
(Primitive) Mathematical Model of Neuron

σ

ξ

x1 x2 xn

y

1

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs

I x0 special input, always 1

I w0,w1, . . . ,wn real weights

I ξ = w0 +
∑n

i=1
wixi inner potential;

In general, other potentials are considered

(e.g. Gaussian), more on this in PV021.

I y output de�ned by y = σ(ξ)
where σ is an activation function.

We consider several activation functions.

e.g. linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs

I x0 special input, always 1

I w0,w1, . . . ,wn real weights

I ξ = w0 +
∑n

i=1
wixi inner potential;

In general, other potentials are considered

(e.g. Gaussian), more on this in PV021.

I y output de�ned by y = σ(ξ)
where σ is an activation function.

We consider several activation functions.

e.g. linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs

I x0 special input, always 1

I w0,w1, . . . ,wn real weights

I ξ = w0 +
∑n

i=1
wixi inner potential;

In general, other potentials are considered

(e.g. Gaussian), more on this in PV021.

I y output de�ned by y = σ(ξ)
where σ is an activation function.

We consider several activation functions.

e.g. linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs

I x0 special input, always 1

I w0,w1, . . . ,wn real weights

I ξ = w0 +
∑n

i=1
wixi inner potential;

In general, other potentials are considered

(e.g. Gaussian), more on this in PV021.

I y output de�ned by y = σ(ξ)
where σ is an activation function.

We consider several activation functions.

e.g. linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal neuron

σ

ξ

x1 x2 xn

x0 = 1

y

w1 w2

· · ·
wn

w0

I x1, . . . , xn real inputs

I x0 special input, always 1

I w0,w1, . . . ,wn real weights

I ξ = w0 +
∑n

i=1
wixi inner potential;

In general, other potentials are considered

(e.g. Gaussian), more on this in PV021.

I y output de�ned by y = σ(ξ)
where σ is an activation function.

We consider several activation functions.

e.g. linear threshold function

σ(ξ) = sgn(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

2

Formal Neuron vs Linear Models

Both linear classi�er and linear (a�ne) function are special cases of

the formal neuron.

I If σ is a linear threshold function

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

we obtain a linear classi�er.

I If σ is identity, i.e. σ(ξ) = ξ, we obtain a linear (a�ne)

function.

Many more activation functions are used in neural networks!

3

Formal Neuron vs Linear Models

Both linear classi�er and linear (a�ne) function are special cases of

the formal neuron.

I If σ is a linear threshold function

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

we obtain a linear classi�er.

I If σ is identity, i.e. σ(ξ) = ξ, we obtain a linear (a�ne)

function.

Many more activation functions are used in neural networks!

3

Sigmoid Functions

Logistic sigmoid σ(ξ) =
1

1 + e−ξ

Others ...

4

Multilayer Perceptron (MLP)

Input

Hidden

Output

· · ·

· · ·

I Neurons are organized in layers

(input layer, output layer, possibly
several hidden layers)

I Layers are numbered from 0;

the input is 0-th

I Neurons in the `-th layer are connected
with all neurons in the `+ 1-th layer

Intuition: The network computes a function as follows: Assign input

values to the input neurons and 0 to the rest. Proceed upwards through

the layers, one layer per step. In the `-th step consider output values of

neurons in `− 1-th layer as inputs to neurons of the `-th layer. Compute

output values of neurons in the `-th layer.

5

Multilayer Perceptron (MLP)

Input

Hidden

Output

· · ·

· · ·

I Neurons are organized in layers

(input layer, output layer, possibly
several hidden layers)

I Layers are numbered from 0;

the input is 0-th

I Neurons in the `-th layer are connected
with all neurons in the `+ 1-th layer

Intuition: The network computes a function as follows: Assign input

values to the input neurons and 0 to the rest. Proceed upwards through

the layers, one layer per step. In the `-th step consider output values of

neurons in `− 1-th layer as inputs to neurons of the `-th layer. Compute

output values of neurons in the `-th layer.
5

Example

1 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

1 1

σ 11 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 0

σ 01 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

1 0

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

1 0

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

1 0

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 1

σ 01 σ0 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 1

σ 11 σ1 1

σ

0
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Example

0 1

σ 11 σ1 1

σ

1
1

−22 2 −2

1

−1

1

3

−2

I Activation function: linear

threshold

σ(ξ) =

{
1 ξ ≥ 0 ;

0 ξ < 0.

6

Classical Example � ALVINN

I One of the �rst autonomous car
driving systems (in 90s)

I ALVINN drives a car

I The net has 30× 32 = 960 input
neurons (the input space is R960).

I The value of each input captures
the shade of gray of
the corresponding pixel.

I Output neurons indicate where to
turn (to the center of gravity).

Source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

7

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Classical Example � ALVINN

I One of the �rst autonomous car
driving systems (in 90s)

I ALVINN drives a car

I The net has 30× 32 = 960 input
neurons (the input space is R960).

I The value of each input captures
the shade of gray of
the corresponding pixel.

I Output neurons indicate where to
turn (to the center of gravity).

Source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

7

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Classical Example � ALVINN

I One of the �rst autonomous car
driving systems (in 90s)

I ALVINN drives a car

I The net has 30× 32 = 960 input
neurons (the input space is R960).

I The value of each input captures
the shade of gray of
the corresponding pixel.

I Output neurons indicate where to
turn (to the center of gravity).

Source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html

7

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

Classical Example � ALVINN

I One of the �rst autonomous car
driving systems (in 90s)

I ALVINN drives a car

I The net has 30× 32 = 960 input
neurons (the input space is R960).

I The value of each input captures
the shade of gray of
the corresponding pixel.

I Output neurons indicate where to
turn (to the center of gravity).

Source: http://jmvidal.cse.sc.edu/talks/ann/alvin.html 7

http://jmvidal.cse.sc.edu/talks/ann/alvin.html

A Bit of History

I Perceptron (Rosenblatt et al, 1957)

I Single layer (i.e. no hidden layers), the activation function
linear threshold

(i.e., a bit more general linear classi�er)

I Perceptron learning algorithm

I Used to recognize numbers

I Adaline (Widrow & Hof, 1960)

I Single layer, the activation function identity

(i.e., a bit more linear function)

I Online version of the gradient descent

I Used a new circuitry element called memristor which was able
to "remember"history of current in form of resistance

In both cases, the expressive power is rather limited � can express only

linear decision boundaries and linear (a�ne) functions.

