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In the field of biological regulation, models dictated by experimental work are usually complex 
networks comprising intertwined feedback loops. In this paper the biological roles of individual 
positive loops (multistationarity, differentiation) and negative loops (homeostasis, with or 
without oscillations, buffering of gene dosage effect) are discussed. The relationship between 
feedback loops and steady states is then clarified, and the problem: "How can one conveniently 
disentangle complex networks?" is then considered. Initiated long ago, logical descriptions have 
been generalized from various viewpoints; these developments are briefly discussed. The recent 
concept of the loop-characteristic state, defined as the logical state located at the level of the 
thresholds involved in the loop, together with its application, are then presented. Biological 
applications are also discussed. 

1. Introduction. 
1.1. General features. 
Feedback loops. Regulations may be defined as the constraints that adjust 

the rate of production of the elements of a system to the state of the system and 
of relevant environmental variables. The main operators of these adjustments 
are feedback loops. In this paper, elements of a system form a feedback loop 
when their interactions can be represented by an oriented circuit. [Graph 
theoreticians use the word "circuit" (sometimes "cycle": Eisenfeld, 1987) for a 
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closed oriented pathway of any length. They reserve the word "loop" for the 
particular case of one-element circuits. In contrast, Tyson (1975) uses "loop" 
for circuits comprising at least three elements. In between, biologists use the 
term "feedback loops" for regulatory circuits of any length. This usage is 
adopted in this paper.] For a detailed analysis see, for example, Thomas and 
D'Ari (1990). Let us here simply recall a few essential points: 

(1) In a feedback loop each element exerts an influence on the evolution of 
all elements of the loop, including itself. There are loops in which each 
element exerts a positive influence on its own further development 
("positive loops") and loops in which each element exerts a negative 
influence on its own further development ("negative loops"). Whether a 
loop is positive or negative depends only on the parity of the number of 
negative interactions in the loop: one deals with a positive or negative 
loop according to whether the number of negative interactions is even or 
odd. 

(2) Assuming (see sections 2 and 3) that the essential role of feedback loops is 
to ensure homeostasis (if negative) or multistationarity (if positive), a 
loop is considered functional if it actually fulfils this role. 

Networks and their symbolization. Many biological systems can be seen as 
networks, usually comprising intertwined feedback loops, directly or indirectly 
connected to external inputs and outputs. It is often convenient to symbolize 
these networks by graphs of interactions, in which the vertices represent crucial 
elements and the edges their interactions. If element j exerts a positive (vs 

+ 
negative) action on element i, one writesj ~ i (vsj ~ i); one thus deals with 
oriented signed graphs. Alternatively, a network can be represented by a 
matrix in which element aij (i.e. the element located at thejth column of the ith 
row) describes whether and how element j acts on the evolution of element i. 

Shape of the interactions and incidence on formal description. It is 
important to remark that, depending on the situation, the elements considered 
can be molecules, cells, populations of cells or organisms. Accordingly, the 
nature of the interactions can be extremely diverse (edges may represent 
chemical transformations, positive or negative regulations, allosteric trans- 
itions, etc.). 

Those interactions which have a regulatory character are, in general, non- 
linear. In fact, the relationship between the concentration of a regulator and its 
effect is most often doubly non-linear: there is a threshold of concentration 
below which the regulator is inefficient and two boundary values of the rate of 
expression of the regulated element. This type of situation is described by a so- 
called sigmoid curve (Fig. 1). The threshold above which variable j acts on 
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rate of expression 

upper boundary ~ l  

lower boundary 

t concentration of the 
(positive) regulator 

threshold 
Figure l. Example of a positive sigmoid interaction. 

variable i is labelled Sij. Strictly speaking, the notion of threshold is completely 
unambiguous only in the idealized case of step functions. In sigmoids, like the 
Hill functions, a typical nominal value of the threshold is the value of the 
variable for which the function has its half-maximal value. However, it would 
be just as possible to define the threshold of a variable as the value 
corresponding to the inflexion point. 

As is well-known, the non-linear character of regulatory interactions 
complicates analysis, essentially because non-linear differential equations 
cannot usually be treated analytically. Simplified description using linear 
idealizations hold only in the close proximity of steady states. A diametrically 
opposite attitude consists of reasoning as if the regulator is "absent" below its 
threshold concentration and fully active above it. This "step function" is an 
infinitely non-linear idealization. Contrary to the linear caricature, it turns out 
that the stepwise caricature keeps all the essential characters of systems whose 
interactions are sigmoid in shape (see Glass and Kauffman, 1973; Thomas and 
D'Ari, 1990). In particular, the number, nature and location of steady states (if 
not the stability of foci) is generally preserved when one proceeds from a 
sigmoidal system to a stepwise description. 

To take advantage of this situation, one can describe regulatory systems with 
"piecewise linear" differential equations (see Glass and Pasternak, 1978; 
Snoussi, 1989), or use a logical description (see Kauffman, 1969; Thomas, 1973; 
Glass, 1975), in which variables and functions can take only a limited number 
of values, typically only two (0 and 1). 

