Unsupervised learning. Clustering
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Clustering

* Partition unlabeled examples into disjoint
subsets of clusters, such that:

— Examples within a cluster are very similar

— Examples 1n different clusters are very different

* Discover new categories in an unsupervised
manner (no sample category labels provided).
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Clustering Example
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Hierarchical Clustering

 Build a tree-based hierarchical taxonomy

(dendrogram) from a set of unlabeled examples.

animal

7s\h re/\tile an7\ 1b. ma/nimal Wj\rm i7\ect cru?icean

* Recursive application of a standard clustering
algorithm can produce a hierarchical clustering.
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Aglommerative vs. Divisive Clustering

» Aglommerative (bottom-up) methods start
with each example 1n 1ts own cluster and
iteratively combine them to form larger and
larger clusters.

* Divisive (partitional, top-down) separate all
examples immediately into clusters.
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Direct Clustering Method

* Direct clustering methods require a
specification of the number of clusters, £,
desired.

* A clustering evaluation function assigns a
real-value quality measure to a clustering.

* The number of clusters can be determined

automatlcally by explicitly generating
clusterings for multiple values of & and
choosing the best result according to a
clustering evaluation function.
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Hierarchical Agglomerative Clustering
(HAC)

* Assumes a similarity function for determining

the similarity of two 1nstances.

 Starts with all instances 1n a separate cluster
and then repeatedly joins the two clusters that

are most stmilar until there 1s only one cluster.

* The history of merging forms a binary tree or
hierarchy.
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HAC Algorithm

Start with all instances 1n their own cluster.
Until there 1s only one cluster:
Among the current clusters, determine the two
clusters, ¢;and c;, that are most similar.
Replace ¢;and ¢; with a single cluster ¢;U ¢,
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Hierarchical Clustering

» Use distance matrix as clustering criteria. This method does
not require the number of clusters &k as an input, but needs a
termination condition

Step0 Stepl Step2 Step3 Step4 agglomerative

(AGNES)

divisive

| ! ! ! !
Step4 Step3 Step2 Stepl Step 0 (DIANA)
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Dendrogram. Shows How Clusters are Merged

—'—

Decoanose data objects into a several levels of nested partitioning
(tree of clusters), called a dendrogram

dendraogram at the desired level, then each connected component
forms a cluster

A clustering of the data objects is obtaintd by cutting the

| L



Cluster Similarity

* Assume a similarity function that determines the
similarity of two instances: sim(x,y).
— Euclidean /Mahalanobis, Hamming, Cosine similarity,
Pearson r etc.

* How to compute similarity of two clusters each
possibly containing multiple instances?

— Single Link: Similarity of two most similar members.

— Complete Link: Similarity of two least similar members.

— Group Average: Average similarity between members.
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Distance between Clusters e’

Single link: smallest distance between an element in one cluster and an

element in the other, i.e., dist(K;, K;) = min(t;,, t;,)

Complete link: largest distance between an element in one cluster and an

element in the other, 1.e., dist(K;, K;) = max(t,,, t,,)

Average: avg distance between an element in one cluster and an element in

the other, 1.e., dist(K;, K;) = avg(t;, t;,)

Centroid: distance between the centroids of two clusters, i.e., dist(K;, K;) =
dist(C,, C,)

Medoid: distance between the medoids of two clusters, i.e., dist(K;, K;) =
dist(M;, M;)

— Medoid: a chosen, centrally located object in the cluster
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Single Link Agglomerative Clustering

» Use maximum similarity of pairs:
sim(c;,c;) = max sim(x,y)

xee;, yec;

* Can result in “straggly” (long and thin)
clusters due to chaining effect.

— Appropriate 1n some domains, such as
clustering 1slands.
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Single Link Example




Complete Link Agglomerative Clustering

* Use minimum similarity of pairs:

sim(c;,c;) = min sim(x, y)
i J

» Makes more “tight,” spherical clusters that
are typically preferable.
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Complete Link Example

C\V D
C_ D




Computational Complexity

* In the first 1iteration, all HAC methods need
to compute similarity of all pairs of n
individual instances which is O(n?).

* In each of the subsequent #-2 merging
iterations, it must compute the distance
between the most recently created cluster
and all other existing clusters.

e In order to maintain an overall O(n?)
performance, computing similarity to each
other cluster must be done 1n constant time.
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Computing Cluster Similarity

* After merging ¢; and ¢;, the similarity of the
resulting cluster to any other cluster, c,, can
be computed by:

— Single Link:
sim((c; Uc;),c,) =max(sim(c;,c,),sim(c;,c,))
— Complete Link:

sim((c; Uc,),c,) = min(sim(c;,c,),sim(c;,c,))
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Non-Hierarchical Clustering
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Non-Hierarchical Clustering

Typically must provide the number of desired
clusters, k.