8

A Bit of History

I Perceptron (Rosenblatt et al, 1957)

I Single layer (i.e. no hidden layers), the activation function
linear threshold

(i.e., a bit more general linear classi�er)

I Perceptron learning algorithm

I Used to recognize numbers

I Adaline (Widrow & Hof, 1960)

I Single layer, the activation function identity

(i.e., a bit more linear function)

I Online version of the gradient descent

I Used a new circuitry element called memristor which was able
to "remember"history of current in form of resistance

In both cases, the expressive power is rather limited � can express only

linear decision boundaries and linear (a�ne) functions.
8

A Bit of History

One of the famous (counter)-examples: XOR

0

(0, 0)

1

(0, 1)

1

(0, 1)

0

(1, 1)

x1

x2

No perceptron can distinguish between ones and zeros.

9

XOR vs Multilayer Perceptron

0

(0, 0)

1

(0, 1)

1

(0, 1)

0

(1, 1)

P1 P2

x1

x2

σ1 σ 1

σ1

−22 2 −2

1

−1

1

3

−2

(Here σ is a linear threshold function.)

P1 : −1 + 2x1 + 2x2 = 0 P2 : 3− 2x1 − 2x2 = 0

The output neuron performs an intersection of half-spaces.
10

Expressive Power of MLP

Cybenko's theorem:

I Two layer networks with a single output neuron and a single layer of
hidden neurons (with the logistic sigmoid as the activation function)
are able to

I approximate with arbitrarily small error any "reasonable"
boundary
a given input is classi�ed as 1 i� the output value of the network is

≥ 1/2.
I approximate with arbitrarily small error any "reasonable"

function with range (0, 1).

Here "reasonable" means that it is pretty tough to �nd a function that is

not reasonable.

So multi-layer perceptrons are su�uciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any e�cient method for training multilayer networks!

... then the backpropagation appeared in 1986!

11

Expressive Power of MLP

Cybenko's theorem:

I Two layer networks with a single output neuron and a single layer of
hidden neurons (with the logistic sigmoid as the activation function)
are able to

I approximate with arbitrarily small error any "reasonable"
boundary
a given input is classi�ed as 1 i� the output value of the network is

≥ 1/2.

I approximate with arbitrarily small error any "reasonable"
function with range (0, 1).

Here "reasonable" means that it is pretty tough to �nd a function that is

not reasonable.

So multi-layer perceptrons are su�uciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any e�cient method for training multilayer networks!

... then the backpropagation appeared in 1986!

11

Expressive Power of MLP

Cybenko's theorem:

I Two layer networks with a single output neuron and a single layer of
hidden neurons (with the logistic sigmoid as the activation function)
are able to

I approximate with arbitrarily small error any "reasonable"
boundary
a given input is classi�ed as 1 i� the output value of the network is

≥ 1/2.
I approximate with arbitrarily small error any "reasonable"

function with range (0, 1).

Here "reasonable" means that it is pretty tough to �nd a function that is

not reasonable.

So multi-layer perceptrons are su�uciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any e�cient method for training multilayer networks!

... then the backpropagation appeared in 1986!

11

Expressive Power of MLP

Cybenko's theorem:

I Two layer networks with a single output neuron and a single layer of
hidden neurons (with the logistic sigmoid as the activation function)
are able to

I approximate with arbitrarily small error any "reasonable"
boundary
a given input is classi�ed as 1 i� the output value of the network is

≥ 1/2.
I approximate with arbitrarily small error any "reasonable"

function with range (0, 1).

Here "reasonable" means that it is pretty tough to �nd a function that is

not reasonable.

So multi-layer perceptrons are su�uciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any e�cient method for training multilayer networks!

... then the backpropagation appeared in 1986!

11

Expressive Power of MLP

Cybenko's theorem:

I Two layer networks with a single output neuron and a single layer of
hidden neurons (with the logistic sigmoid as the activation function)
are able to

I approximate with arbitrarily small error any "reasonable"
boundary
a given input is classi�ed as 1 i� the output value of the network is

≥ 1/2.
I approximate with arbitrarily small error any "reasonable"

function with range (0, 1).

Here "reasonable" means that it is pretty tough to �nd a function that is

not reasonable.

So multi-layer perceptrons are su�uciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any e�cient method for training multilayer networks!

... then the backpropagation appeared in 1986!

11

Expressive Power of MLP

Cybenko's theorem:

I Two layer networks with a single output neuron and a single layer of
hidden neurons (with the logistic sigmoid as the activation function)
are able to

I approximate with arbitrarily small error any "reasonable"
boundary
a given input is classi�ed as 1 i� the output value of the network is

≥ 1/2.
I approximate with arbitrarily small error any "reasonable"

function with range (0, 1).

Here "reasonable" means that it is pretty tough to �nd a function that is

not reasonable.

So multi-layer perceptrons are su�uciently powerful for any application.

But for a long time, at least throughout 60s and 70s, nobody well-known
knew any e�cient method for training multilayer networks!

... then the backpropagation appeared in 1986!
11

MLP � Notation

I X set of input neurons

I Y set of output neurons

I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .

I ξj is the inner potential of the neuron j when the computation

is �nished.

I yj is the output value of the neuron j when the computation is

�nished.

(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

12

MLP � Notation

I X set of input neurons

I Y set of output neurons

I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .

I ξj is the inner potential of the neuron j when the computation

is �nished.

I yj is the output value of the neuron j when the computation is

�nished.

(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

12

MLP � Notation

I X set of input neurons

I Y set of output neurons

I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .

I ξj is the inner potential of the neuron j when the computation

is �nished.

I yj is the output value of the neuron j when the computation is

�nished.

(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

12

MLP � Notation

I X set of input neurons

I Y set of output neurons

I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .

I ξj is the inner potential of the neuron j when the computation

is �nished.

I yj is the output value of the neuron j when the computation is

�nished.

(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

12

MLP � Notation

I X set of input neurons

I Y set of output neurons

I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .

I ξj is the inner potential of the neuron j when the computation

is �nished.

I yj is the output value of the neuron j when the computation is

�nished.

(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

12

MLP � Notation

I X set of input neurons

I Y set of output neurons

I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .

I ξj is the inner potential of the neuron j when the computation

is �nished.

I yj is the output value of the neuron j when the computation is

�nished.

(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

12

MLP � Notation

I X set of input neurons

I Y set of output neurons

I Z set of all neurons (tedy X ,Y ⊆ Z)

I individual neurons are denoted by indices, e.g. i , j .

I ξj is the inner potential of the neuron j when the computation

is �nished.

I yj is the output value of the neuron j when the computation is

�nished.