Biological application of the concept of the loop-characteristic state. As 
described briefly in section 2 (see also Thomas and D'Ari, 1990; Thomas, 1991), 



250 R. THOMAS et  al. 

the logical description has become more and more sophisticated. Nevertheless, 
thanks to the concept of the loop-characteristic state (state located at the 
thresholds involved in the loop; Thomas, 1991; Snoussi and Thomas, 1993), 
the genuine simplicity of the method has been restored. In short, a complex 
network is now treated by focusing on the loops it contains and their 
interactions, rather than on the individual interactions. Or, using a metaphor,  
we operate as a clock-maker who first analyses a clock by focusing on the 
wheels and their interactions rather than immediately on the individual teeth of 
the wheels. 

The main purpose of this, and the following, paper is to show how this 
concept can be used in biological systems. 

1.2. Biological role of negative loops. 
Homeostasis and oscillations. In a negative loop each element exerts a 

negative control on its own development via the other elements (if any) of the 
loolY-an essential result is homeostasis. The loop operates as a thermostat and 
tends to maintain the variables involved in the loop at, or near, supposedly 
optimal intermediate values, somewhere between the low boundary level which 
would prevail if the synthetic device was off and the high boundary level which 
would prevail if the device was fully on. In fact, each of the elements of the loop 
stabilizes at, or around, a level corresponding to its own threshold of activity in 
the loop. More specifically, when it is said that this homeostasis can stabilize 
products at, or around, this or that level we allude to the fact that, according to 
the case, the steady state may be stable or unstable. If it is stable the typical 
dynamics is a damped oscillation, tending toward a stable value; if it is unstable 
the typical situation is a sustained oscillation, with a trajectory tending toward 
a limit cycle. 

Many systems can be described by autonomous ordinary (usually non- 
linear) differential equations relating the rates of synthesis to the concentra- 
tions. It can be shown that, for proper parameter values, a negative loop has the 
following properties: 

(1) If it is a one-element loop it generates a single, stable, steady state; 
(2) If it is a two-element loop it generates a single steady state which is a 

focus; this means that it is approached or departed from in a periodic 
way. This focus is stable unless it is destabilized by a positive loop grafted 
on one of the elements of the negative loop (in this case one can have a 
limit cycle in spite of the low dimensionality). 

(3) Negative loops with three or more elements can generate damped or 
stable oscillations depending on parameter values. 

Some descriptions use differential equations with finite time delays, At, such 
that the rate of synthesis of a product at time t is related to the situation of the 
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system at time t -A t .  In this case, one can find oscillations, even with one- 
element negative loops. Note that the use of finite time delays is in fact often 
justified in biology. For example, when one switches "on" a gene, there is an 
absolute delay before the very first molecule of active gene product appears. 

In any case, the essential role of a negative loop is to generate homeostasis 
around a steady state located near the thresholds. Our definition of 
homeostasis covers, in fact, two physiologically different situations. When the 
steady state is stable, or leads to weak oscillations, the system really functions 
as a thermostat and the oscillations can be considered as imperfections of the 
stabilizing device; however, when it leads to sizeable oscillations these 
oscillations may have a physiological meaning of their own (see Goldbeter, 
1990). 

Buffering of gene dosage effect. A number of genes are negatively 
autoregulated. An important aspect of the physiological meaning of this 
situation has not been understood. When gene X is negatively controlled by 
another regulator there is, of course, a reduction of its level of expression, but 
this level nevertheless remains sensitive to gene dosage. This means that if there 
are n copies of gene X it will be expressed n times more than if there is a single 
copy (even though in both cases the rate of expression will be reduced by a 
given factor by the repressor). The picture is completely different for a gene 
which is negatively autoregulated. As mentioned above, if the negative loop is 
functional the gene product will stabilize at a steady level near its own 
threshold of efficiency; more concretely, if the product of gene X inhibits its own 
synthesis when its concentration exceeds a threshold, s, the steady level of this 
product is close to s, and this is independent of the number of copies of gene X. 
Thus, if negative autoregulation is efficient, it will tend to abolish gene dosage 
effects. [A concrete example (cro negative autoregulation) is described in the 
second paper of this series.] 

1.3. Biological role of positive feedback loops. As far as we know, the first 
clear suggestion that epigenetic differences and, by inference, differentiation 
might be ascribed to multistationarity is found in a short comment  by 
Delbr/ick following a paper by Sonneborn (Delbr/ick, 1949). Thereafter, two 
concrete cases of epigenetic differences were described and clearly understood. 
The first situation deals with bacterial populations which can be durably (150 
generations or more!) Mocked in either of two phenotypical states (lac operon, 
on or off) depending on a detail of their previous history (Novick and Weiner, 
1957; Cohn and Horibata, 1959). The second example concerns the decision for 
or against immunity in temperate bacteriophages (see the second paper of this 
series). 
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The mechanism proposed by Delbrfick (1949) consists of two metabolic 
chains that are cross-inhibited by their products. In the Novick-Cohn system 
the presence of intracellular inducer is required for the synthesis of permease 
but, under the experiments used, the internalization of inducer requires 
permease: a vicious circle. In the lambda system the alternative states are due to 
the existence of two genes, cI and cro, which repress each other (see the second 
paper of the series). The common thread to all these theoretical and 
experimental situations is the presence of a positive feedback loop in the logics 
underlying the processes. 

