑p
k=1

(fk − w0 − w1 · xk)2.

65

Comments on Linear Models

I Linear models are parametric, i.e. they have a �xed form with
a small number of parameters that need to be learned from
data (as opposed e.g. to decision trees where the structure is
not �xed in advance).

I Linear models are stable, i.e. small variations in the training
data have only limited impact on the learned model. (tree
models typically vary more with the training data).

I Linear models are less likely to over�t (low variance) the
training data but sometimes tend to under�t (high bias).

66

(Primitive) Mathematical Model of Neuron

σ

ξ

x1 x2 xn

y

67

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs

I x0 special input, always 1

I w0,w1, . . . ,wn real weights

I ξ = w0 +
∑n

i=1
wixi inner potential;

In general, other potentials are considered

(e.g. Gaussian), more on this in PV021.

I y output de�ned by y = σ(ξ)
where σ is an activation function.
We consider several activation functions.

e.g. linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

68

Formal Neuron vs Linear Models

Both linear classi�er and linear (a�ne) function are special cases of
the formal neuron.

I If σ is a linear threshold function

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

we obtain a linear classi�er.

I If σ is identity, i.e. σ(ξ) = ξ, we obtain a linear (a�ne)
function.

Many more activation functions are used in neural networks!

69

Sigmoid Functions

Logistic sigmoid σ(ξ) =
1

1 + e−ξ

Others ...

70

Multilayer Perceptron (MLP)

Input

Hidden

Output

· · ·

· · ·

I Neurons are organized in layers

(input layer, output layer, possibly
several hidden layers)

I Layers are numbered from 0;

the input is 0-th

I Neurons in the `-th layer are connected
with all neurons in the `+ 1-th layer

Intuition: The network computes a function as follows: Assign input

values to the input neurons and 0 to the rest. Proceed upwards through

the layers, one layer per step. In the `-th step consider output values of

neurons in `− 1-th layer as inputs to neurons of the `-th layer. Compute

output values of neurons in the `-th layer.
71

Example

1010 1001

σ 01000110111 σ0001011011 1

σ

0101
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear
threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

72

Classical Example � ALVINN

I One of the �rst autonomous car
driving systems (in 90s)

I ALVINN drives a car

I The net has 30× 32 = 960 input
neurons (the input space is R960).

I The value of each input captures
the shade of gray of
the corresponding pixel.

I Output neurons indicate where to
turn (to the center of gravity).

Source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html 73

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

A Bit of History

I Perceptron (Rosenblatt et al, 1957)

I Single layer (i.e. no hidden layers), the activation function
linear threshold

(i.e., a bit more general linear classi�er)

I Perceptron learning algorithm

I Used to recognize numbers

I Adaline (Widrow & Hof, 1960)

I Single layer, the activation function identity

(i.e., a bit more linear function)

I Online version of the gradient descent

I Used a new circuitry element called memristor which was able
to "remember"history of current in form of resistance

In both cases, the expressive power is rather limited � can express only

linear decision boundaries and linear (a�ne) functions.
74

A Bit of History

One of the famous (counter)-examples: XOR

0

(0, 0)

1

(0, 1)

1

(0, 1)

0

(1, 1)

x1

x2

No perceptron can distinguish between ones and zeros.

75

XOR vs Multilayer Perceptron

0

(0, 0)

1

(0, 1)

1

(0, 1)

0

(1, 1)

P1 P2

x1

x2

σ1 σ 1

σ1

−22 2 −2

1

−1

1

3

−2

(Here σ is a linear threshold function.)

P1 : −1 + 2x1 + 2x2 = 0 P2 : 3− 2x1 − 2x2 = 0

The output neuron performs an intersection of half-spaces.
76

Expressive Power of MLP

Cybenko's theorem:

I Two layer networks with a single output neuron and a single layer of
hidden neurons (with the logistic sigmoid as the activation function)
are able to

I approximate with arbitrarily small error any "reasonable"
boundary
a given input is classi�ed as 1 i� the output value of the network is

≥ 1/2.
I approximate with arbitrarily small error any "reasonable"

function with range (0, 1).

Here "reasonable" means that it is pretty tough to �nd a function that is

not reasonable.

So multi-layer perceptrons are su�uciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any e�cient method for training multilayer networks!

... then the backpropagation appeared in 1986!
77

MLP � Notation

I X set of input neurons

I Y set of output neurons

I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .

I ξj is the inner potential of the neuron j when the computation
is �nished.

I yj is the output value of the neuron j when the computation is
�nished.

(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

78

MLP � Notation
I Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

I for simplicity, the activation function of every neuron will be
the logistic sigmoid σ(ξ) = 1

1+e−ξ
.

(We may of course consider logistic sigmoids with di�erent steepness

paramaters, or other sigmoidal functions, more in PV021.)