(we formally assume y0 = 1)

I wji is the weight of the arc from the neuron i to the neuron j .

I j← is the set of all neurons from which there are edges to j
(i.e. j← is the layer directly below j)

I j→ is the set of all neurons to which there are edges from j .
(i.e. j→ is the layer directly above j)

12

MLP � Notation
I Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

I for simplicity, the activation function of every neuron will be
the logistic sigmoid σ(ξ) = 1

1+e−ξ .

(We may of course consider logistic sigmoids with di�erent steepness

paramaters, or other sigmoidal functions, more in PV021.)

I A value of a non-input neuron j ∈ Z \ X when the computation is
�nished is yj = σ(ξj)

(yj is determined by weights ~w and a given input ~x , so it's sometimes

written as yj [~w](~x))

I Fixing weights of all neurons, the network computes a function
F [~w] : R|X | → R|Y | as follows: Assign values of a given vector
~x ∈ R|X | to the input neurons, evaluate the network, then F [~w](~x)
is the vector of values of the output neurons.

Here we implicitly assume a �xed orderings on input and output vectors.

13

MLP � Notation
I Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

I for simplicity, the activation function of every neuron will be
the logistic sigmoid σ(ξ) = 1

1+e−ξ .

(We may of course consider logistic sigmoids with di�erent steepness

paramaters, or other sigmoidal functions, more in PV021.)

I A value of a non-input neuron j ∈ Z \ X when the computation is
�nished is yj = σ(ξj)

(yj is determined by weights ~w and a given input ~x , so it's sometimes

written as yj [~w](~x))

I Fixing weights of all neurons, the network computes a function
F [~w] : R|X | → R|Y | as follows: Assign values of a given vector
~x ∈ R|X | to the input neurons, evaluate the network, then F [~w](~x)
is the vector of values of the output neurons.

Here we implicitly assume a �xed orderings on input and output vectors.

13

MLP � Notation
I Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

I for simplicity, the activation function of every neuron will be
the logistic sigmoid σ(ξ) = 1

1+e−ξ .

(We may of course consider logistic sigmoids with di�erent steepness

paramaters, or other sigmoidal functions, more in PV021.)

I A value of a non-input neuron j ∈ Z \ X when the computation is
�nished is yj = σ(ξj)

(yj is determined by weights ~w and a given input ~x , so it's sometimes

written as yj [~w](~x))

I Fixing weights of all neurons, the network computes a function
F [~w] : R|X | → R|Y | as follows: Assign values of a given vector
~x ∈ R|X | to the input neurons, evaluate the network, then F [~w](~x)
is the vector of values of the output neurons.

Here we implicitly assume a �xed orderings on input and output vectors.

13

MLP � Notation
I Inner potential of a neuron j :

ξj =
∑
i∈j←

wjiyi

I for simplicity, the activation function of every neuron will be
the logistic sigmoid σ(ξ) = 1

1+e−ξ .

(We may of course consider logistic sigmoids with di�erent steepness

paramaters, or other sigmoidal functions, more in PV021.)

I A value of a non-input neuron j ∈ Z \ X when the computation is
�nished is yj = σ(ξj)

(yj is determined by weights ~w and a given input ~x , so it's sometimes

written as yj [~w](~x))

I Fixing weights of all neurons, the network computes a function
F [~w] : R|X | → R|Y | as follows: Assign values of a given vector
~x ∈ R|X | to the input neurons, evaluate the network, then F [~w](~x)
is the vector of values of the output neurons.

Here we implicitly assume a �xed orderings on input and output vectors.

13

MLP � Learning

I Given a set D of training examples:

D =
{(

~xk , ~dk

) ∣∣ k = 1, . . . , p
}

Here ~xk ∈ R|X | and ~dk ∈ R|Y |. We write dkj to denote the

value in ~dk corresponding to the output neuron j .

I Least Squares Error Function: Let ~w be a vector of all

weights in the network.

E (~w) =

p∑
k=1

Ek(~w)

where

Ek(~w) =
1

2

∑
j∈Y

(yj [~w](~xk)− dkj)
2

14

MLP � Learning

I Given a set D of training examples:

D =
{(

~xk , ~dk

) ∣∣ k = 1, . . . , p
}

Here ~xk ∈ R|X | and ~dk ∈ R|Y |. We write dkj to denote the

value in ~dk corresponding to the output neuron j .

I Least Squares Error Function: Let ~w be a vector of all

weights in the network.

E (~w) =

p∑
k=1

Ek(~w)

where

Ek(~w) =
1

2

∑
j∈Y

(yj [~w](~xk)− dkj)
2

14

MLP � Learning Algorithm

Batch Learning � Gradient Descent:

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0

I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning

speed in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

15

MLP � Learning Algorithm

Batch Learning � Gradient Descent:

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0

I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning

speed in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

15

MLP � Learning Algorithm

Batch Learning � Gradient Descent:

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0

I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning

speed in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).

15

MLP � Learning Algorithm

Batch Learning � Gradient Descent:

The algorithm computes a sequence of weights ~w (0), ~w (1),

I weights ~w (0) are initialized randomly close to 0

I in the step t + 1 (here t = 0, 1, 2 . . .) is ~w (t+1) computed as

follows:

w
(t+1)
ji = w

(t)
ji + ∆w

(t)
ji

where

∆w
(t)
ji = −ε(t) · ∂E

∂wji
(~w (t))

is the weight change wji and 0 < ε(t) ≤ 1 is the learning

speed in the step t + 1.

Note that ∂E
∂wji

(~w (t)) is a component of ∇E , i.e. the weight change in the step

t + 1 can be written as follows: ~w (t+1) = ~w (t) − ε(t) · ∇E(~w (t)).
15

MLP � Gradient Computation

For every weight wji we have (obviously)

∂E

∂wji
=

p∑
k=1

∂Ek

∂wji

So now it su�ces to compute ∂Ek

∂wji
, that is the error for a �xed training

example (~xk , dk).

It holds that

∂Ek

∂wji
= δj · yj(1− yj) · yi

where

δj = yj − dkj pro j ∈ Y

δj =
∑
r∈j→

δr · yr (1− yr) · wrj pro j ∈ Z r (Y ∪ X)

(Here yr = y [~w](~xk) where ~w are the current weights and ~xk is the input of the

k-th training example.)

16

MLP � Gradient Computation

For every weight wji we have (obviously)

∂E

∂wji
=

p∑
k=1

∂Ek

∂wji

So now it su�ces to compute ∂Ek

∂wji
, that is the error for a �xed training

example (~xk , dk).