It can be shown that positive feedback loops can generate multistationarity, 
or, more generally, a multiplicity of regimes. Consider, for example, the 
situation of two stable limit cycles whose basins are separated by an unstable 
limit cycle; even though we do not have multiple steady states, the system has a 
choice between two attractors (which in this situation are not punctual). 
Typically, a single positive loop gives the variables involved in the loop a stable 
choice between two extreme values, a low level close to the boundary value, 
which would prevail if the synthetic device was off, and a high level close to the 
boundary value which would prevail if the device was fully on. Somewhere 
between these two stable states there is typically a third, unstable, steady state 
on the separatrix separating the two basins of attraction. It is now clear that at 
least one positive loop is a necessary condition for multistationarity. This 
statement, proposed by one of us as a conjecture (Thomas, 1981, 1983) has now 
been formally demonstrated in differential terms, independently by Snoussi, 
Plahte and Thomas (see Thomas, 1994; Thieffry et al., 1995; Plahte et al., 
1995). 

The interest of this statement stems from the increasing evidence that 
differentiation is essentially epigenetic in nature, i.e. differentiation is 
essentially the biological modality of multistationarity. As a positive loop is a 
necessary condition for multistationarity, it would be implied that any 
explanation of most developmental processes must involve at least one positive 
loop in its underlying logics, whatever the detailed molecular mechanisms. A 
concrete prediction is that in order to discover the key genes involved in 
differentiation one should find a way to identify the genes which exert a positive 
control (direct or indirect) on their own expression. 

An isolated positive loop can provide just two alternative sets of stable values 
for the variables of the loops. But, in developmental processes, one has to 
account for many steady states (assuming that each cellular type corresponds 
to a stable steady state of the system). It can easily be shown that m independent 
positive loops can generate 3" steady states, 2" of which are stable. (Additional 
interactions usually tend to reduce the number of steady states, except 
however, if they create additional positive loops.) Thus, seven genes subject to 
positive autoregulation could account for 27 (128) cellular states; more 
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generally, in order to have many steady states several positive loops are 
required. This holds for logical systems and for differential systems using 
sigmoid interactions. 

Note that isolated positive loops comprising only positive interactions are 
vicious circles in the sense that it is understood that they can be stably "on" or 
"off", but there is no way to control which situation will be realized. In fact, 
whenever such a loop is found in nature there are additional devices which 
permit control of their state. The interesting point is that a positive loop 
("switch") can be switched on (or off) durably by a transient signal ("trigger"). 
In embryonic development, the authors feel strongly that an act of 
determination will often be found associated with a positively autocontrolled 
gene, responsible for the possibility to have binary choice, together with an 
additional mechanism responsible for the decision itself. 

2. Formal Descriptions. 
2.1. Differential description. Like Glass (1975), 

generally use differential equations of the forms: 
and many others, we 

x i = k i F i i ( x 1 ,  x 2 ,  x 3 . . . .  X n ) - - k _ i x i ,  

in which F/involves sigmoid functions or their Boolean caricature and k_ ixi is a 
linear term of decay which exists for each constituent and consequently does 
not need to be explicitly mentioned in the logical description. 

Note: 1. In order to avoid any confusion, italic characters are used for real 
variables and parameters (as in differential equations) and Roman characters 
for logical variables and parameters. 2. The sigmoids most currently used are 
Hill functions. Thus, one uses as increasing sigmoids: F+ (x)= x"/(s" + x"), 
which have the value 0 for x = 0, the value 1 for high x and the value 0.5 for x = s. 
When n tends to infinity these curves tend to step functions with a well-defined 
threshold, noted s (s from the French seuil). Similarly, for decreasing sigmoids, 
one uses: F-(x)-=s"/(s"+x"), with F - =  1 - F  +. 

2.2. Generalized logical formalism. The core of the present paper deals with 
the use of the concept of loop-characteristic states in the analysis of biological 
regulatory systems. First consider some notions that are necessary for 
understanding this concept (Thomas and D'Ari, 1990; Thomas, 1991; Snoussi 
and Thomas, 1993). 

Asynchronous description. With each pertinent element of the system a 
logical variable x, whose discrete value describes the level of the element, is 
associated. The present state of the sytem is thus described by a state vector. 

In order to describe the evolution of the system, with each element we also 
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associate an operator X = fx(X, y, z , . . . )  which describes the factors acting on 
the evolution of x. For  each combination of values of the variables (i.e. each 
state of the system) there is a value X. X is termed the image of x because its 
value is the value toward which x tends when the system is in the state 
considered; in other words, when X # x there is an order for x to adopt the value 
of X. In this perspective, the evolution of the variable depends on the following 
simple rules: 

(1) if X = x ,  variable x is steady; 
(2) if X > x, variable x has an order to increase its value; 
(3) if X < x, variable x has an order to decrease its value. 

It might be said that, in a genetic system, x = 1 means that the gene product is 
present and X = 1 that the gene is "on"; indeed, if the gene is "on" the product  is 
being synthesized and it will be present after a proper delay. Similarly, x = 0 
means that the gene product is absent, X = 0 that the gene is "off"; indeed, if the 
gene is "off" the product  (which is perishable) will disappear after a proper time 
delay (Thomas, 1973; Glass, 1975). Note: X is not  a rate of synthesis, but rather 
the prospective value of x; its dimensionality is that of a concentration (like x). 
However, the value of X is related to the rate of synthesis of x in the sense that 
when this rate is high enough the future level of x will be high. 