I A value of a non-input neuron j ∈ Z \ X when the computation is
�nished is yj = σ(ξj)

(yj is determined by weights ~w and a given input ~x , so it's sometimes

written as yj [~w](~x))

I Fixing weights of all neurons, the network computes a function
F [~w] : R|X | → R|Y | as follows: Assign values of a given vector
~x ∈ R|X | to the input neurons, evaluate the network, then F [~w](~x)
is the vector of values of the output neurons.

Here we implicitly assume a �xed orderings on input and output vectors.

79

MLP � Learning

I Given a set D of training examples:

D =
{(

~xk , ~dk

) ∣∣ k = 1, . . . , p
}

Here ~xk ∈ R|X | and ~dk ∈ R|Y |. We write dkj to denote the

value in ~dk corresponding to the output neuron j .

I Least Squares Error Function: Let ~w be a vector of all
weights in the network.

E (~w) =

p∑
k=1

Ek(~w)

where

Ek(~w) =
1

2

∑
j∈Y

(yj [~w](~xk)− dkj)
2

80

MLP � Learning Algorithm

Batch Learning � Gradient Descent:

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0

I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as
follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning
speed in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).
81

MLP � Gradient Computation

For every weight wji we have (obviously)

∂E

∂wji
=

p∑
k=1

∂Ek

∂wji

So now it su�ces to compute ∂Ek

∂wji
, that is the error for a �xed training

example (~xk , dk).

It holds that

∂Ek

∂wji
= δj · yj(1− yj) · yi

where

δj = yj − dkj pro j ∈ Y

δj =
∑
r∈j→

δr · yr (1− yr) · wrj pro j ∈ Z r (Y ∪ X)

(Here yr = y [~w](~xk) where ~w are the current weights and ~xk is the input of the

k-th training example.)
82

Multilayer Perceptron � Backpropagation

So to compute all ∂E
∂wji

=
∑p

k=1

∂Ek

∂wji
:

Compute all ∂Ek

∂wji
= δj · yj(1− yj) · yi for every training example (~xk , ~dk):

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I Compute δj using backpropagation through layers top-down :

I Assign δj = yj − dkj for all j ∈ Y
I In the layer `, assuming that δr has been computed for all

neurons r in the layer `+ 1, compute

δj =
∑
r∈j→

δr · yr (1− yr) · wrj

for all j from the `-th layer.

83

Example

Assume w
(0)
30

= w
(0)
50

= w
(0)
41

= w
(0)
42

= w
(0)
54

= 1 and

w
(0)
40

= w
(0)
31

= w
(0)
32

= w
(0)
53

= −1. Consider a training set {((1, 0), 1)}.

Then
y1 = 1,
y2 = 0,

y3 = σ(w30 + w
(0)
31

y1 + w
(0)
32

y2) = 0.5,
y4 = 0.5,
y5 = 0.731058.

δ5 = y5 − 1 = −0.268942,
δ4 = δ5 ·y5 · (1−y5)∗w (0)

54
= −0.052877,

δ3 = 0.052877.

σ1 σ 1

σ1

w41
w31 w32

w42

w53

w30

w54

w40

w50

∂E1
∂w53

= δ5 · y5 · (1− y5) · y3 = −0.026438,
∂E1
∂w54

= δ5 · y5 · (1− y5) · y4 = −0.026438,
∂E1
∂w30

= δ3 · y3 · (1− y3) · 1 = 0.01321925,
....

84

Illustration of Gradient Descent � XOR

Source: Pattern Classi�cation (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork
85

Comments on Training Algorithm

I Not guaranteed to converge to zero training error, may converge to
local optima or oscillate inde�nitely.

I In practice, does converge to low error for many large networks on
real data.

I Many epochs (thousands) may be required, hours or days of training
for large networks.

I To avoid local-minima problems, run several trials starting with
di�erent random weights (random restarts).

I Take results of trial with lowest training set error.
I Build a committee of results from multiple trials (possibly

weighting votes by training set accuracy).

There are many more issues concerning learning e�ciency (data

normalization, selection of activation functions, weight initialization,

training speed, e�ciency of the gradient descent itself etc.) � see PV021.

86

Hidden Neurons Representations

Trained hidden neurons can be seen as newly constructed features.
E.g., in a two layer network used for classi�cation, the hidden layer transforms

the input so that important features become explicit (and hence the result may

become linearly separable).

Consider a two-layer MLP, 64-2-3 for classi�cation of letters (three
output neurons, each corresponds to one of the letters).

87

Over�tting

I Due to their expressive power, neural networks are quite
sensitive to over�tting.

I Keep a hold-out validation set and test accuracy on it after
every epoch. Stop training when additional epochs actually
increase the validation error.