It holds that

∂Ek

∂wji
= δj · yj(1− yj) · yi

where

δj = yj − dkj pro j ∈ Y

δj =
∑
r∈j→

δr · yr (1− yr) · wrj pro j ∈ Z r (Y ∪ X)

(Here yr = y [~w](~xk) where ~w are the current weights and ~xk is the input of the

k-th training example.)
16

Multilayer Perceptron � Backpropagation

So to compute all ∂E
∂wji

=
∑p

k=1

∂Ek

∂wji
:

Compute all ∂Ek

∂wji
= δj · yj(1− yj) · yi for every training example (~xk , ~dk):

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I Compute δj using backpropagation through layers top-down :

I Assign δj = yj − dkj for all j ∈ Y
I In the layer `, assuming that δr has been computed for all

neurons r in the layer `+ 1, compute

δj =
∑
r∈j→

δr · yr (1− yr) · wrj

for all j from the `-th layer.

17

Multilayer Perceptron � Backpropagation

So to compute all ∂E
∂wji

=
∑p

k=1

∂Ek

∂wji
:

Compute all ∂Ek

∂wji
= δj · yj(1− yj) · yi for every training example (~xk , ~dk):

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I Compute δj using backpropagation through layers top-down :

I Assign δj = yj − dkj for all j ∈ Y
I In the layer `, assuming that δr has been computed for all

neurons r in the layer `+ 1, compute

δj =
∑
r∈j→

δr · yr (1− yr) · wrj

for all j from the `-th layer.

17

Multilayer Perceptron � Backpropagation

So to compute all ∂E
∂wji

=
∑p

k=1

∂Ek

∂wji
:

Compute all ∂Ek

∂wji
= δj · yj(1− yj) · yi for every training example (~xk , ~dk):

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I Compute δj using backpropagation through layers top-down :

I Assign δj = yj − dkj for all j ∈ Y
I In the layer `, assuming that δr has been computed for all

neurons r in the layer `+ 1, compute

δj =
∑
r∈j→

δr · yr (1− yr) · wrj

for all j from the `-th layer.

17

Multilayer Perceptron � Backpropagation

So to compute all ∂E
∂wji

=
∑p

k=1

∂Ek

∂wji
:

Compute all ∂Ek

∂wji
= δj · yj(1− yj) · yi for every training example (~xk , ~dk):

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I Compute δj using backpropagation through layers top-down :

I Assign δj = yj − dkj for all j ∈ Y

I In the layer `, assuming that δr has been computed for all
neurons r in the layer `+ 1, compute

δj =
∑
r∈j→

δr · yr (1− yr) · wrj

for all j from the `-th layer.

17

Multilayer Perceptron � Backpropagation

So to compute all ∂E
∂wji

=
∑p

k=1

∂Ek

∂wji
:

Compute all ∂Ek

∂wji
= δj · yj(1− yj) · yi for every training example (~xk , ~dk):

I Evaluate all values yi of neurons using the standard bottom-up
procedure with the input ~xk .

I Compute δj using backpropagation through layers top-down :

I Assign δj = yj − dkj for all j ∈ Y
I In the layer `, assuming that δr has been computed for all

neurons r in the layer `+ 1, compute

δj =
∑
r∈j→

δr · yr (1− yr) · wrj

for all j from the `-th layer.

17

Example

Assume w
(0)
30

= w
(0)
50

= w
(0)
41

= w
(0)
42

= w
(0)
54

= 1 and

w
(0)
40

= w
(0)
31

= w
(0)
32

= w
(0)
53

= −1. Consider a training set {((1, 0), 1)}.

Then
y1 = 1,
y2 = 0,

y3 = σ(w30 + w
(0)
31

y1 + w
(0)
32

y2) = 0.5,
y4 = 0.5,
y5 = 0.731058.

δ5 = y5 − 1 = −0.268942,
δ4 = δ5 ·y5 · (1−y5)∗w (0)

54
= −0.052877,

δ3 = 0.052877.

σ1 σ 1

σ1

w41
w31 w32

w42

w53

w30

w54

w40

w50

∂E1
∂w53

= δ5 · y5 · (1− y5) · y3 = −0.026438,
∂E1
∂w54

= δ5 · y5 · (1− y5) · y4 = −0.026438,
∂E1
∂w30

= δ3 · y3 · (1− y3) · 1 = 0.01321925,
....

18

Illustration of Gradient Descent � XOR

Source: Pattern Classi�cation (2nd Edition); Richard O. Duda, Peter E. Hart, David G. Stork
19

Comments on Training Algorithm

I Not guaranteed to converge to zero training error, may converge to
local optima or oscillate inde�nitely.

I In practice, does converge to low error for many large networks on
real data.

I Many epochs (thousands) may be required, hours or days of training
for large networks.

I To avoid local-minima problems, run several trials starting with
di�erent random weights (random restarts).

I Take results of trial with lowest training set error.
I Build a committee of results from multiple trials (possibly

weighting votes by training set accuracy).

There are many more issues concerning learning e�ciency (data

normalization, selection of activation functions, weight initialization,

training speed, e�ciency of the gradient descent itself etc.) � see PV021.

20

Comments on Training Algorithm

I Not guaranteed to converge to zero training error, may converge to
local optima or oscillate inde�nitely.

I In practice, does converge to low error for many large networks on
real data.

I Many epochs (thousands) may be required, hours or days of training
for large networks.

I To avoid local-minima problems, run several trials starting with
di�erent random weights (random restarts).

I Take results of trial with lowest training set error.
I Build a committee of results from multiple trials (possibly

weighting votes by training set accuracy).

There are many more issues concerning learning e�ciency (data

normalization, selection of activation functions, weight initialization,

training speed, e�ciency of the gradient descent itself etc.) � see PV021.

20

Comments on Training Algorithm

I Not guaranteed to converge to zero training error, may converge to
local optima or oscillate inde�nitely.

I In practice, does converge to low error for many large networks on
real data.

I Many epochs (thousands) may be required, hours or days of training
for large networks.

I To avoid local-minima problems, run several trials starting with
di�erent random weights (random restarts).

I Take results of trial with lowest training set error.
I Build a committee of results from multiple trials (possibly

weighting votes by training set accuracy).

There are many more issues concerning learning e�ciency (data

normalization, selection of activation functions, weight initialization,

training speed, e�ciency of the gradient descent itself etc.) � see PV021.

20

Comments on Training Algorithm

I Not guaranteed to converge to zero training error, may converge to
local optima or oscillate inde�nitely.