Randomly choose £ instances as seeds, one per
cluster.

Form 1nitial clusters based on these seeds.
[terate, repeatedly reallocating instances to

different clusters to improve the overall clustering.

Stop when clustering converges or after a fixed
number of iterations.
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K-Means

* Assumes instances are real-valued vectors.

* Clusters based on centroids, center of
gravity, or mean of points 1n a cluster, c:

ORI

» Reassignment of instances to clusters 1s
based on distance to the current cluster
centroids.
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Distance Metrics

. Euchd1an d1stance (L, norm)
L (x y) E(x -»)

* L, norm: .

Vi

* Cosine Slmllarlty (transform to a distance
by subtracting from 1):

1 )llg ).}F
x|
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K-Means Algorithm

Let d be the distance measure between instances.
Select k£ random 1nstances {s, §,,... §,} as seeds.
Until clustering converges or other stopping criterion:
For each instance x;:
Assign x; to the cluster ¢;such that d(x;, s;) 1s minimal.
(Update the seeds to the centroid of each cluster)

For each cluster C;
S = M(Cj)
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K Means Example
(K=2)

Pick seeds
Reassign clusters
Compute centroids
Reasssign clusters
Compute centroids

Reassign clusters

Converged!

v
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Time Complexity

Assume computing distance between two instances 1s
O(m) where m 1s the dimensionality of the vectors.

Reassigning clusters: O(kn) distance computations,
or O(knm).

Computing centroids: Each instance vector gets
added once to some centroid: O(nm).

Assume these two steps are each done once for /
iterations: O(lknm).

Linear 1n all relevant factors, assuming a fixed
number of iterations, more efficient than O(n?) HAC.
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K-Means Objective

» The objective of k-means 1s to minimize the
total sum of the squared distance of every
point to its corresponding cluster centroid.

K 2
S x|

* Finding the global optimum 1s NP-hard.

* The k-means algorithm is guaranteed to
converge a local optimum.
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Seed Choice

» Results can vary based on random seed
selection.

* Some seeds can result in poor convergence
rate, or convergence to sub-optimal
clusterings.

* Select good seeds using a heuristic or the
results of another method.

50



Buckshot Algorithm

Combines HAC and K-Means clustering.

First randomly take a sample of instances of
size Vi

Run group-average HAC on this sample,
which takes only O(n) time.

Use the results of HAC as 1nitial seeds for
K-means.

Overall algorithm 1s O(n) and avoids
problems of bad seed selection.
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Soft Clustering

Clustering typically assumes that each instance 1s
given a “hard” assignment to exactly one cluster.

Does not allow uncertainty in class membership or
for an instance to belong to more than one cluster.

Soft clustering gives probabilities that an 1nstance
belongs to each of a set of clusters.

Each 1nstance 1s assigned a probability distribution
across a set of discovered categories (probabilities
of all categories must sum to 1).
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Expectation Maximumization (EM)

Probabilistic method for soft clustering.
Direct method that assumes £ clusters: {c,, c,,... ¢;}
Soft version of A-means.

Assumes a probabilistic model of categories that
allows computing P(c. | £) for each category, c, for a
given example, £.

For text, typically assume a naive-Bayes category
model.

— Parameters 6 = {P(c)), P(w; | ¢)): i€{1,...k},j E€{1,...,|V]}}
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EM Algorithm

[terative method for learning probabilistic
categorization model from unsupervised data.

Initially assume random assignment of examples to
categories.

Learn an initial probabilistic model by estimating

model parameters 0 from this randomly labeled data.

[terate following two steps until convergence:

— Expectation (E-step): Compute P(c, | £) for each example
given the current model, and probabilistically re-label the
examples based on these posterior probability estimates.

— Maximization (M-step): Re-estimate the model
parameters, 0, from the probabilistically re-labeled data.
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EM

Initialize:
Assign random probabilistic labels to unlabeled data

Unlabeled Examples
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EM

Initialize:
Give soft-labeled training data to a probabilistic learner

Prob.

Learner
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EM

Initialize:
Produce a probabilistic classifier

| Prob. Prob.
Learner Classifier




EM

E Step:

Relabel unlabled data using the trained classifier

Prob. Prob.
Learner Classifier




EM

M step:

Retrain classifier on relabeled data

| Prob. Prqb.
Learner Classifier

Continue EM iterations until probabilistic labels
on unlabeled data converge.
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Learning from Probabilistically Labeled Data

* Instead of training data labeled with “hard”
category labels, training data 1s labeled with “soft”
probabilistic category labels.