88

Over�tting � The Number of Hidden Neurons

I Too few hidden neurons prevent the network from adequately
�tting the data.

I Too many hidden units can result in over�tting.
(There are advanced methods that prevent over�tting even for rich

models, such as regularization, where the error function penalizes

over�tting � see PV021.)

I Use cross-validation to empirically determine an optimal
number of hidden units.
There are methods that automatically construct the structure of the

network based on data, they are not much used though.

89

Applications

I Text to Speech and vice versa

I Fraud detection

I �nance & business predictions

I Game playing (backgammon is a classical example, AlphaGo is
the modern one)

I Image recognition
This is the main area in which the current state-of-the-art deep networks

excel.

I (arti�cial brain and intelligence)

I ...

90

ALVINN

91

ALVINN

I Two layer MLP, 960− 4− 30 (sometimes 960− 5− 30)

I Inputs correspond to pixels.

I Sigmoidal activation function (logistic sigmoid).

I Direction corresponds to the center of gravity.

I.e., output neurons are considered as points of mass evenly distributed

along a line. Weight of each neuron corresponds to its value.

92

ALVINN � Training

Trained while driving.

I A camera captured the road from the front window, approx. 25
pictures per second

I Training examples (~xk , ~dk) where
I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one
that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road
directions induce similar reaction of the driver.)

93

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:

I A too good driver never teaches the network how to solve
deviations from the right track. Couple of harsh solutions:
I turn the learning o� for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road
from the right lane), may be overtrained.

94

Selection of Training Examples

Problem with too good driver were solved as follows:

I every image of the road has been has been transformed to 15
slightly di�erent copies

Repetitiveness of images was solved as follows:

I the system has a bu�er of 200 images (including the 15 copies of
the current one), in every round trains on these images

I afterwards, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the bu�er (10 with the smallest
training error, 5 randomly)

95

ALVINN � Training

I standard backpropagation

I constant speed of learning (possibly di�erent for each neuron �
see PV021)

I some other optimizations (see PV021)

Výsledek:

I Training took 5 minutes, the speed was 4 miles per hour
(The speed was limited by the hydraulic controller of the steering wheel

not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in
di�erent weather

96

ALVINN � Weight Learning

round 0

round 10

round 20

round 50

h1 h2 h3 h4 h5

Here h1, . . . , h5 are values of hidden neurons.
97

Extensions and Directions (PV021)

I Other types of learning inspired by neuroscience � Hebbian
learning

I More biologically plausible models of neural networks � spiking
neurons
This goes into the direction of HUGE area of (computational)

neuroscience, only very lightly touched in PV021.

I Unsupervised learning � Self-Organizing Maps

I Reinforcement learning
I learning to make decisions, or play games, sequentially
I neural networks have been used � temporal di�erence learning

98

Deep Learning

I Cybenko's theorem shows that two-layer networks are omnipotent �
such results nearly killed NN when support vector machines were
found to be easier to train in 00's.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The backpropagation su�ers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:

I Use unsupervised methods to initialize the weights so that they
capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,

second lowest learns patterns in data transformed through the �rst

layer, and so on.
I Then use a supervised learning algorithm to only �ne tune

the weights to the desired input-output behavior.

A rather heavy machinery is needed to develop this, but you will be

rewarded by insight into a very modern and expensive technology.
99

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)

ImageNet database (16,000,000 color images, 20,000 categories)

100

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)

Competition in classi�cation over a subset of images from
ImageNet.

In 2012: Training se 1,200,000 images, 1000 categories. Validation
set 50,000, Test set 150,000.

Many images contain several objects → typical rule is top-5 highest
probability assigned by the net.

101

KSH sí´

ImageNet classi�cation with deep convolutional neural networks, by Alex

Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton (2012).

Trained on two GPUs (NVIDIA GeForce GTX 580)

Results:

I Accuracy 84.7% in top-5 (second best alg. at the time: 73.8%)

I 63.3% in "perfect" classi�cation (top-1)

102

ILSVRC 2014

The same set of images as in 2012, top-5 criterium.

GoogLeNet: deep convolutional net, 22 layers

Results:

I 93.33% in top-5

Superhuman power?

103

Superhuman GoogLeNet?!