At any time, the state of the system is described by the state vector (x, y, 
z , . . . )  and its evolution by the image vector (X, Y, Z , . . . ) .  When the state and 
image vectors are the same it is a stable logical state. When the state and image 
vectors are different it is essential to realize that the image of a state is usually 
not its next state, simply because usually only one variable switches offor  on at 
a time. If two or more genes are switched on by a common signal it will take 
different times before their products reach an efficient level, and if two or more 
genes are switched off together it will take different times before their products 
become inactive, only if because different proteins have different life times. 

Example. Let us examine the system X = 5', Y =~,  which exists in genetics: 
two genes which "contradict" each other in the sense that the product of one 
gene prevents the expression of the other, like genes cI and cro in bacteriophage 
lambda. The state table is: 

x y X Y 

6 6 1 1  
[-0 1] 0 1 
[1 0 1 1  0 

1 0 0 

The + and - superscripts on the elements of the state vector are used when a 
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variable and its image have different logical values; x y / X Y = 0 0 / l l  can be 

written more  compact ly  as 6i~. In the table 6~/11 appears,  which is redundant  
but  convenient.  

It can be seen that  for states 01 and 10 the state and image vectors are the 
same and consequently one deals with stable states (square brackets in the 

table). In states i~j and T1 there are two orders. In state 6~ there is an order to 
switch x from 0 to 1 and an order to switch y from 0 to 1. The possibility that  
these orders are obeyed in exact simultaneity is certainly unlikely; in most  real 
cases it must  be expected that  either x or y will reach its threshold value first. 

The next state of ~J~J will thus usually not  be 11, but  rather [-10] or [01]; note 
that  these are stable states, and in either case the "second" order has 
disappeared. Thus,  we write: 

[10] y )  ~ ~ TT 

[01l 

This example already shows that  a positive loop can generate mult istat ion- 
arity. As a mat ter  of fact, any isolated positive loop would behave this way. 

Use of n-valued logical variables. The criterion to endow a variable with 
more  than two (0 or 1) logical values (0, 1, 2 , . . . )  is simple: ifa variable has two 
or more  distinct actions it is assumed that  these actions take place above 
distinct thresholds. Thus,  if a variable has n actions, generally n thresholds are 
used, and the variable has n + 1 logical values (Van Ham,  1979). 

In t roduct ion  of logical parameters.  To render the logical description more  
supple and more  general, Snoussi has in t roduced logical parameters (Snoussi, 
1989; Snoussi et  al. in Thomas  and D'Ari, 1990). Logical parameters  assign a 
"weight" to each interaction. These parameters  have discrete values, with the 
same scale as the corresponding variable. The space of logical parameters thus 
comprises a finite and often small number  of boxes, which display character- 
istic behaviour (see example on p. 258). 

Attr ibut ion of a logical value to thresholds. In systems compris ing step or 
sigmoid interactions some of the steady states are located at, or near, threshold 
values and are not  "seen" in classical logical descriptions. A logical scale is 
introduced,  explicitly including the threshold values, 0, s (1), 1, s ~2), 2 , . . . ,  in 
which s m,  s ~2), . . .  are the generalized logical values ascribed to the lower, 
second, . . .  thresholds, whatever their real values s (~), s (2), . . . .  Singular (vs 
regular) states are those in which one or more  variable has a threshold value. 
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The image of singular logical states has to be defined. The general idea is that 
the image of a singular state can be derived from the images of the regular states 
that flank the singular state considered. Thus, the image of a singular state can 
be an interval. This leads to the generalization of the notion of logical steady 
state as follows: a logical state is steady iff for each variable i the image is 
consistent with the relation X~ = x~. 

If n of the variables of a singular state are located on thresholds then this state 
has 2 n adjacent regular states. Snoussi (1989) has demonstrated that in order to 
check the steadiness of a singular state one has to consider only two "relevant" 
adjacent states: those whose images are maximal and minimal (Snoussi and 
Thomas,  1993). Thus, a singular state is steady if its image is comprised in the 
interval of the images of the relevant adjacent states. 

Example. Let us illustrate the use of this generalized formalism by a simple 
example. The graph: 

or the matrix: 

(0+:) 
tell us that x is under negative control o fy  and that y is under positive control of 
x and itself. 

y acts both on x and on itself, and there is no reason why the negative control 
exerted on x and the positive control exerted on y should involve the same 
threshold. Thus, we endow variable y and its image Y with two thresholds, s ~1) 
and s (2), and three logical values 0, 1 and 2. We write: 

Multi-level 
logical variables Real variables Boolean variables 

y = 0  y < s  r y~)=0  y{2)=0 
y = l  s ~ l ) < y < s  ~2) yta)=l  y(2)=0 
y = 2  y > s  ~21 y t l )= l  yt2)=l 

y~l) and y{2) are Boolean variables whose value, 1 or 0, tells whether 
or not y exceeds threshold s ~l) or s t2), respectively. 

