Unsupervised learning. Clustering

Clustering

- Partition unlabeled examples into disjoint subsets of *clusters*, such that:
 - Examples within a cluster are very similar
 - Examples in different clusters are very different
- Discover new categories in an *unsupervised* manner (no sample category labels provided).

Clustering Example

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy (*dendrogram*) from a set of unlabeled examples.

• Recursive application of a standard clustering algorithm can produce a hierarchical clustering.

Aglommerative vs. Divisive Clustering

- *Aglommerative* (*bottom-up*) methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.
- *Divisive* (*partitional, top-down*) separate all examples immediately into clusters.

Direct Clustering Method

- *Direct clustering* methods require a specification of the number of clusters, *k*, desired.
- A *clustering evaluation function* assigns a real-value quality measure to a clustering.
- The number of clusters can be determined automatically by explicitly generating clusterings for multiple values of *k* and choosing the best result according to a clustering evaluation function.

Hierarchical Agglomerative Clustering (HAC)

- Assumes a *similarity function* for determining the similarity of two instances.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.

HAC Algorithm

Start with all instances in their own cluster. Until there is only one cluster: Among the current clusters, determine the two clusters, c_i and c_j , that are most similar. Replace c_i and c_j with a single cluster $c_i \cup c_j$

Hierarchical Clustering

• Use distance matrix as clustering criteria. This method does not require the number of clusters *k* as an input, but needs a termination condition

Dendrogram. Shows How Clusters are Merged

Decompose data objects into a several levels of nested partitioning (tree of clusters), called a <u>dendrogram</u>

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected component</u> forms a cluster

Cluster Similarity

- Assume a similarity function that determines the similarity of two instances: *sim*(*x*,*y*).
 - Euclidean /Mahalanobis, Hamming, Cosine similarity, Pearson r etc.
- How to compute similarity of two clusters each possibly containing multiple instances?
 - Single Link: Similarity of two most similar members.
 - Complete Link: Similarity of two least similar members.
 - Group Average: Average similarity between members.

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = min(t_{ip}, t_{iq})
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = max(t_{ip}, t_{jq})
- Average: avg distance between an element in one cluster and an element in the other, i.e., dist(K_i, K_j) = avg(t_{ip}, t_{jq})
- Centroid: distance between the centroids of two clusters, i.e., dist(K_i, K_j) = dist(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dist(K_i, K_j) = dist(M_i, M_j)
 - Medoid: a chosen, centrally located object in the cluster

Single Link Agglomerative Clustering

- Use maximum similarity of pairs: $sim(c_i, c_j) = \max_{x \in c_i, y \in c_i} sim(x, y)$
- Can result in "straggly" (long and thin) clusters due to *chaining effect*.
 - Appropriate in some domains, such as clustering islands.

Single Link Example

Complete Link Agglomerative Clustering

- Use minimum similarity of pairs: $sim(c_i, c_j) = \min_{x \in c_i, y \in c_j} sim(x, y)$
- Makes more "tight," spherical clusters that are typically preferable.

Complete Link Example

Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of n individual instances which is $O(n^2)$.
- In each of the subsequent *n*-2 merging iterations, it must compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall O(*n*²) performance, computing similarity to each other cluster must be done in constant time.

Computing Cluster Similarity

- After merging c_i and c_j , the similarity of the resulting cluster to any other cluster, c_k , can be computed by:
 - Single Link:

 $sim((c_i \cup c_j), c_k) = \max(sim(c_i, c_k), sim(c_j, c_k))$

– Complete Link:

 $sim((c_i \cup c_j), c_k) = \min(sim(c_i, c_k), sim(c_j, c_k))$

Non-Hierarchical Clustering

Non-Hierarchical Clustering

- Typically must provide the number of desired clusters, *k*.
- Randomly choose *k* instances as *seeds*, one per cluster.
- Form initial clusters based on these seeds.
- Iterate, repeatedly reallocating instances to different clusters to improve the overall clustering.
- Stop when clustering converges or after a fixed number of iterations.

K-Means

- Assumes instances are real-valued vectors.
- Clusters based on *centroids*, *center of gravity*, or mean of points in a cluster, *c*:

$$\mathbf{r}_{\mu(c)} = \frac{1}{|c|} \sum_{x \in c} \mathbf{r}_{x}$$

• Reassignment of instances to clusters is based on distance to the current cluster centroids.