* When estimating model parameters 0 from training
data, weight counts by the corresponding
probability of the given category label.

* For example, if P(¢, | £) = 0.8 and P(c, | £) = 0.2,
each word w; in £ contributes only 0.8 towards the
counts n; and n,;, and 0.2 towards the counts 7, and
Hy;i.
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Naive Bayes EM

Randomly assign examples probabilistic category labels.
Use standard naive-Bayes training to learn a probabilistic model
with parameters 0 from the labeled data.
Until convergence or until maximum number of iterations reached:
E-Step: Use the naive Bayes model 0 to compute P(c, | £) for
each category and example, and re-label each example
using these probability values as soft category labels.
M-Step: Use standard naive-Bayes training to re-estimate the
parameters 0 using these new probabilistic category labels.
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Assessing Clustering Tendency

Assess 1f non-random structure exists in the data by measuring the
probability that the data 1s generated by a uniform data distribution

Test spatial randomness by statistic test: Hopkins Static

— @Given a dataset D regarded as a sample of a random variable o,
determine how far away o is from being uniformly distributed in
the data space

— Sample n points, p,, ..., p,, uniformly from D. For each p,, find its
nearest neighbor in D: x, = min{dist (p, v)} where v in D

— Sample » points, g, ..., g,, uniformly from D. For each ¢,, find its
nearest neighbor in D — {¢,}: v, = min{dist (q, v)} where v in D
and v £ ¢, n

D i1 Vi

— Calculate the Hopkins Statistic: H =

2?21 Ti+ Z?:l Yi

— If D 1s uniformly distributed, ) x. and )y, will be close to each
other and H 1s close to 0.5. If D 1s highly skewed, H 1s close to 0
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Measuring Clustering Quality

Two methods: extrinsic vs. intrinsic
« Extrinsic: supervised, 1.€., the ground truth 1s available

— Compare a clustering against the ground truth using certain

clustering quality measure
 Intrinsic: unsupervised, 1.e., the ground truth is unavailable

— Evaluate the goodness of a clustering by considering how
well the clusters are separated, and how compact the clusters

arc

— Ex. Silhouette coefficient
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Measuring Clustering Quality: Extrinsic Methods

* Clustering quality measure: Q(C, C,), for a clustering C
given the ground truth C..

* (1s good if 1t satisfies the following 4 essential criteria
— Cluster homogeneity: the purer, the better

— Cluster completeness: should assign objects belong to
the same category in the ground truth to the same
cluster

— Rag bag: putting a heterogeneous object into a pure
cluster should be penalized more than putting it into a
rag bag (1.e., “miscellaneous” or “other” category)

— Small cluster preservation: splitting a small category
into pieces 1s more harmful than splitting a large
category into pieces
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Measuring Clustering Quality: Extrinsic Methods

* Clustering quality measure: Q(C, C,), for a clustering C
given the ground truth C..

* (1s good if 1t satisfies the following 4 essential criteria
— Cluster homogeneity: the purer, the better

— Cluster completeness: should assign objects belong to
the same category in the ground truth to the same
cluster

— Rag bag: putting a heterogeneous object into a pure
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rag bag (1.e., “miscellaneous” or “other” category)

— Small cluster preservation: splitting a small category
into pieces 1s more harmful than splitting a large
category into pieces
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Silhouette Coeftficient

considering both the intra- and inter-cluster distances.

For a point x,, the average of the distances to all points in
the same cluster 1s calculated. This value 1s set to a..

Then for each cluster that does not contain x;, the average
distance of X, to all the data points in each cluster 1s
computed. This value 1s set to b..

Using a, and b, the silhouette coefficient of a point 1s
estimated. The average of all the silhouettes in the dataset
is called the average silhouettes width for all the points in
the dataset.
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Silhouette Coeftficient

considering both the intra- and inter-cluster distances.

For a point x,, the average of the distances to all points in
the same cluster 1s calculated. This value 1s set to a..
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is called the average silhouettes width for all the points in
the dataset.
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Silhouette Coeftficient

* To evaluate the quality of a clustering one can compute the
average silhouette coefficient of all points.

g b,-—a,-
. & max(a; b;)
N
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Conclusions

» Unsupervised learning induces categories
from unlabeled data.

* Agglomerative vs. Divisive. Hard vs. soft

* There are a variety of approaches, including:
— HAC
— k-means
— EM
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