I In practice, does converge to low error for many large networks on
real data.

I Many epochs (thousands) may be required, hours or days of training
for large networks.

I To avoid local-minima problems, run several trials starting with
di�erent random weights (random restarts).

I Take results of trial with lowest training set error.
I Build a committee of results from multiple trials (possibly

weighting votes by training set accuracy).

There are many more issues concerning learning e�ciency (data

normalization, selection of activation functions, weight initialization,

training speed, e�ciency of the gradient descent itself etc.) � see PV021.

20

Hidden Neurons Representations

Trained hidden neurons can be seen as newly constructed features.
E.g., in a two layer network used for classi�cation, the hidden layer transforms

the input so that important features become explicit (and hence the result may

become linearly separable).

Consider a two-layer MLP, 64-2-3 for classi�cation of letters (three
output neurons, each corresponds to one of the letters).

21

Hidden Neurons Representations

Trained hidden neurons can be seen as newly constructed features.
E.g., in a two layer network used for classi�cation, the hidden layer transforms

the input so that important features become explicit (and hence the result may

become linearly separable).

Consider a two-layer MLP, 64-2-3 for classi�cation of letters (three
output neurons, each corresponds to one of the letters).

21

Over�tting

I Due to their expressive power, neural networks are quite

sensitive to over�tting.

I Keep a hold-out validation set and test accuracy on it after

every epoch. Stop training when additional epochs actually

increase the validation error.

22

Over�tting

I Due to their expressive power, neural networks are quite

sensitive to over�tting.

I Keep a hold-out validation set and test accuracy on it after

every epoch. Stop training when additional epochs actually

increase the validation error.

22

Over�tting � The Number of Hidden Neurons

I Too few hidden neurons prevent the network from adequately

�tting the data.

I Too many hidden units can result in over�tting.

(There are advanced methods that prevent over�tting even for rich

models, such as regularization, where the error function penalizes

over�tting � see PV021.)

I Use cross-validation to empirically determine an optimal

number of hidden units.

There are methods that automatically construct the structure of the

network based on data, they are not much used though.

23

Over�tting � The Number of Hidden Neurons

I Too few hidden neurons prevent the network from adequately

�tting the data.

I Too many hidden units can result in over�tting.

(There are advanced methods that prevent over�tting even for rich

models, such as regularization, where the error function penalizes

over�tting � see PV021.)

I Use cross-validation to empirically determine an optimal

number of hidden units.

There are methods that automatically construct the structure of the

network based on data, they are not much used though.

23

Applications

I Text to Speech and vice versa

I Fraud detection

I �nance & business predictions

I Game playing (backgammon is a classical example, AlphaGo is

the modern one)

I Image recognition

This is the main area in which the current state-of-the-art deep networks

excel.

I (arti�cial brain and intelligence)

I ...

24

ALVINN

25

ALVINN

I Two layer MLP, 960− 4− 30 (sometimes 960− 5− 30)

I Inputs correspond to pixels.

I Sigmoidal activation function (logistic sigmoid).

I Direction corresponds to the center of gravity.

I.e., output neurons are considered as points of mass evenly distributed

along a line. Weight of each neuron corresponds to its value.

26

ALVINN

I Two layer MLP, 960− 4− 30 (sometimes 960− 5− 30)

I Inputs correspond to pixels.

I Sigmoidal activation function (logistic sigmoid).

I Direction corresponds to the center of gravity.

I.e., output neurons are considered as points of mass evenly distributed

along a line. Weight of each neuron corresponds to its value.

26

ALVINN

I Two layer MLP, 960− 4− 30 (sometimes 960− 5− 30)

I Inputs correspond to pixels.

I Sigmoidal activation function (logistic sigmoid).

I Direction corresponds to the center of gravity.

I.e., output neurons are considered as points of mass evenly distributed

along a line. Weight of each neuron corresponds to its value.

26

ALVINN � Training

Trained while driving.

I A camera captured the road from the front window, approx. 25

pictures per second

I Training examples (~xk , ~dk) where
I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one

that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road

directions induce similar reaction of the driver.)

27

ALVINN � Training

Trained while driving.

I A camera captured the road from the front window, approx. 25

pictures per second

I Training examples (~xk , ~dk) where
I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one

that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road

directions induce similar reaction of the driver.)

27

ALVINN � Training

Trained while driving.

I A camera captured the road from the front window, approx. 25

pictures per second

I Training examples (~xk , ~dk) where

I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one

that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road

directions induce similar reaction of the driver.)

27

ALVINN � Training

Trained while driving.

I A camera captured the road from the front window, approx. 25

pictures per second

I Training examples (~xk , ~dk) where
I ~xk = image of the road

I ~dk ≈ corresponding direction of the steering wheel set by the
driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one

that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road

directions induce similar reaction of the driver.)

27

ALVINN � Training

Trained while driving.

I A camera captured the road from the front window, approx. 25

pictures per second

I Training examples (~xk , ~dk) where
I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one

that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road

directions induce similar reaction of the driver.)

27

ALVINN � Training

Trained while driving.

I A camera captured the road from the front window, approx. 25

pictures per second

I Training examples (~xk , ~dk) where
I ~xk = image of the road
I ~dk ≈ corresponding direction of the steering wheel set by the

driver

I the values ~dk computed using Gaussian distribution:

dki = e−D
2
i /10

where Di is the distance between the i-th output from the one

that corresponds to the real direction of the steering wheel.

(This is better than the binary output because similar road

directions induce similar reaction of the driver.)

27

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:

I A too good driver never teaches the network how to solve
deviations from the right track. Couple of harsh solutions:
I turn the learning o� for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road

from the right lane), may be overtrained.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:

I A too good driver never teaches the network how to solve
deviations from the right track. Couple of harsh solutions:
I turn the learning o� for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road

from the right lane), may be overtrained.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:

I A too good driver never teaches the network how to solve
deviations from the right track. Couple of harsh solutions:

I turn the learning o� for a moment, deviate from the right
track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road

from the right lane), may be overtrained.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:

I A too good driver never teaches the network how to solve
deviations from the right track. Couple of harsh solutions:
I turn the learning o� for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road

from the right lane), may be overtrained.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:

I A too good driver never teaches the network how to solve
deviations from the right track. Couple of harsh solutions:
I turn the learning o� for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road

from the right lane), may be overtrained.

28

Selection of Training Examples

Naive approach: just take images from the camera.

Problems:

I A too good driver never teaches the network how to solve
deviations from the right track. Couple of harsh solutions:
I turn the learning o� for a moment, deviate from the right

track, then turn on the learning and let the network learn how
to solve the situation.

