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Distance-based Learning 

Based on Raymond J. Mooney’s slides and 
Peter Flach book 
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Distance-based Learning 

•  Supervised: Instance-based learning (k-nearest neighbors) 

•  Unsupervised: Clustering 
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Instance-Based Learning 

•  Unlike other learning algorithms, does not involve 
construction of an explicit abstract generalization but 
classifies new instances based on direct comparison and 
similarity to known training instances. 

•  Training can be very easy, just memorizing training 
instances. 

•  Testing can be very expensive, requiring detailed 
comparison to all past training instances. 

•  Also known as: 
–  Case-based  
–  Exemplar-based 
–  Nearest Neighbor 
–  Memory-based 
–  Lazy Learning 
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Example 
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Similarity/Distance Metrics 

•  Instance-based methods assume a function for determining 
the similarity or distance between any two instances. 

•  For continuous feature vectors, Euclidian distance is the 
generic choice: 

Where ap(x) is the value of the p th feature of instance x. 

•  For discrete features, assume distance between two values 
is 0 if they are the same and 1 if they are different (e.g. 
Hamming distance for bit vectors). 

•  To compensate for difference in units across features, scale 
all continuous values to the interval [0,1]. 
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Minkowski distance I 

•  Instance 
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Minkowski distance II 
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Minkowski distance III 
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Means and distances I 
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Means and distances II 
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The basic linear classifier is distance-based 
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Other Distance Metrics 

•  Mahalanobis distance (!) 
–  Scale-invariant metric that normalizes for variance. 

•  Cosine Similarity 
–  Cosine of the angle between the two vectors. 
–  Used in text and other high-dimensional data. 

•  Pearson correlation (!) 
–  Standard statistical correlation coefficient. 

•  Edit distance 
–  Used to measure distance between unbounded length 

strings. 
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Example: Centroids and medoids 
Flach Fig. 8.5. p. 239 



14 

K-Nearest Neighbor 

•  Calculate the distance between a test point 
and every training instance. 

•  Pick the k closest training examples and 
assign the test instance to the most common 
category amongst these nearest neighbors. 

•  Voting multiple neighbors helps decrease 
susceptibility to noise.  

•  Usually use odd value for k to avoid ties. 
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Implicit Classification Function 

•  Although it is not necessary to explicitly calculate 
it, the learned classification rule is based on 
regions of the feature space closest to each 
training example. 

•  For 1-nearest neighbor with Euclidian distance, 
the Voronoi diagram gives the complex 
polyhedra segmenting the space into the regions 
closest to each point. 
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One vs. Two (and more) nearest neighbors 
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Efficient Indexing 

•  Linear search to find the nearest neighbors is not 
efficient for large training sets. 

•  Indexing structures can be built to speed testing. 
•  For Euclidian distance, a kd-tree can be built that 

reduces the expected time to find the nearest 
neighbor to O(log n) in the number of training 
examples. 
–  Nodes branch on threshold tests on individual features 

and leaves terminate at nearest neighbors. 
•  Other indexing structures possible for other 

metrics or string data. 
–  Inverted index for text retrieval. 
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kd-tree 

•  The kd-tree is a binary tree in which every node is 
a k-dimensional point.  

•  Every non-leaf node generates a splitting 
hyperplane that divides the space into two 
subspaces.  

•  Points left to the hyperplane represent the left sub-
tree of that node and the points right to the 
hyperplane by the right sub-tree.  

•  The hyperplane direction is chosen in the 
following way: every node split to sub-trees is 
associated with one of the k-dimensions, such that 
the hyperplane is perpendicular to that dimension 
vector.  
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Nearest Neighbor Variations 

•  Can be used to estimate the value of a real-
valued function – regression - by taking the 
average function value of the k nearest 
neighbors to an input point. 

•  All training examples can be used to help 
classify a test instance by giving every 
training example a vote that is weighted by 
the inverse square of its distance from the 
test instance. 
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Feature Relevance and Weighting 

•  Standard distance metrics weight each feature 
equally when determining similarity. 
–  Problematic if many features are irrelevant, since 

similarity along many irrelevant examples could 
mislead the classification. 

•  Features can be weighted by some measure that 
indicates their ability to discriminate the category 
of an example, such as information gain. 

•  Overall, instance-based methods favor global 
similarity over concept simplicity. 
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Rules and Instances in 
Human Learning Biases 

•  Psychological experiments 
show that people from 
different cultures exhibit 
distinct  categorization 
biases. 

•  “Western” subjects favor 
simple rules (straight stem) 
and classify the target 
object in group 2. 

•  “Asian” subjects favor 
global similarity and 
classify the target object in 
group 1.  
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Other Issues 

•  Can reduce storage of training instances to a small set of 
representative examples. 
–  Support vectors in an SVM are somewhat analogous. 

•  Can hybridize with rule-based methods or neural-net 
methods. 
–  Radial basis functions in neural nets and Gaussian kernels in 

SVMs are similar. 
•  Can be used for more complex relational or graph data. 

–  Similarity computation is complex since it involves some sort of 
graph isomorphism. 

•  Can be used in problems other than classification. 
–  Case-based planning 
–  Case-based reasoning in law and business. 
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Conclusions 

•  IBL methods classify test instances based 
on similarity to specific training instances 
rather than forming explicit generalizations. 

•  Typically trade decreased training time for 
increased testing time. 