In contrast, x acts at a single level. Thus, it is assigned a single threshold and 
only two logical values, 0 and 1. 
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Let us assume that  y acts on x above its lower threshold s (~) and on itself 
above its higher threshold s (2). The graph and matrix become: 

+1 

-1 

and 

respectively. 
This could be provisionally described by the Boolean equations: 

X=y(1) (y(1) means "not  ym,,) 

y = x(1) + y(2), 

the state table is then completed as follows: 

(1) if condi t ion y(1) is fulfilled, we write X =  1, otherwise X = 0 ;  
(2) if either or both  condit ions x (1), y(:) is fulfilled, then we write Y =  l,  

otherwise Y = 0. 

However,  we want  to further refine the description and introduce logical 
parameters which give a weight to the terms of the logical expressions. We 
associate: 

(1) with term y(~), parameter  K~; 
(2) with term x (1), parameter  K2; 
(3) with term yt2), parameter  K3; 

(4) with the logical sum x m + yt2), parameter  K23. 

The state table can now be filled with the values of images X and Y: 

(1) if condit ion y(1) is fulfilled (i.e. y = 0) we write X = K1; otherwise (i.e. y = 1 
or 2) we write X = 0; 

(2) if condit ion x ~1) is fulfilled (i.e. x =  1) we write Y =  K2; 
(3) if condit ion y(2) is fulfilled (i.e. y = 2 )  we write Y = K 3 ;  
(4) if condit ions x (~) and y(2) are both  fulfilled (i.e. x = 1 and y = 2) we write 

Y = K 2 3 ;  
(5) if neither x m nor  y(2) is fulfilled (i.e. x = 0  and y = 0  or 1) we write Y = 0 .  

In addit ion,  logical functions and parameters  are allowed to take the same 
values as the corresponding multi-level variables (i.e. function X and parameter  
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K~ will take values 0 or 1, whereas function Y and parameters K2, K 3 and K23 
will take values 0, 1 or 2). This gives: 

x y  

0 0  
0 1  
0 2  
1 0  
1 1  
1 2  

or, in a disposition which recalls the 

X Y 

K 1 0 
0 0 
0 K 3 
K1 K2 
0 K 2 
0 K23 

variable space: 

0210K 3 ~- 1 2 / 0 K 2 3  

0 1 / 0 0  " q -  I I / 0 K  2 

0 0 / K 1 0  1 0 / K 1 K  2 

0 1 x 

In this table the commands (suffixes, - or + ,  and arrows), which are present 
whatever the values of the parameters,  are given. It is immediately apparent,  for 
example, that state 00 will be steady iff K t = 0, state 02 will be steady iff K 3 --2 
and state 10 iff K 1 = 1 and K 2 = 0; the other states cannot  be steady. 

As variable x has two values, parameter  K 1 can take the values 0 or 1, and as 
variable y has three values, parameters K 2, K 3 and K23 can take the values 0, 1 
or 2 (with the restriction that K23 ~> K2, K3). Depending on the value of these 
parameters, this general state table splits up into several particular state tables, 
which describe all the qualitatively different situation. 

As an example, three tables are given, corresponding to some combinations 
of the parameter  values: 

Y Y Y 

2 2 2 [02] -',- 12 

oi  " -  i ]  

0 0  - ~  [101 

[02] " . -  i2 

1 01 , , i -  i l  1 

( ;  t. 
0 00  - ~ "  10 0 

02  " - -  12 

Ol ~ ' -  i l  

( ;  t+ 
0 0  - * "  10 

0 1 x 0 1 x 0 1 
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where the compact  notat ion has been used to describe the commutat ion 
commands.  In the first situation the system has a choice between two stable 
states [0 2] and [1 0]; in the second situation there is a choice between a stable 
state [02]  and an oscillation around the thresholds s m ofx  and s m of y; in the 
third case the oscillation is the same, but there is no stable state in 02. 

The introduction of the logical parameters has made the analysis both more 
refined and more general. Each term in the logical expression has its proper 
weight and the state table covers all the qualitatively distinct situations, rather 
than describing a particular situation. Instead of being obliged to scan a 
number  of real parameters for all possible values there is a finite number  of 
combinations of values of the logical parameters. 

The attribution of logical values to the thresholds allows to find all the steady 
states. 

Example. For instance, in the preceding example, the logical variable can 
now take any of three values, 0, s (1) and 1, whereas y can take any of five values, 
0, s ~ 1, s ~2) and 2. We distinguish between two types of state: 

(1) "regular states" (e.g. 00, 01, 11, 02, etc.), for which each variable has an 
integer value; 

(2) "singular states" (e.g. s (1) 0, 0 s (*), s (*) s (1), s (1) S (2), etc.), for which one or 
more variable has a threshold value. 

The complete state tables are: 

Y Y 

2 2 [021 "~-- i 2  

01 "~-- 11 

O0 - - ~  [101 

2 02  .9- -  12 

1 O T / ~  "11 

0 O0 _ 

0 1 x 0 1 x 0 1 x 

It is easy to check, for the parameter  values chosen, that the singular states 
mentioned are indeed steady. For  example, in the first and second situations, 
the regular states adjacent to 0 s (2) and their images are: 

x y  

O 1  
0 S (2) 

0 2  

X Y 

0 0 

0 2 

It can be seen that in state 0 S (2), X = X = 0 and S (2) is located within the interval 
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0-2 of the images of the adjacent states. Thus, 0 S (2) is a steady state of the 
system for the parameter values chosen. 

