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Unsupervised learning. Clustering 
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Clustering 

•  Partition unlabeled examples into disjoint 
subsets of clusters, such that: 
– Examples within a cluster are very similar 
– Examples in different clusters are very different 

•  Discover new categories in an unsupervised 
manner (no sample category labels provided). 



26 26 

. 

Clustering Example 

. . . . 

. . 
. . . 

. 
. 

. . . 
. 

. . . . 

. . 
. . . 

. 
. 

. . . 
. 

. 



27 27 

Hierarchical Clustering 

•  Build a tree-based hierarchical taxonomy 
(dendrogram) from a set of unlabeled examples. 

•  Recursive application of a standard clustering 
algorithm can produce a hierarchical clustering. 

animal 

vertebrate 

fish reptile amphib. mammal      worm insect crustacean 

invertebrate 
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Aglommerative vs. Divisive Clustering 

•  Aglommerative (bottom-up) methods start 
with each example in its own cluster and 
iteratively combine them to form larger and 
larger clusters. 

•  Divisive (partitional, top-down) separate all 
examples immediately into clusters. 
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Direct Clustering Method 

•  Direct clustering methods require a 
specification of the number of clusters, k, 
desired. 

•  A clustering evaluation function assigns a 
real-value quality measure to a clustering. 

•  The number of clusters can be determined 
automatically by explicitly generating 
clusterings for multiple values of k and 
choosing the best result according to a 
clustering evaluation function. 
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Hierarchical Agglomerative Clustering 
(HAC) 

•  Assumes a similarity function for determining 
the similarity of two instances. 

•  Starts with all instances in a separate cluster 
and then repeatedly joins the two clusters that 
are most similar until there is only one cluster. 

•  The history of merging forms a binary tree or 
hierarchy. 
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HAC Algorithm 

Start with all instances in their own cluster. 
Until there is only one cluster: 
      Among the current clusters, determine the two  
           clusters, ci and cj, that are most similar. 
      Replace ci and cj with a single cluster ci ∪ cj  



Hierarchical Clustering 
•  Use distance matrix as clustering criteria.  This method does 

not require the number of clusters k as an input, but needs a 
termination condition  

Step 0 Step 1 Step 2 Step 3 Step 4 

b 

d 

c 

e 

a a b 

d e 

c d e 

a b c d e 

Step 4 Step 3 Step 2 Step 1 Step 0 

agglomerative 
(AGNES) 

divisive 
(DIANA) 
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Dendrogram. Shows How Clusters are Merged 

Decompose data objects into a several levels of nested partitioning 
(tree of clusters), called a dendrogram 

A clustering of the data objects is obtained by cutting the 
dendrogram at the desired level, then each connected component 
forms a cluster 

33 
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Cluster Similarity 

•  Assume a similarity function that determines the 
similarity of two instances: sim(x,y). 
–  Euclidean /Mahalanobis, Hamming, Cosine similarity, 

Pearson r etc. 

•  How to compute similarity of two clusters each 
possibly containing multiple instances? 
–  Single Link: Similarity of two most similar members. 
–  Complete Link: Similarity of two least similar members. 
–  Group Average: Average similarity between members. 



Distance between Clusters 

•  Single link:  smallest distance between an element in one cluster and an 
element in the other, i.e.,  dist(Ki, Kj) = min(tip, tjq) 

•  Complete link: largest distance between an element in one cluster and an 
element in the other, i.e.,  dist(Ki, Kj) = max(tip, tjq) 

•  Average: avg distance between an element in one cluster and an element in 
the other, i.e.,  dist(Ki, Kj) = avg(tip, tjq) 

•  Centroid: distance between the centroids of two clusters, i.e.,  dist(Ki, Kj) = 

dist(Ci, Cj) 

•  Medoid: distance between the medoids of two clusters, i.e.,  dist(Ki, Kj) = 
dist(Mi, Mj) 

–  Medoid: a chosen, centrally located object in the cluster 
35 
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Single Link Agglomerative Clustering 

•  Use maximum similarity of pairs: 

•  Can result in “straggly” (long and thin) 
clusters due to chaining effect. 
– Appropriate in some domains, such as 

clustering islands.   
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Single Link Example 
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Complete Link Agglomerative Clustering 

•  Use minimum similarity of pairs: 

•  Makes more “tight,” spherical clusters that 
are typically preferable. 
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Complete Link Example 
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Computational Complexity 

•  In the first iteration, all HAC methods need 
to compute similarity of all pairs of n 
individual instances which is O(n2). 

•  In each of the subsequent n-2 merging 
iterations, it must compute the distance 
between the most recently created cluster 
and all other existing clusters. 