Distance Metrics

• Euclidian distance (L₂ norm): $L_2(x, y) = \sum_{i=1}^m (x_i - y_i)^2$

•
$$L_1$$
 norm:
 $L_1(x, y) = \sum_{i=1}^m |x_i - y_i|$

• Cosine Similarity (transform to a distance by subtracting from 1):

$$1 - \frac{x \cdot y}{|x| \cdot |y|}$$

K-Means Algorithm

Let *d* be the distance measure between instances. Select *k* random instances $\{s_1, s_2, \dots, s_k\}$ as seeds. Until clustering converges or other stopping criterion: For each instance x_i :

Assign x_i to the cluster c_j such that $d(x_i, s_j)$ is minimal. (Update the seeds to the centroid of each cluster) For each cluster c_i

 $s_j = \mu(c_j)$

K Means Example (K=2)

Pick seeds Reassign clusters Compute centroids Reassign clusters Compute centroids Reassign clusters Converged! Time Complexity

- Assume computing distance between two instances is O(m) where m is the dimensionality of the vectors.
- Reassigning clusters: O(*kn*) distance computations, or O(*knm*).
- Computing centroids: Each instance vector gets added once to some centroid: O(*nm*).
- Assume these two steps are each done once for *I* iterations: O(*Iknm*).
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than O(n²) HAC.

K-Means Objective

• The objective of k-means is to minimize the total sum of the squared distance of every point to its corresponding cluster centroid.

$$\sum_{l=1}^{K} \sum_{x_i \in X_l} \left\| x_i - \mu_l \right\|^2$$

- Finding the global optimum is NP-hard.
- The k-means algorithm is guaranteed to converge a local optimum.

Seed Choice

- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.
- Select good seeds using a heuristic or the results of another method.

Buckshot Algorithm

- Combines HAC and K-Means clustering.
- First randomly take a sample of instances of size \sqrt{n}
- Run group-average HAC on this sample, which takes only O(*n*) time.
- Use the results of HAC as initial seeds for K-means.
- Overall algorithm is O(*n*) and avoids problems of bad seed selection.

Soft Clustering

- Clustering typically assumes that each instance is given a "hard" assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
- *Soft clustering* gives probabilities that an instance belongs to each of a set of clusters.
- Each instance is assigned a probability distribution across a set of discovered categories (probabilities of all categories must sum to 1).

Expectation Maximumization (EM)

- Probabilistic method for soft clustering.
- Direct method that assumes k clusters: $\{c_1, c_2, \dots, c_k\}$
- Soft version of *k*-means.
- Assumes a probabilistic model of categories that allows computing $P(c_i | E)$ for each category, c_i , for a given example, E.
- For text, typically assume a naïve-Bayes category model.

- Parameters $\theta = \{ P(c_i), P(w_i | c_i) : i \in \{1, ..., k\}, j \in \{1, ..., |V|\} \}$

EM Algorithm

- Iterative method for learning probabilistic categorization model from unsupervised data.
- Initially assume random assignment of examples to categories.
- Learn an initial probabilistic model by estimating model parameters θ from this randomly labeled data.
- Iterate following two steps until convergence:
 - Expectation (E-step): Compute $P(c_i | E)$ for each example given the current model, and probabilistically re-label the examples based on these posterior probability estimates.
 - Maximization (M-step): Re-estimate the model parameters, θ , from the probabilistically re-labeled data.

Initialize:

Assign random probabilistic labels to unlabeled data

Unlabeled Examples

+	-
+	-
+	-
+	-
+	-

Initialize:

Give soft-labeled training data to a probabilistic learner

Initialize: Produce a probabilistic classifier

E Step:

Relabel unlabled data using the trained classifier

M step: Retrain classifier on relabeled data

Continue EM iterations until probabilistic labels on unlabeled data converge.

Learning from Probabilistically Labeled Data

- Instead of training data labeled with "hard" category labels, training data is labeled with "soft" probabilistic category labels.
- When estimating model parameters θ from training data, weight counts by the corresponding probability of the given category label.
- For example, if $P(c_1 | E) = 0.8$ and $P(c_2 | E) = 0.2$, each word w_j in E contributes only 0.8 towards the counts n_1 and n_{1j} , and 0.2 towards the counts n_2 and n_{2j} .