Andrej Karpathy: ...the task of labeling images with 5 out of 1000 categories
quickly turned out to be extremely challenging, even for some friends in the lab
who have been working on ILSVRC and its classes for a while. First we thought
we would put it up on [Amazon Mechanical Turk]. Then we thought we could
recruit paid undergrads. Then I organized a labeling party of intense labeling
e�ort only among the (expert labelers) in our lab. Then I developed a modi�ed
interface that used GoogLeNet predictions to prune the number of categories
from 1000 to only about 100. It was still too hard - people kept missing
categories and getting up to ranges of 13-15% error rates. In the end I realized
that to get anywhere competitively close to GoogLeNet, it was most e�cient if
I sat down and went through the painfully long training process and the
subsequent careful annotation process myself... The labeling happened at a rate
of about 1 per minute, but this decreased over time... Some images are easily
recognized, while some images (such as those of �ne-grained breeds of dogs,
birds, or monkeys) can require multiple minutes of concentrated e�ort. I
became very good at identifying breeds of dogs... Based on the sample of
images I worked on, the GoogLeNet classi�cation error turned out to be 6.8%...
My own error in the end turned out to be 5.1%, approximately 1.7% better.

104

ILSVRC 2015

I Microsoft network ResNet: 152
layers, complex architecture

I Trained on 8 GPUs

I 96.43% accuracy in top-5

105

ILSVRC

ilsvrc.png

106

Deeper Insight into the Logistic Sigmoid

Consider a perceptron (that is a linear classi�er):

ξ = w0 +
n∑

i=1

wi · xi

and y = sgn(ξ) =

{
1 ξ ≥ 0

0 ξ < 0

Recall, that the signed distance from the decision boundary determined
by ξ = 0 is (here ~x = (x1, . . . , xn) and ~w = (w1, . . . ,wn))

w0 +
∑n

i=1
wi · xi√∑n

i=1
w2

i

=
ξ√∑n
i=1

w2

i

This value is positive for ~x on the side of ~w and negative on the opposite.

For simplicity, assume that
√∑n

i=1
w2

i = 1, and thus that the potential ξ

is equal to the signed distance of ~x from the boundary.

107

Deeper Insight into the Logistic Sigmoid

Assume that training examples (~x , c(~x)) are randomly generated.

Denote:

I ξ1 mean signed distance from the boundary of points classi�ed 1.

I ξ0 mean signed distance from the boundary of points classi�ed 0.

It is not unreasonable to assume that

I conditioned on c = 1, the signed distance ξ is normally distributed
with the mean ξ1 and variance (for simplicity) 1,

I conditioned on c = 0, the signed distance ξ is normally distributed
with the mean ξ0 and variance (for simplicity) 1.

(Notice that ξ may be negative, which means that such point is on the wrong

side of the boundary (the same for ξ > 0).)

Now, can we decide what is the probability of c = 1 given a distance?

108

Deeper Insight into the Logistic Sigmoid

For simplicity, assume that ξ1 = −ξ0 = 1/2.

P(1 | ξ) =
p(ξ | 1)P(1)

p(ξ | 1)P(1) + p(ξ | 0)P(0)

=
LR

LR + 1/clr

where

LR =
p(ξ | 1)

p(ξ | 0)
=

exp(−(ξ − 1/2)2/2)

exp(−(ξ + 1/2)2/2)
= exp(ξ)

and

clr =
P(1)

P(0)
which we assume (for simplicity) = 1

So

P(1 | ξ) =
exp(ξ)

exp(ξ) + 1
=

1

1 + e−ξ

Thus the logistic sigmoid applied to ξ = w0 +
∑n

i=1
wi · xi gives

the probability of c = 1 given the input!
109

Deeper Insight into the Logistic Sigmoid

So if we use the logistic sigmoid as an activation function,

and turn the neuron into a classi�er as follows:

classify a given input ~x as 1 i� y ≥ 1/2

Then the neuron basically works as the Bayes classi�er!

This is the basis of logistic regression.

Given training data, we may compute the weights ~w that maximize the
likelihood of the training data (w.r.t. the probabilities returned by the neuron).

An extremely interesting observation is that such ~w maximizing the likelihood

coincides with the minimum of least squares for the corresponding linear

function (that is the same neuron but with identity as the activation function).

110

Kernel Methods & SVM

Partially based on the ML lecture by Raymond J. Mooney
University of Texas at Austin

111

Back to Linear Classi�er (Slightly Modi�ed)

A linear classi�er h[~w] is determined by a vector of weights
~w = (w0,w1, . . . ,wn) ∈ Rn+1 as follows:

Given ~x = (x1, . . . , xn) ∈ X ⊆ Rn,

h[~w](~x) :=

{
1 w0 +

∑n
i=1

wi · xi ≥ 0

−1 w0 +
∑n

i=1
wi · xi < 0

For convenience, we use values {−1, 1} instead of {0, 1}. Note that this is not

a principal modi�cation, the linear classi�er works exactly as the original one.