•  In order to maintain an overall O(n2) 
performance, computing similarity to each 
other cluster must be done in constant time. 
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Computing Cluster Similarity 

•  After merging ci and cj, the similarity of the 
resulting cluster to any other cluster, ck, can 
be computed by: 
– Single Link: 

– Complete Link: 
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Non-Hierarchical Clustering 
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Non-Hierarchical Clustering 

•  Typically must provide the number of desired 
clusters, k. 

•  Randomly choose k instances as seeds, one per 
cluster.   

•  Form initial clusters based on these seeds. 
•  Iterate, repeatedly reallocating instances to 

different clusters to improve the overall clustering. 
•  Stop when clustering converges or after a fixed 

number of iterations.  
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K-Means 

•  Assumes instances are real-valued vectors. 
•  Clusters based on centroids, center of 

gravity, or mean of points in a cluster, c: 

•  Reassignment of instances to clusters is 
based on distance to the current cluster 
centroids. 
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Distance Metrics 

•  Euclidian distance (L2 norm): 

•  L1 norm: 

•  Cosine Similarity (transform to a distance 
by subtracting from 1): 
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K-Means Algorithm 

Let d be the distance measure between instances. 
Select k random instances {s1, s2,… sk} as seeds. 
Until clustering converges or other stopping criterion: 
      For each instance xi: 
          Assign xi to the cluster cj such that d(xi, sj) is minimal. 
      (Update the seeds to the centroid of each cluster) 
      For each cluster cj 
             sj = µ(cj)  
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K Means Example 
(K=2) 

Pick seeds 

Reassign clusters 

Compute centroids 

x 
x 

Reasssign clusters 

x 
x x x Compute centroids 

Reassign clusters 

Converged! 
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Time Complexity 

•  Assume computing distance between two instances is 
O(m) where m is the dimensionality of the vectors. 

•  Reassigning clusters: O(kn) distance computations, 
or O(knm). 

•  Computing centroids: Each instance vector gets 
added once to some centroid: O(nm). 

•  Assume these two steps are each done once for I 
iterations:  O(Iknm). 

•  Linear in all relevant factors, assuming a fixed 
number of iterations, more efficient than O(n2) HAC. 
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K-Means Objective 

•  The objective of k-means is to minimize the 
total sum of the squared distance of every 
point to its corresponding cluster centroid. 

•  Finding the global optimum is NP-hard. 
•  The k-means algorithm is guaranteed to 

converge a local optimum. 
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Seed Choice 

•  Results can vary based on random seed 
selection. 

•  Some seeds can result in poor convergence 
rate, or convergence to sub-optimal 
clusterings. 

•  Select good seeds using a heuristic or the 
results of another method. 
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Buckshot Algorithm 

•  Combines HAC and K-Means clustering. 
•  First randomly take a sample of instances of 

size √n  
•  Run group-average HAC on this sample, 

which takes only O(n) time. 
•  Use the results of HAC as initial seeds for 

K-means. 
•  Overall algorithm is O(n) and avoids 

problems of bad seed selection. 
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Soft Clustering 

•  Clustering typically assumes that each instance is 
given a “hard” assignment to exactly one cluster. 

•  Does not allow uncertainty in class membership or 
for an instance to belong to more than one cluster. 

•  Soft clustering gives probabilities that an instance 
belongs to each of a set of clusters. 

•  Each instance is assigned a probability distribution 
across a set of discovered categories (probabilities 
of all categories must sum to 1). 
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Expectation Maximumization (EM) 

•  Probabilistic method for soft clustering. 
•  Direct method that assumes k clusters:{c1, c2,… ck}  
•  Soft version of k-means. 
•  Assumes a probabilistic model of categories that 

allows computing P(ci | E) for each category, ci, for a 
given example, E. 

•  For text, typically assume a naïve-Bayes category 
model. 
–  Parameters θ = {P(ci), P(wj | ci): i∈{1,…k}, j ∈{1,…,|V|}} 
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EM Algorithm 

•  Iterative method for learning probabilistic 
categorization model from unsupervised data. 

•  Initially assume random assignment of examples to 
categories. 

•  Learn an initial probabilistic model by estimating 
model parameters θ from this randomly labeled data. 

•  Iterate following two steps until convergence: 
–  Expectation (E-step): Compute P(ci | E) for each example 

given the current model, and probabilistically re-label the 
examples based on these posterior probability estimates. 