Naïve Bayes EM

Randomly assign examples probabilistic category labels.
Use standard naïve-Bayes training to learn a probabilistic model with parameters θ from the labeled data.
Until convergence or until maximum number of iterations reached:
E-Step: Use the naïve Bayes model θ to compute P(c_i | E) for each category and example, and re-label each example using these probability values as soft category labels.
M-Step: Use standard naïve-Bayes training to re-estimate the parameters θ using these new probabilistic category labels.

Assessing Clustering Tendency

- Assess if non-random structure exists in the data by measuring the probability that the data is generated by a uniform data distribution
- Test spatial randomness by statistic test: Hopkins Static
 - Given a dataset D regarded as a sample of a random variable o, determine how far away o is from being uniformly distributed in the data space
 - Sample *n* points, $p_1, ..., p_n$, uniformly from D. For each p_i , find its nearest neighbor in D: $x_i = min\{dist \ (p_i, v)\}$ where v in D
 - Sample *n* points, q_1 , ..., q_n , uniformly from D. For each q_i , find its nearest neighbor in D - $\{q_i\}$: $y_i = min\{dist \ (q_i, v)\}$ where *v* in D and $v \neq q_i$

- Calculate the Hopkins Statistic:
$$H = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i}$$

- If D is uniformly distributed, $\sum x_i$ and $\sum y_i$ will be close to each other and H is close to 0.5. If D is highly skewed, H is close to 0

Measuring Clustering Quality

- Two methods: extrinsic vs. intrinsic
- Extrinsic: supervised, i.e., the ground truth is available
 - Compare a clustering against the ground truth using certain clustering quality measure
- Intrinsic: unsupervised, i.e., the ground truth is unavailable
 - Evaluate the goodness of a clustering by considering how
 well the clusters are separated, and how compact the clusters are
 - Ex. Silhouette coefficient

Measuring Clustering Quality: Extrinsic Methods

- Clustering quality measure: $Q(C, C_g)$, for a clustering C given the ground truth C_g .
- Q is good if it satisfies the following 4 essential criteria
 - Cluster homogeneity: the purer, the better
 - Cluster completeness: should assign objects belong to the same category in the ground truth to the same cluster
 - Rag bag: putting a heterogeneous object into a pure cluster should be penalized more than putting it into a *rag bag* (i.e., "miscellaneous" or "other" category)
 - Small cluster preservation: splitting a small category into pieces is more harmful than splitting a large category into pieces

Measuring Clustering Quality: Extrinsic Methods

- Clustering quality measure: $Q(C, C_g)$, for a clustering C given the ground truth C_g .
- Q is good if it satisfies the following 4 essential criteria
 - Cluster homogeneity: the purer, the better
 - Cluster completeness: should assign objects belong to the same category in the ground truth to the same cluster
 - Rag bag: putting a heterogeneous object into a pure cluster should be penalized more than putting it into a *rag bag* (i.e., "miscellaneous" or "other" category)
 - Small cluster preservation: splitting a small category into pieces is more harmful than splitting a large category into pieces

Silhouette Coefficient

- considering both the intra- and inter-cluster distances.
- For a point x_i , the average of the distances to all points in the same cluster is calculated. This value is set to a_i .
- Then for each cluster that does not contain x_i, the average distance of x_i to all the data points in each cluster is computed. This value is set to b_i.
- Using a_i and b_i the silhouette coefficient of a point is estimated. The average of all the silhouettes in the dataset is called the average silhouettes width for all the points in the dataset.

Silhouette Coefficient

- considering both the intra- and inter-cluster distances.
- For a point x_i , the average of the distances to all points in the same cluster is calculated. This value is set to a_i .
- Then for each cluster that does not contain x_i, the average distance of x_i to all the data points in each cluster is computed. This value is set to b_i.
- Using a_i and b_i the silhouette coefficient of a point is estimated. The average of all the silhouettes in the dataset is called the average silhouettes width for all the points in the dataset.

Silhouette Coefficient

• To evaluate the quality of a clustering one can compute the average silhouette coefficient of all points.

Conclusions

- Unsupervised learning induces categories from unlabeled data.
- Agglomerative vs. Divisive. Hard vs. soft
- There are a variety of approaches, including:
 HAC
 - k-means
 - -EM