I let the driver go crazy! (a bit dangerous, expensive, unreliable)

I Images are very similar (the network basically sees the road

from the right lane), may be overtrained.

28

Selection of Training Examples

Problem with too good driver were solved as follows:

I every image of the road has been has been transformed to 15
slightly di�erent copies

Repetitiveness of images was solved as follows:

I the system has a bu�er of 200 images (including the 15 copies of
the current one), in every round trains on these images

I afterwards, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the bu�er (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples

Problem with too good driver were solved as follows:

I every image of the road has been has been transformed to 15
slightly di�erent copies

Repetitiveness of images was solved as follows:

I the system has a bu�er of 200 images (including the 15 copies of
the current one), in every round trains on these images

I afterwards, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the bu�er (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples

Problem with too good driver were solved as follows:

I every image of the road has been has been transformed to 15
slightly di�erent copies

Repetitiveness of images was solved as follows:

I the system has a bu�er of 200 images (including the 15 copies of
the current one), in every round trains on these images

I afterwards, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the bu�er (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples

Problem with too good driver were solved as follows:

I every image of the road has been has been transformed to 15
slightly di�erent copies

Repetitiveness of images was solved as follows:

I the system has a bu�er of 200 images (including the 15 copies of
the current one), in every round trains on these images

I afterwards, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the bu�er (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples

Problem with too good driver were solved as follows:

I every image of the road has been has been transformed to 15
slightly di�erent copies

Repetitiveness of images was solved as follows:

I the system has a bu�er of 200 images (including the 15 copies of
the current one), in every round trains on these images

I afterwards, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the bu�er (10 with the smallest
training error, 5 randomly)

29

Selection of Training Examples

Problem with too good driver were solved as follows:

I every image of the road has been has been transformed to 15
slightly di�erent copies

Repetitiveness of images was solved as follows:

I the system has a bu�er of 200 images (including the 15 copies of
the current one), in every round trains on these images

I afterwards, a new image is captured, 15 copies made, and these new
15 substitute 15 selected from the bu�er (10 with the smallest
training error, 5 randomly)

29

ALVINN � Training

I standard backpropagation

I constant speed of learning (possibly di�erent for each neuron �

see PV021)

I some other optimizations (see PV021)

Výsledek:

I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel

not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in

di�erent weather

30

ALVINN � Training

I standard backpropagation

I constant speed of learning (possibly di�erent for each neuron �

see PV021)

I some other optimizations (see PV021)

Výsledek:

I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel

not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in

di�erent weather

30

ALVINN � Training

I standard backpropagation

I constant speed of learning (possibly di�erent for each neuron �

see PV021)

I some other optimizations (see PV021)

Výsledek:

I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel

not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in

di�erent weather

30

ALVINN � Training

I standard backpropagation

I constant speed of learning (possibly di�erent for each neuron �

see PV021)

I some other optimizations (see PV021)

Výsledek:

I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel

not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in

di�erent weather

30

ALVINN � Training

I standard backpropagation

I constant speed of learning (possibly di�erent for each neuron �

see PV021)

I some other optimizations (see PV021)

Výsledek:

I Training took 5 minutes, the speed was 4 miles per hour

(The speed was limited by the hydraulic controller of the steering wheel

not the learning algorithm.)

I ALVINN was able to go through roads it never "seen" and in

di�erent weather

30

ALVINN � Weight Learning

round 0

round 10

round 20

round 50

h1 h2 h3 h4 h5

Here h1, . . . , h5 are values of hidden neurons.
31

Extensions and Directions (PV021)

I Other types of learning inspired by neuroscience � Hebbian

learning

I More biologically plausible models of neural networks � spiking

neurons

This goes into the direction of HUGE area of (computational)

neuroscience, only very lightly touched in PV021.

I Unsupervised learning � Self-Organizing Maps

I Reinforcement learning
I learning to make decisions, or play games, sequentially
I neural networks have been used � temporal di�erence learning

32

Extensions and Directions (PV021)

I Other types of learning inspired by neuroscience � Hebbian

learning

I More biologically plausible models of neural networks � spiking

neurons

This goes into the direction of HUGE area of (computational)

neuroscience, only very lightly touched in PV021.

I Unsupervised learning � Self-Organizing Maps

I Reinforcement learning
I learning to make decisions, or play games, sequentially
I neural networks have been used � temporal di�erence learning

32

Extensions and Directions (PV021)

I Other types of learning inspired by neuroscience � Hebbian

learning

I More biologically plausible models of neural networks � spiking

neurons

This goes into the direction of HUGE area of (computational)

neuroscience, only very lightly touched in PV021.

I Unsupervised learning � Self-Organizing Maps

I Reinforcement learning
I learning to make decisions, or play games, sequentially
I neural networks have been used � temporal di�erence learning

32

Extensions and Directions (PV021)

I Other types of learning inspired by neuroscience � Hebbian

learning

I More biologically plausible models of neural networks � spiking

neurons

This goes into the direction of HUGE area of (computational)

neuroscience, only very lightly touched in PV021.

I Unsupervised learning � Self-Organizing Maps

I Reinforcement learning
I learning to make decisions, or play games, sequentially
I neural networks have been used � temporal di�erence learning

32

Deep Learning

I Cybenko's theorem shows that two-layer networks are omnipotent �
such results nearly killed NN when support vector machines were
found to be easier to train in 00's.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The backpropagation su�ers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:

I Use unsupervised methods to initialize the weights so that they
capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,

second lowest learns patterns in data transformed through the �rst

layer, and so on.
I Then use a supervised learning algorithm to only �ne tune

the weights to the desired input-output behavior.

A rather heavy machinery is needed to develop this, but you will be

rewarded by insight into a very modern and expensive technology.

33

Deep Learning

I Cybenko's theorem shows that two-layer networks are omnipotent �
such results nearly killed NN when support vector machines were
found to be easier to train in 00's.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The backpropagation su�ers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:

I Use unsupervised methods to initialize the weights so that they
capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,

second lowest learns patterns in data transformed through the �rst

layer, and so on.
I Then use a supervised learning algorithm to only �ne tune

the weights to the desired input-output behavior.

A rather heavy machinery is needed to develop this, but you will be

rewarded by insight into a very modern and expensive technology.