–  Maximization (M-step): Re-estimate the model 
parameters, θ, from the probabilistically re-labeled data. 
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EM 

Unlabeled Examples 

+ - 

+ - 

+ - 

+ - 

- + 

Assign random probabilistic labels to unlabeled data 
Initialize: 



56 56 

EM 

Prob. 
Learner 

+ - 

+ - 

+ - 

+ - 

- + 

Give soft-labeled training data to a probabilistic learner 
Initialize: 
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EM 

Prob. 
Learner 

Prob. 
Classifier 

+ - 

+ - 

+ - 

+ - 

- + 

 Produce a probabilistic classifier 
Initialize: 
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EM 

Prob. 
Learner 

Prob. 
Classifier 

Relabel unlabled data using the trained classifier 

+ - 

+ - 

+ - 

+ - 

- + 

E Step: 
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EM 

Prob. 
Learner 

+ - 

+ - 

+ - 

+ - 

- + 
Prob. 

Classifier 

Continue EM iterations until probabilistic labels 
on unlabeled data converge. 

Retrain classifier on relabeled data 
M step: 
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Learning from Probabilistically Labeled Data  

•  Instead of training data labeled with “hard” 
category labels, training data is labeled with “soft” 
probabilistic category labels. 

•  When estimating model parameters θ from training 
data, weight counts by the corresponding 
probability of the given category label. 

•  For example, if P(c1 | E) = 0.8 and P(c2 | E) = 0.2,        
each word wj in E contributes only 0.8 towards the 
counts n1 and n1j, and 0.2 towards the counts n2 and 
n2j . 
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Naïve Bayes EM 

Randomly assign examples probabilistic category labels. 
Use standard naïve-Bayes training to learn a probabilistic model  
      with parameters θ from the labeled data. 
Until convergence or until maximum number of iterations reached: 
          E-Step: Use the naïve Bayes model θ to compute P(ci | E) for 
                each category and example, and re-label each example  
                using these probability values as soft category labels. 
          M-Step: Use standard naïve-Bayes training to re-estimate the  
                parameters θ using these new probabilistic category labels. 



Assessing Clustering Tendency 

•  Assess if non-random structure exists in the data by measuring the 
probability that the data is generated by a uniform data distribution 

•  Test spatial randomness by statistic test: Hopkins Static 
–  Given a dataset D regarded as a sample of a random variable o, 

determine how far away o is from being uniformly distributed in 
the data space 

–  Sample n points, p1, …, pn, uniformly from D.  For each pi, find its 
nearest neighbor in D:  xi = min{dist (pi, v)} where v in D 

–  Sample n points, q1, …, qn, uniformly from D.  For each qi, find its 
nearest neighbor in D – {qi}:  yi = min{dist (qi, v)} where v in D 
and v ≠ qi 

–  Calculate the Hopkins Statistic: 

–  If D is uniformly distributed, ∑ xi and ∑ yi will be close to each 
other and H is close to 0.5.  If D is highly skewed, H is close to 0 
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Measuring Clustering Quality 

•  Two methods: extrinsic vs. intrinsic   

•  Extrinsic: supervised, i.e., the ground truth is available 

–  Compare a clustering against the ground truth using certain 
clustering quality measure 

•  Intrinsic: unsupervised, i.e., the ground truth is unavailable 

–  Evaluate the goodness of a clustering by considering how 
well the clusters are separated, and how compact the clusters 
are 

–  Ex. Silhouette coefficient 
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Measuring Clustering Quality: Extrinsic Methods  

•  Clustering quality measure: Q(C, Cg), for a clustering C 
given the ground truth Cg.  

•  Q is good if it satisfies the following 4 essential criteria 
–  Cluster homogeneity: the purer, the better 
–  Cluster completeness: should assign objects belong to 

the same category in the ground truth to the same 
cluster 

–  Rag bag: putting a heterogeneous object into a pure 
cluster should be penalized more than putting it into a 
rag bag (i.e., “miscellaneous” or “other” category) 

–  Small cluster preservation: splitting a small category 
into pieces is more harmful than splitting a large 
category into pieces 
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Silhouette Coefficient  

•  considering both the intra- and inter-cluster distances.  
•  For a point  xi,  the average of the distances to all points in 

the same cluster is calculated. This value is set to  ai.  
•  Then for each cluster that does not contain  xi, the average 

distance of  xi to all the data points in each cluster is 
computed. This value is set to  bi.  

•  Using ai and bi the silhouette coefficient of a point is 
estimated. The average of all the silhouettes in the dataset 
is called the average silhouettes width for all the points in 
the dataset.  
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Silhouette Coefficient  

•  To evaluate the quality of a clustering one can compute the 
average silhouette coefficient of all points. 
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Conclusions 

•  Unsupervised learning induces categories 
from unlabeled data. 

•  Agglomerative vs. Divisive. Hard vs. soft 
•  There are a variety of approaches, including: 

– HAC 
–  k-means 
– EM 