Recall that given ~x = (x1, . . . , xn) ∈ Rn, the augmented feature

vector is

~x = (x0, x1, . . . , xn) where x0 = 1

This makes the notation for the linear classi�er more succinct:

h[~w](~x) = sig(~w ·~x) where sig(y) =

{
1 y ≥ 0

−1 y < 0

112

Perceptron Learning Revisited

I Given a training set

D = {(~x1, y(~x1)) , (~x2, y(~x2)) , . . . , (~xp, y(~xp))}

Here ~xk = (xk1 . . . , xkn) ∈ X ⊆ Rn and y(~xk) ∈ {−1, 1}.

We write yk instead of y(~xk).
Note that ~xk = (xk0, xk1 . . . , xkn) where xk0 = 1.

I A weight vector ~w ∈ Rn+1 is consistent with D if

h[~w](~xk) = sig(~w ·~xk) = yk for all k = 1, . . . , p

D is linearly separable if there is a vector ~w ∈ Rn+1 which is
consistent with D.

113

Perceptron Learning Revisited

Perceptron learning algorithm (slightly modi�ed):

Consider training examples cyclically. Compute a sequence of
weight vectors ~w (0), ~w (1), ~w (2),

I ~w (0) is initialized to ~0 = (0, . . . , 0).
(This is a slight but harmless modi�cation of the traditional algorithm.)

I In (t + 1)-th step, ~w (t+1) is computed as follows:

I If sig(~w ·~xk) 6= yk , then ~w (t+1) = ~w (t) + yk ·~xk .
I Otherwise, ~w (t+1) = ~w (t).

Here k = (t mod p) + 1, i.e. the examples are considered
cyclically.

(Note that this algorithm corresponds to the perceptron learning with

the learning speed ε = 1.)

We know: if D is linearly separable, then there is t∗ such that ~w (t∗)

is consistent with D.
But what can we do if D is not linearly separable?

114

Quadratic Decision Boundary

Left: The original set, Right: Transformed using the square of features.

Right: the green line is the decision boundary learned using
the perceptron algorithm.
(The red boundary corresponds to another learning algorithm.)

Left: the green ellipse maps exactly to the green line.

How to classify (in the original space): First, transform a given feature

vector by squaring the features, then use the linear classi�er. 115

Do We Need to Map Explicitly?

In general, mapping to (much) higher feature space helps
(there are more "degrees of freedom" so linear separability might
get a chance).

However, complexity of learning grows (quickly) with dimension.

Sometimes its even bene�cial to map to in�nite-dimensional spaces.

To avoid explicit construction of the higher dimensional feature
space, we use so called kernel trick.

But �rst we need to dualize our learning algorithm.

116

Perceptron Learning Revisited

Perceptron learning algorithm once more:

Compute a sequence of weight vectors ~w (0), ~w (1), ~w (2),

I ~w (0) is initialized to ~0 = (0, . . . , 0).

I In (t + 1)-th step, ~w (t+1) is computed as follows:

I If sig(~w ·~xk) 6= yk , then ~w (t+1) = ~w (t) + yk ·~xk .
I Otherwise, ~w (t+1) = ~w (t).

Here k = (t mod p) + 1, i.e. the examples are considered
cyclically.

Crucial observation:
Note that ~w (t) =

∑p
`=1

n
(t)
` · y` ·~x` for suitable n

(t)
1
, . . . , n

(t)
p ∈ N.

Intuitively, n
(t)
` counts how many times ~x` was added to (if y` = 1), or

subtracted from (if y` = −1) weights.

117

Dual Perceptron Learning

Dual Perceptron learning algorithm :

Compute a sequence of vectors of numbers ~n(0), ~n(1), . . . where

each ~n(t) = (n
(t)
1
, . . . , n

(t)
p) ∈ Np.

I ~n(0) is initialized to ~0 = (0, . . . , 0).

I In (t + 1)-th step, (n
(t+1)
1

, . . . , n
(t+1)
p) is computed as follows:

I If sig(
∑p
`=1

n
(t)
` · y` ·~x` ·~xk) 6= yk , then n

(t+1)
k := n

(t)
k + 1,

else, n
(t+1)
k := n

(t)
k .

I n
(t+1)
` := n

(t)
` for all ` 6= k .

Here k = (t mod p) + 1, the examples are considered
cyclically.

If D is linearly separable, there exists t∗ such that
∑p

`=1
n

(t∗)
` · y` ·~x`

is consistent with D. The algorithm stops at such t∗ and returns

(n
(t∗)
1

, . . . , n
(t∗)
p) so that

∑p
`=1

n
(t∗)
` · y` ·~x` is consistent with D.

118

Example

Training set:

D = {((2,−1), 1), ((2, 1), 1), ((1, 3),−1)}

That is

~x1 = (2,−1)

~x2 = (2, 1)

~x3 = (1, 3)

~x1 = (1, 2,−1)

~x2 = (1, 2, 1)

~x3 = (1, 1, 3)

y1 = 1

y2 = 1

y3 = −1

The initial values n
(0)
1

= n
(0)
2

= n
(0)
3

= 0.
119

I
∑

3

`=1
n

(0)
` · y` ·~x` ·~x1 = 0, thus sig(

∑
3

`=1
n

(0)
` · y` ·~x` ·~x1) = 1 = y1.