3. Loop Characteristic States and Steady States. 
3.1. Loops and unions of disjoint loops. There is a surprisingly simple 

relation between loops and "singular steady states", i.e. those logical steady 
states located on one or more threshold(s). In order to grasp this relation in its 
full generality, we first extend the notion of loop and consider not only loops 
proprio sensu but also unions of disjoint loops (disjoint loops are loops which 
have no variable in common). This generalization has already been proposed 
by Eisenfeld and De Lisi (1985) and Eisenfeld (1987), who use the term 
"g-cycles" ("g" for "generalized"). 

Consider the system of Fig. 2--it is easy to localize five individual loops 
(Fig. 3A). Each element of the "main" diagonal of the interaction matrix 
represents a one-variable loop, pairs of elements symmetrical to this diagonal 
represent two-variable loops, etc. The unions of disjoint loops are given in 
Fig. 3B. Note, that like the individual loops, the unions of disjoint loops may or 
may not involve all the variables of the system. 

(A) 

x y z 
X 0 0 a13 

Y a21~/a23 

Z 0 a32 Q 

(B) 

Figure 2. Example of a three-variable regulatory network. (A) Graph of interactions 
(without specification of weights and signs); (B) the corresponding matrix of 
interactions. In (B) the existant (i.e. non-zero) interactions have been labelled a U 
according to their location in the matrix; the loops are indicated by lines or circles 

for the one-element loops. 

(A) 

(B) 

~3 

a32 

| 
a32 ] 

/231 
a32 ] 

| 

0 6 

| 

| 

@ 0) 
%/ 

Figure 3. The feedback loops of the three-variable system of Fig. 2. (A) Individual 
loops; (B) unions of disjoint loops. 
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As mentioned in Snoussi and Thomas (1993), loops and unions of disjoint 
loops correspond to sequences of elements (aij) of the matrix of interactions (or, 
as well, of the Jacobian matrix in the differential description), such that the 
sequence ofthej's is a permutation of the sequence of the i's. As a matter of fact, 
individual loops correspond to cyclic permutations and generalized loops to 
permutations in general. [The permutations of {1, 2, 3} are: (a) 1 2 3, (b) 1 3 2, 
(c) 2 1 3, (d) 2 3 1, (e) 3 1 2, (f) 3 2 1. In a12 a23 a31 the sequences of thej's and of 
the i's are related by permutation d--*a; in al l  a/3 a32 by permutation b--,a; in 
all  a22 a33 by permutation a--,a.] 

3.2. Loop-characteristic state. The characteristic state of a loop or a union 
of disjoint loops is the singular state located at the thresholds of the loop, i.e. at 
the thresholds above which the variables of the loop are operative. Although 
this notion arises from the logical description it will be illustrated firstly in 
differential terms. 

Figure 4 describes the positive loop x~t"-----~; in differential terms. In 
_ . ~  J 

F i g .  4 A  t h e  l o o p  is f u n c t i o n a l ,  i .e.  m u l t i - s t a t i o n a r i t y  is e n s u r e d ,  in  F i g .  4B it  is 

n o t .  T h i s  d e p e n d s  o n  p a r a m e t e r  v a l u e s ,  a n d  m o r e  s p e c i f i c a l l y  o n  t h e  r e l a t i o n  

Y Y 

1 1 

s (1) 

4-4- 

0 

dy/dt=O 

dx/dt=O 

~_ 4-- ~l~" 

j ,r  

s(! ) 1 

(A) 
Figure 4. A system consisting 

dx/dt=O 

s (Y 

4-- 
dy/dt=O 

0 
, , ~(~ 

x 0 s (~) 1 x 

(B) 
of a two-element positive loop. x (~)y(-~) is 

represented in differential terms in the space of the real variables xy. The nullclines 
dx/dt=O and dy/dt=O have been plotted. The steady states are, of course, the 
intersections of these curves. (A) and (B) represent two typical situations and 
correspond to different sets of parameter values. In (A) the loop-characteristic state 
s m s I1) is steady and there are three steady states. In (B) the loop-characteristic state 
s (a) s (1) is not steady and there is a single steady state at the level of the boundaries of 
the system. " +  - "  indicates that dx/dt > 0 and dy/dt < 0, etc. The arrows indicate 
the direction of the trajectories. The equations used are dx/dt = kl + k~2 F~ (y) -  
k ~x and dy/dt-= k 2 -F k2tF ~ (x)-k_2y, where F - s  are decreasing Hill functions 
with threshold= 1 and non-linearity coefficient =20; the other parametric values 
are: (A) k 1 =k2=0.2 ,  k_ 1 = k  2 = 1, k~2=k21 =2;  (B) the same as (A) except that 

kzl =0.5. 
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between k l / k  and the thresholds. For a step function, the condition is simply 
kl/k_ >s. For a sigmoid kl/k_ must be sufficiently >s. In Fig. 4A, but not 
Fig. 4B, there is a steady state near the threshold values of the loop. 