33

Deep Learning

I Cybenko's theorem shows that two-layer networks are omnipotent �
such results nearly killed NN when support vector machines were
found to be easier to train in 00's.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The backpropagation su�ers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:

I Use unsupervised methods to initialize the weights so that they
capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,

second lowest learns patterns in data transformed through the �rst

layer, and so on.
I Then use a supervised learning algorithm to only �ne tune

the weights to the desired input-output behavior.

A rather heavy machinery is needed to develop this, but you will be

rewarded by insight into a very modern and expensive technology.

33

Deep Learning

I Cybenko's theorem shows that two-layer networks are omnipotent �
such results nearly killed NN when support vector machines were
found to be easier to train in 00's.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The backpropagation su�ers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:

I Use unsupervised methods to initialize the weights so that they
capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,

second lowest learns patterns in data transformed through the �rst

layer, and so on.

I Then use a supervised learning algorithm to only �ne tune

the weights to the desired input-output behavior.

A rather heavy machinery is needed to develop this, but you will be

rewarded by insight into a very modern and expensive technology.

33

Deep Learning

I Cybenko's theorem shows that two-layer networks are omnipotent �
such results nearly killed NN when support vector machines were
found to be easier to train in 00's.

I Later, it has been shown (experimentally) that deep networks (with
many layers) have better represenational properties.

I ... but how to train them? The backpropagation su�ers from
so-called vanishing gradient, intuitively, updates of weights in lower
layers are very slow.

I In 2006 a solution was found by Hinton et al:

I Use unsupervised methods to initialize the weights so that they
capture important features in data.
More precisely: The lowest hidden layer learns patterns in data,

second lowest learns patterns in data transformed through the �rst

layer, and so on.
I Then use a supervised learning algorithm to only �ne tune

the weights to the desired input-output behavior.

A rather heavy machinery is needed to develop this, but you will be

rewarded by insight into a very modern and expensive technology.
33

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)

ImageNet database (16,000,000 color images, 20,000 categories)

34

ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC)

Competition in classi�cation over a subset of images from

ImageNet.

In 2012: Training se 1,200,000 images, 1000 categories. Validation

set 50,000, Test set 150,000.

Many images contain several objects → typical rule is top-5 highest

probability assigned by the net.

35

KSH sí´

ImageNet classi�cation with deep convolutional neural networks, by Alex

Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton (2012).

Trained on two GPUs (NVIDIA GeForce GTX 580)

Results:

I Accuracy 84.7% in top-5 (second best alg. at the time: 73.8%)

I 63.3% in "perfect" classi�cation (top-1)

36

ILSVRC 2014

The same set of images as in 2012, top-5 criterium.

GoogLeNet: deep convolutional net, 22 layers

Results:

I 93.33% in top-5

Superhuman power?

37

Superhuman GoogLeNet?!

Andrej Karpathy: ...the task of labeling images with 5 out of 1000 categories
quickly turned out to be extremely challenging, even for some friends in the lab
who have been working on ILSVRC and its classes for a while. First we thought
we would put it up on [Amazon Mechanical Turk]. Then we thought we could
recruit paid undergrads. Then I organized a labeling party of intense labeling
e�ort only among the (expert labelers) in our lab. Then I developed a modi�ed
interface that used GoogLeNet predictions to prune the number of categories
from 1000 to only about 100. It was still too hard - people kept missing
categories and getting up to ranges of 13-15% error rates. In the end I realized
that to get anywhere competitively close to GoogLeNet, it was most e�cient if
I sat down and went through the painfully long training process and the
subsequent careful annotation process myself... The labeling happened at a rate
of about 1 per minute, but this decreased over time... Some images are easily
recognized, while some images (such as those of �ne-grained breeds of dogs,
birds, or monkeys) can require multiple minutes of concentrated e�ort. I
became very good at identifying breeds of dogs... Based on the sample of
images I worked on, the GoogLeNet classi�cation error turned out to be 6.8%...
My own error in the end turned out to be 5.1%, approximately 1.7% better.

38

ILSVRC 2015

I Microsoft network ResNet: 152

layers, complex architecture

I Trained on 8 GPUs

I 96.43% accuracy in top-5

39

ILSVRC

ilsvrc.png

40

Deeper Insight into the Logistic Sigmoid

Consider a perceptron (that is a linear classi�er):

ξ = w0 +
n∑

i=1

wi · xi

and y = sgn(ξ) =

{
1 ξ ≥ 0

0 ξ < 0

Recall, that the signed distance from the decision boundary determined
by ξ = 0 is (here ~x = (x1, . . . , xn) and ~w = (w1, . . . ,wn))

w0 +
∑n

i=1
wi · xi√∑n

i=1
w2

i

=
ξ√∑n
i=1

w2

i

This value is positive for ~x on the side of ~w and negative on the opposite.

For simplicity, assume that
√∑n

i=1
w2

i = 1, and thus that the potential ξ

is equal to the signed distance of ~x from the boundary.

41

Deeper Insight into the Logistic Sigmoid

Consider a perceptron (that is a linear classi�er):

ξ = w0 +
n∑

i=1

wi · xi

and y = sgn(ξ) =

{
1 ξ ≥ 0

0 ξ < 0

Recall, that the signed distance from the decision boundary determined
by ξ = 0 is (here ~x = (x1, . . . , xn) and ~w = (w1, . . . ,wn))

w0 +
∑n

i=1
wi · xi√∑n

i=1
w2

i

=
ξ√∑n
i=1

w2

i

This value is positive for ~x on the side of ~w and negative on the opposite.

For simplicity, assume that
√∑n

i=1
w2

i = 1, and thus that the potential ξ

is equal to the signed distance of ~x from the boundary.

41

Deeper Insight into the Logistic Sigmoid

Consider a perceptron (that is a linear classi�er):

ξ = w0 +
n∑

i=1

wi · xi

and y = sgn(ξ) =

{
1 ξ ≥ 0

0 ξ < 0

Recall, that the signed distance from the decision boundary determined
by ξ = 0 is (here ~x = (x1, . . . , xn) and ~w = (w1, . . . ,wn))

w0 +
∑n

i=1
wi · xi√∑n

i=1
w2

i

=
ξ√∑n
i=1

w2

i

This value is positive for ~x on the side of ~w and negative on the opposite.

For simplicity, assume that
√∑n

i=1
w2

i = 1, and thus that the potential ξ

is equal to the signed distance of ~x from the boundary.

41

Deeper Insight into the Logistic Sigmoid

Assume that training examples (~x , c(~x)) are randomly generated.

Denote:

I ξ1 mean signed distance from the boundary of points classi�ed 1.

I ξ0 mean signed distance from the boundary of points classi�ed 0.