Hence, ~n(1) = (0, 0, 0).

I
∑

3

`=1
n

(1)
` · y` ·~x` ·~x2 = 0, thus sig(

∑
3

`=1
n

(1)
` · y` ·~x` ·~x2) = 1 = y2.

Hence, ~n(2) = (0, 0, 0).

I
∑

3

`=1
n

(2)
` · y` ·~x` ·~x3 = 0, thus sig(

∑
3

`=1
n

(2)
` · y` ·~x` ·~x3) = 1 6= y3.

Hence, ~n(3) = (0, 0, 1).

I
∑

3

`=1
n

(3)
` ·y`·~x`·~x1 = −1·~x3·~x1 = −1·(1, 1, 3)·(1, 2,−1) = −1·0 = 0,

thus sig(
∑

3

`=1
n

(3)
` · y` ·~x` ·~x1) = 1 = y1. Hence, ~n

(4) = (0, 0, 1).

I
∑

3

`=1
n

(4)
` ·y`·~x`·~x2 = −1·~x3·~x2 = −1·(1, 1, 3)·(1, 2, 1) = −1·6 = −6,

thus sig(
∑p
`=1

n
(4)
` · y` ·~x` ·~x2) = −1 6= y2. Hence, ~n

(5) = (0, 1, 1).

I
∑p
`=1

n
(5)
` · y` ·~x` ·~x3 = 1 ·~x2 ·~x3 − 1 ·~x3 ·~x3 = −5, thus

~n(6) = (0, 1, 1). This is OK.

I
∑p
`=1

n
(6)
` · y` ·~x` ·~x1 = 1 ·~x2 ·~x1 − 1 ·~x3 ·~x1 = 4, thus

~n(7) = (0, 1, 1). This is OK.

I
∑p
`=1

n
(6)
` · y` ·~x` ·~x2 = 1 ·~x2 ·~x2 − 1 ·~x3 ·~x2 = 0, thus

~n(7) = (0, 1, 1). This is OK.

The result: ~x2 −~x3.
120

Dual Perceptron Learning � Output

Let
∑p

`=1
n` · y` ·~x` result from the dual perceptron learning

algorithm.
I.e., each n` = n

(t∗)
` ∈ N for suitable t∗ in which the algorithm found

a consistent vector.

This vector of weights determines a linear classi�er that for a given
~x ∈ Rn gives

h[~w](~x) = sig

(
p∑

`=1

n` · y` ·~x` ·~x

)

(Here ~x is the augmented feature vector obtained from ~x .)

Crucial observation: The (augmented) feature vectors ~x` and ~x
occur only in scalar products!

121

Kernel Trick

For simplicity, assume bivariate data: ~xk = (1, xk1, xk2).

The corresponding instance in the quadratic feature space is (1, x2k1, x
2

k2).

Consider two instances ~xk = (1, xk1, xk2) and ~x` = (1, x`1, x`2). Then
the scalar product of their corresponding instances (1, x2k1, x

2

k2) and
(1, x2`1, x

2

`2), resp., in the quadratic feature space is

1 + x2k1x
2

`1 + x2k2x
2

`2

which resembles (but is not equal to)

(~xk ·~x`)2 = (1 + xk1x`1 + xk2x`2)2 =

= 1 + x2k1x
2

`1 + x2k2x
2

`2 + 2xk1x`1xk2x`2 + 2xk1x`1 + 2xk2x`2

But now consider a mapping φ to R6 de�ned by

φ(~xk) = (1, x2k1, x
2

k2,
√
2xk1xk2,

√
2xk1,

√
2xk2)

Then

φ(~xk) · φ(~x`) = (~xk ·~x`)2

THE Idea: De�ne a kernel κ(~xk ,~x`) = (~xk ·~x`)2 and replace ~xk ·~x` in
the dual perceptron algorithm with κ(~xk ,~x`).

122

Kernel Perceptron Learning

Kernel Perceptron learning algorithm :

Compute a sequence of vectors of numbers ~n(0), ~n(1), . . . where each

~n(t) = (n
(t)
1
, . . . , n

(t)
p) ∈ Np.

I ~n(0) is initialized to ~0 = (0, . . . , 0).

I In (t + 1)-th step, (n
(t+1)
1

, . . . , n
(t+1)
p) is computed as follows:

I If sig
(∑p

`=1
n

(t)
` · y` · κ(~xk ,~x`)

)
6= yk , then n

(t+1)
k := n

(t)
k + 1,

else, n
(t+1)
k := n

(t)
k .