Figure 5 describes the negative loop x.. k j y in differential terms. As 

expected, there is a single steady state. In Fig. 5A the loop is functional 
(homeostasis is realized), in Fig. 5B it is not. (As in the loop described by Fig. 4, 
this depends on parameter values.) In Fig. 5A, but not Fig. 5B, there is a steady 
state near the thresholds of the loop. 

These examples illustrate the idea that when a loop, positive or negative, is 
functional, there is a steady state near the thresholds of the loop. 

In the logical description the situation is even more clear-cut: whenever a 
loop is functional the singular logical state located at the thresholds of this loop 
is steady. This leads to the introduction of the concept of the loop-characteristic 
state, defined as the logical state located at the thresholds involved in the loop. 

This concept applies to the subspace of the variables actually involved in the 
loop. Thus, if a loop involves all the variables of the system its functionality is 
associated with the presence of a steady state of the system at (step or logical 
functions) or near (sigmoid functions) the intersection of the thresholds of the 
loop. Ifa loop involves only some of the variables of the system its functionality 
requires only steadiness of the loop-characteristic state in the subspace of the 

Y 

1 

s(1) 

dy/dt=O 
I I I 

0 s (~) 1 

Y 

s(1, 

+ -  

o ~+ 
I I 

x 0 s (~) 1 x 

(A) (B) 
Figure 5. A two-variable negative loop x I1) y(- 1) represented in the space of the real 
variables xy. (A) There is a steady state at the level of the loop-characteristic state 
s tl)s(1) and it is seen that the system oscillates (at least transiently) around the steady 
state (a focus). (B) There is no steady state at the level of the loop-characteristic 
state; there is no homeostasis since the unique steady state is located at the level of 
the boundaries of the system. The equations used are dx/dt = k 1 + k12F ~ ( y ) - k  ix 
and dy/dt = k 2 ~- k 21F2 ( x ) -  k 22, where F + and F are increasing and decreasing 
Hill functions, respectively, with threshold = 1 and non-linearity coefficient = 20; 
the other parametric values are: (A) kl = k2 = 0.2, k_ 1 = 1.1, k_ 2 = 0 . 9 ,  k 12 = k21 = 2; 

(B) the same as (A) except k21 =0.5.  
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variables of the loop. But this state will be a steady state of the whole system 
only if the other variables are also steady. 

It has been observed by Thomas (1991), and subsequently formally 
demonstrated by Snoussi and Thomas (1993) that: 

(1) among the singular states of a system, only those which are loop- 
characteristic can be steady; 

(2) conversely, if a state is loop-characteristic there exist combinations of 
parameter values for which it is steady. 

From a practical viewpoint, these results are very useful. Instead of having to 
scan each singular state for steadiness only the loops and their characteristic 
states have to be identified. Then, it can be checked which of the characteristic 
states are steady (if the parameters are known a priori), or else the parameters 
which render a loop-characteristic state steady can be determined. From a 
fundamental point of view, these results shed new light on the relation between 
feedback loops and steady states. 

Example. Let us return to the example on p. 256 and now treat it in terms of 
loop-characteristic states. The system comprises two feedback loops, a two- 
variable negative loop, denoted x~l)y ~- 1), and a one-variable positive loop, 
denoted y~2). Their characteristic states are s ~a) s m and x s ~2), respectively (in 
which x means that the value of x remains open). 

Depending on the parameter values, either one or both of these singular 
states can be steady (see tables on p. 259). On the contrary, the other singular 
states, which are not loop-characteristic (e.g. s ~1) S (2)) c a n n o t  be steady for any 
combination of values of the parameters. 

3.3. State characteristic of a loop, of a union of disjoint loops and of a union of 
connected loops. A state can be a "loop-characteristic" state, irrespective of 
whether it is characteristic of a single loop or of a union of loops. Three typical 
cases of characteristic state are given in Fig. 6: 

(1) a state characteristic of a single three-variable loop; 
(2) a state characteristic of two disjoint loops; 
(3) a state characteristic of two connected loops. 

The conditions for the steadiness of single loop-characteristic states remain 
valid for states characteristic of unions of loops. 

4. Regulatory Networks as Combinations of Feedback Loops. Table 1 
describes, in a compact way, various simple situations, including one-element 
positive and negative loops and their combinations, and two-element positive 
and negative loops. It applies to parametric conditions for which the loops are 
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S(1) 

z 

(i) 
S (I) S 

S (I) S(3) 

z 

(A) (B) (C) 

Figure 6. Examples of loop combinations that can lead to singular steady states 
located on three thresholds: (A) a single three-element feedback loop with S (2) S (1) S (2) 

as the characteristic state; (B) two disjoint feedback loops with s (I) s (1) s t2) as the 
common characteristic state; (C) two non-disjoint feedback loops with s t2) s I1) s t3) as 
the common characteristic state; in the latter case the two interactions exerted by 
element x must occur at the same threshold for the two loops to share the same 

characteristic state. 

functional; these conditions can easily be determined, either "by hand" or by 
using computer  programs (Thieffry et al., 1993), depending on the complexity. 