It is not unreasonable to assume that

I conditioned on c = 1, the signed distance ξ is normally distributed
with the mean ξ1 and variance (for simplicity) 1,

I conditioned on c = 0, the signed distance ξ is normally distributed
with the mean ξ0 and variance (for simplicity) 1.

(Notice that ξ may be negative, which means that such point is on the wrong

side of the boundary (the same for ξ > 0).)

Now, can we decide what is the probability of c = 1 given a distance?

42

Deeper Insight into the Logistic Sigmoid

Assume that training examples (~x , c(~x)) are randomly generated.

Denote:

I ξ1 mean signed distance from the boundary of points classi�ed 1.

I ξ0 mean signed distance from the boundary of points classi�ed 0.

It is not unreasonable to assume that

I conditioned on c = 1, the signed distance ξ is normally distributed
with the mean ξ1 and variance (for simplicity) 1,

I conditioned on c = 0, the signed distance ξ is normally distributed
with the mean ξ0 and variance (for simplicity) 1.

(Notice that ξ may be negative, which means that such point is on the wrong

side of the boundary (the same for ξ > 0).)

Now, can we decide what is the probability of c = 1 given a distance?

42

Deeper Insight into the Logistic Sigmoid

Assume that training examples (~x , c(~x)) are randomly generated.

Denote:

I ξ1 mean signed distance from the boundary of points classi�ed 1.

I ξ0 mean signed distance from the boundary of points classi�ed 0.

It is not unreasonable to assume that

I conditioned on c = 1, the signed distance ξ is normally distributed
with the mean ξ1 and variance (for simplicity) 1,

I conditioned on c = 0, the signed distance ξ is normally distributed
with the mean ξ0 and variance (for simplicity) 1.

(Notice that ξ may be negative, which means that such point is on the wrong

side of the boundary (the same for ξ > 0).)

Now, can we decide what is the probability of c = 1 given a distance?

42

Deeper Insight into the Logistic Sigmoid

Assume that training examples (~x , c(~x)) are randomly generated.

Denote:

I ξ1 mean signed distance from the boundary of points classi�ed 1.

I ξ0 mean signed distance from the boundary of points classi�ed 0.

It is not unreasonable to assume that

I conditioned on c = 1, the signed distance ξ is normally distributed
with the mean ξ1 and variance (for simplicity) 1,

I conditioned on c = 0, the signed distance ξ is normally distributed
with the mean ξ0 and variance (for simplicity) 1.

(Notice that ξ may be negative, which means that such point is on the wrong

side of the boundary (the same for ξ > 0).)

Now, can we decide what is the probability of c = 1 given a distance?

42

Deeper Insight into the Logistic Sigmoid

For simplicity, assume that ξ1 = −ξ0 = 1/2.

P(1 | ξ) =
p(ξ | 1)P(1)

p(ξ | 1)P(1) + p(ξ | 0)P(0)

=
LR

LR + 1/clr

where

LR =
p(ξ | 1)

p(ξ | 0)
=

exp(−(ξ − 1/2)2/2)

exp(−(ξ + 1/2)2/2)
= exp(ξ)

and

clr =
P(1)

P(0)
which we assume (for simplicity) = 1

So

P(1 | ξ) =
exp(ξ)

exp(ξ) + 1
=

1

1 + e−ξ

Thus the logistic sigmoid applied to ξ = w0 +
∑n

i=1
wi · xi gives

the probability of c = 1 given the input!

43

Deeper Insight into the Logistic Sigmoid

For simplicity, assume that ξ1 = −ξ0 = 1/2.

P(1 | ξ) =
p(ξ | 1)P(1)

p(ξ | 1)P(1) + p(ξ | 0)P(0)

=
LR

LR + 1/clr

where

LR =
p(ξ | 1)

p(ξ | 0)
=

exp(−(ξ − 1/2)2/2)

exp(−(ξ + 1/2)2/2)
= exp(ξ)

and

clr =
P(1)

P(0)
which we assume (for simplicity) = 1

So

P(1 | ξ) =
exp(ξ)

exp(ξ) + 1
=

1

1 + e−ξ

Thus the logistic sigmoid applied to ξ = w0 +
∑n

i=1
wi · xi gives

the probability of c = 1 given the input!
43

Deeper Insight into the Logistic Sigmoid

So if we use the logistic sigmoid as an activation function,

and turn the neuron into a classi�er as follows:

classify a given input ~x as 1 i� y ≥ 1/2

Then the neuron basically works as the Bayes classi�er!

This is the basis of logistic regression.

Given training data, we may compute the weights ~w that maximize the
likelihood of the training data (w.r.t. the probabilities returned by the neuron).

An extremely interesting observation is that such ~w maximizing the likelihood

coincides with the minimum of least squares for the corresponding linear

function (that is the same neuron but with identity as the activation function).

44

Deeper Insight into the Logistic Sigmoid

So if we use the logistic sigmoid as an activation function,

and turn the neuron into a classi�er as follows:

classify a given input ~x as 1 i� y ≥ 1/2

Then the neuron basically works as the Bayes classi�er!

This is the basis of logistic regression.

Given training data, we may compute the weights ~w that maximize the
likelihood of the training data (w.r.t. the probabilities returned by the neuron).

An extremely interesting observation is that such ~w maximizing the likelihood

coincides with the minimum of least squares for the corresponding linear

function (that is the same neuron but with identity as the activation function).

44

Deeper Insight into the Logistic Sigmoid

So if we use the logistic sigmoid as an activation function,

and turn the neuron into a classi�er as follows:

classify a given input ~x as 1 i� y ≥ 1/2

Then the neuron basically works as the Bayes classi�er!

This is the basis of logistic regression.

Given training data, we may compute the weights ~w that maximize the
likelihood of the training data (w.r.t. the probabilities returned by the neuron).

An extremely interesting observation is that such ~w maximizing the likelihood

coincides with the minimum of least squares for the corresponding linear

function (that is the same neuron but with identity as the activation function).

44

Deeper Insight into the Logistic Sigmoid

So if we use the logistic sigmoid as an activation function,

and turn the neuron into a classi�er as follows:

classify a given input ~x as 1 i� y ≥ 1/2

Then the neuron basically works as the Bayes classi�er!

This is the basis of logistic regression.

Given training data, we may compute the weights ~w that maximize the
likelihood of the training data (w.r.t. the probabilities returned by the neuron).

An extremely interesting observation is that such ~w maximizing the likelihood

coincides with the minimum of least squares for the corresponding linear

function (that is the same neuron but with identity as the activation function).

44