I n
(t+1)
` := n

(t)
` for all ` 6= k .

Here k = (t mod p) + 1, the examples are considered cyclically.

Intuition: The algorithm computes a linear classi�er in R6 for training
examples transformed using φ.

The trick is that the transformation φ itself does not have to be explicitly

computed!

123

Dual Perceptron Learning

Let ~n = (n1, . . . , np) result from the kernel perceptron learning algorithm.

I.e., each n` = n
(t∗)
` ∈ N for suitable t∗ such that

sig
(∑p

`=1 n
(t∗)
` · y` · κ(~xk ,~x`)

)
= yk for all k = 1, . . . , p.

We obtain a non-linear classi�er that for a given ~x ∈ Rn gives

h[~w](~x) = sig

(
p∑
`=1

n` · y` · κ(~x,~x`)

)

(Here ~x is the augmented feature vector obtained from ~x .)

Are there other kernels that correspond to the scalar product in higher

dimensional spaces?

124

Kernels

Given a (potential) kernel κ(~x`, ~xk) we need to check whether
κ(~x`, ~xk) = φ(~x`) · φ(~xk) for a function φ. This might be very
di�cult.

V¥ta (Mercer's)

κ is a kernel if the corresponding Gram matrix K of the training set

D, whose each `k-th element is κ(~x`, ~xk), is positive semi-de�nite

for all possible choices of the training set D.

Kernels can be constructed from existing kernels by several
operations
I linear combination (i.e. multiply by a constant, or sum),
I multiplication,
I exponentiation,
I multiply by a polynomial with non-negative coe�cients,
I · · ·

(see e.g. "Pattern Recognition and Machine Learning" by Bishop)
125

Examples of Kernels

I Linear: κ(~x`, ~xk) = ~x` · ~xk
The corresponding mapping φ(~x) = ~x is identity (no
transformation).

I Polynomial of power m: κ(~x`, ~xk) = (1 + ~x` · ~xk)m

The corresponding mapping assigns to ~x ∈ Rn the vector φ(~x) in

R(n+m
m).

I Gaussian (radial-basis function): κ(~x`, ~xk) = e−
‖~x`−~xk‖

2

2σ2

The corresponding mapping φ maps ~x to an in�nite-dimensional

vector φ(~x) which is, in fact, a Gaussian function; combination of
such functions for support vectors is then the separating
hypersurface.

I · · ·
Choosing kernels remains to be black magic of kernel methods. They are
usually chosen based on trial and error (of course, experience and
additional insight into data helps).

Now let's go on to the main area where kernel methods are used: to enhance

support vector machines.
126

SVM Idea � Which Linear Classi�er is the Best?

Bene�ts of maximum margin:

I Intuitively, maximum margin is good w.r.t. generalization.

I Only the support vectors (those on the magin) matter, others
can, in principle, be ignored.

127

Support Vector Machines (SVM)

Notation:

I ~w = (w0,w1, . . . ,wn) a vector of weights,

I ~w = (w1, . . . ,wn) a vector of all weights except w0,

I ~x = (x1, . . . , xn) a (generic) feature vector.

Consider a linear classi�er:

h[~w](~x) :=

{
1 w0 +

∑n
i=1

wi · xi = w0 + ~w · ~x ≥ 0

−1 w0 +
∑n

i=1
wi · xi = w0 + ~w · ~x < 0

The signed distance of ~x from the decision boundary determined by ~w is

d [~w](~x) =
w0 + ~w · ~xk
‖~w‖

Here ‖~w‖ =
√∑n

i=1
w2

i is the Euclidean norm of ~w .

|d [~w](~x)| is the distance of ~x from the decision boundary.
d [~w](~x) is positive for ~x on the side to which ~w points and negative on the

opposite side.
128

Support Vectors & Margin

I Given a training set

D = {(~x1, y(~x1)) , (~x2, y(~x2)) , . . . , (~xp, y(~xp))}
Here ~xk = (xk1 . . . , xkn) ∈ X ⊆ Rn and y(~xk) ∈ {−1, 1}.

We write yk instead of y(~xk).

I Assume that D is linearly separable, let ~w be consistent with D so

that the distance of the decision boundary from the nearest

examples on both sides is the same (if not, it su�ces to adjust w0).

I Support vectors are those ~xk that
minimize |d [~w](~xk)|.

I Margin ρ of ~w is twice the distance
between support vectors and
the decision boundary.

Our goal is to �nd a classi�er that maximizes the margin.

129

Maximizing the Margin

For ~w consistent with D (such that no ~xk lies on the decision
boundary) we have

% = 2 · |w0 + ~w · ~xk |
‖~w‖

= 2 · yk · (w0 + ~w · ~xk)

‖~w‖
> 0

where ~xk is a support vector.

We may safely consider only ~w such that yk · (w0 + ~w · ~xk) = 1 for
the support vectors.
Just adjust the length of ~w so that yk · (w0 + ~w · ~xk) = 1, the denominator ‖~w‖
will compensate.

Then maximizing % is equivalent to maximizing 2/‖~w‖.
(In what follows we use a bit looser constraint:

yk · (w0 + ~w · ~xk) ≥ 1 for all ~xk

However, the result is the same since even with this looser condition,

the support vectors always satisfy yk · (w0 + ~w · ~xk) = 1 whenever 2/‖w‖ is
maximal.)

130

SVM � Optimization

Margin maximization can be formulated as a quadratic optimization

problem:

Find ~w = (w0, . . . ,wn) such that

ρ =
2

‖~w‖
is maximized

and for all (~xk , yk) ∈ D we have yk · (w0 + ~w · ~xk) ≥ 1.

which can be reformulated as:

Find ~w such that

Φ(~w) = ‖~w‖2 = ~w · ~w is minimized

and for all (~xk , yk) ∈ D we have yk · (w0 + ~w · ~xk) ≥ 1.

131

SVM � Optimization

I Need to optimize a quadratic function subject to linear
constraints.

I Quadratic optimization problems are a well-known class of
mathematical programming problems for which e�cient
methods (and tools) exist.

I The solution usually involves construction of a dual problem

where Lagrange multipliers αi are associated with every
inequality (constraint) in the original problem:

Find α = (α1, . . . , αp) such that

Ψ(α) =

p∑
`=1

α`−
1

2

p∑
`=1

p∑
k=1

α` ·αk · y` · yk ·~x` · ~xk is maximized

so that the following constraints are satis�ed:
I
∑p
`=1

α`y` = 0
I α` ≥ 0 for all 1 ≤ ` ≤ p

132

The Optimization Problem Solution

I Given a solution α1, . . . , αn to the dual problem, solution
~w = (w0,w1, . . . ,wn) to the original one is:

~w = (w1, . . . ,wn) =

p∑
`=1

α` · y` · ~x`

w0 = yk −
p∑
`=1

α` · y` · ~x` · ~xk for an arbitrary αk > 0

Note that αk > 0 i� ~xk is a support vector. Hence it does not
matter which αk > 0 is chosen in the above de�nition of w0.

I The classi�er is then

h(~x) = sig(w0 + ~w · ~x)
= sig (yk −

∑
` α` · y` · ~x` · ~xk +

∑
` α` · y` · ~x` · ~x)

Note that both the dual optimization problem as well as the classi�er

contain training feature vectors only in the scalar product! We may apply

the kernel trick!
133

Kernel SVM

I Choose your favourite kernel κ.

I Solve the dual problem with kernel κ:

Find α = (α1, . . . , αp) such that

Ψ(α) =

p∑
`=1

α`−
1

2

p∑
`=1

p∑
k=1

α` ·αk ·y` ·yk ·κ(~x`, ~xk) is maximized

so that the following constraints are satis�ed:
I
∑
` α`y` = 0

I α` ≥ 0 for all 1 ≤ ` ≤ p

I Then use the classi�er:

h(~x) = sig (yk −
∑

` α` · y` · κ(~x`, ~xk) +
∑

` α` · y` · κ(~x`, ~x))

I Note that the optimization techniques remain the same as for
the linear SVM without kernels!

134

Comments on Algorithms

I The main bottleneck of SVM's is in complexity of quadratic
programming (QP). A naive QP solver has cubic complexity.

I For small problems any general purpose optimization algorithm
can be used.

I For large problems this is usually not possible, many methods
avoiding direct solution have been devised.

I These methods usually decompose the optimization problem
into a sequence of smaller ones. Intuitively,
I start with a (smaller) subset of training examples.
I Find an optimal solution using any solver.
I Afterwards, only support vectors matter in the solution! Leave

only them in the training set, and add new training examples.
I This iterative procedure decreases the (general) cost function.

135

SVM in Applications (Mooney's lecture)

I SVMs were originally proposed by Boser, Guyon and Vapnik in
1992 and gained increasing popularity in late 1990s.

I SVMs are currently among the best performers for a number
of classi�cation tasks ranging from text to genomic data.

I SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by designing
kernel functions for such data.

I SVM techniques have been extended to a number of tasks
such as regression [Vapnik et al. '97], principal component
analysis [Schölkopf et al. '99], etc.

I Most popular optimization algorithms for SVMs use
decomposition to hillclimb over a subset of αi 's at a time, e.g.
SMO [Platt '99] and [Joachims '99]

I Tuning SVMs remains a black art: selecting a speci�c kernel
and parameters is usually done in a try-and-see manner.

136