Each of these examples must be viewed not as a system comprising only the 
elements explicitly shown, but  as a building bloek of complex networks. Which 
of the loops or unions of loops remain functional when one proceeds to this 
construction depends on the values of the parameters and of the other 
variables. For  a given set of parametric values a loop or a union of loops can be 
functional or not, depending on the region of the space of the variables. But, 
whatever the complexity of the system, what is said about  the component  loops 
remains true in a subspace of the variables of the loops considered. 

This way of thinking can be used both analytically (deductively) or 
synthetically (inductively), i.e. to analyse the properties of a given network or 
to construct a network which has expected properties. 

Figure 7 shows two systems whose dynamics are not  easily predictable by 
conventional methods.  Using our method,  which consists of first identifying 
the feedback loops, one immediately sees that the system in Fig. 7A has only 
negative feedback loops. In the absence of any positive loop it is known that 
there cannot be any multistationarity, whatever the parameter values used. 
The system can have only one steady state and, depending on the parameter  
values, this steady state can be the characteristic state of either of the loops, or 
unions of loops, of the network, or it can be a regular state if none of the loops is 
functional. 

The system in Fig. 7B shows that an additional interaction creates a positive 
loop. Either this loop is non-functional, and we return to the preceding 
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Table 1. Examples of feedback loops, with a description of their dynamical properties and 
characteristic states 

loops and their 
matrix description 

One-element 
positive loop on x 

(r 

One-element 
negative loop on x 

(o) 

Typical pattern in the 
variable space 

One-element y 
positive loops on x j 

andy  

(.%) 
One-element y 

negative loops on x / 
and y 

s o, 

! One-element  loops, y , 

S (1) } [3.] 
lower upper 
boundary boundary 

a positive one on x, 
a negative one on y 

(%) 
Two-element 
positive loop 

(o0) 

Another two- 
element positive 

loop 

(| 
Two-element 
negative loop 

, . . . .  ~,,",, ~ 
boundary boundary 

1 

I 
\ lJ" 
-;+, 

i 
T Ii 

sO) x 

I 
! 

s(O 

I 
s (l) =x 

sO) 

s (11 x 

s (I) x 

Logical description 

Three steady states : 
[0] and {1] are attractive, 
[ls] is repulsive 

A single steady state : 
[1s] is attractive 

Nine steady states: 
[00], [01], [10] and [11] are 
attractive; 

![0ts], [ ls0 [ l s l ]  and 11s] are 
repu s ve along one direct on; 

[ l s l s ]  is repulsive along both 
directions 

A single, stable state: ls ls ]  is 
attractive along both directions 

Muitistationadty on variable x, 
homeostasis on variable y; 
three steady states: 
[0 ls], [ l s ls ]  and [1 ts]; 
the loop-characteristic state 
[ ls ls ]  is repulsive in x, 
attractive in y 

Multistationahty on both 
vadables; 
three steady states: 
[01] and [10] are attractive; 
[ is is ]  is repulsive in one 
direction, attractive in the 
orthogonal direction 

Multistationadty on both 
vadables. 
Three steady states: 
[00] and [11] are attractive; 
dlSls] is attractive in one 

irection, repulsive in the 
orthogonal direction 

Differential 
description 

Three steady 
states: 

2 stable 
1 unstable 

A single stable 
steady state: a 
stable node 

32 steady states: 
- 4 stable nodes 
- 4 saddle points 

t unstable node 

A single stable 
steady state: a 
stable node 

Three steady 
states: 
- 2  stable nodes 
-1 saddle point 

Three steady 
states: 
- 2 stable nodes 
-1 saddle point 

Three steady 
states: 
- 2 stable nodes 
- 1 saddle point 

'L 'r 
s(,) ( ~ 

s( t )  I x 

A single steady state, [ lsts], 
surrounded by a logical cycle: 

0i -, i] 

t 
A single steady 
state: 
- a stable focus 

Roots of the 
characteristic 

equation 

real: 

+ 

rea l :  

real: 

+ , -  
+, + 

real: 

real: 

+ , -  

real: 

+ , -  

real: 

+ , -  

complex, 
real part 
negative 

Remarks 

[ ls ls)  is the 
characteristic state 
of the union of the 
two loops 

[ ts ts]  is the 
charactedstic state 
of the union of the 
two loops 

1sis] is the 
characteristic state 
of the union of the 
two loops 

The elements are 
I exclusive of each 
other; either x [10], 

! or y:[01] is present 

The elements are 
interdependent; one 
has either both [11] 
or neither [00] 
element present 

instead oI ~ to indicate the order  of the In the text of this table, we have used the no ta t ion  is ~ ~(1) 
threshold  for compactness.  
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�9 0 

�9 
(A) (B) 

Figure 7. Two examples of a three-element regulatory network. The three-element 
loop formed by the interactions from x to y, from y to z and back to x, is symbolized 
by "x y z". The sign of this loop is negative since it is equal to the product of the signs 
of its interactions. (A) There are six negative loops: x, y, z, x y, y z and x y z. (B) An 
additional interaction introduces a positive loop (x z), together with an additional 

negative loop (x z y). 

situation, or it is functional, and we know that there are three steady states, one 
of which is the characteristic state of the positive loop. 

As an example of the synthetic use of our method, consider a steady state that 
is attractive along the z-axis and repulsive in a periodic way in the plane xy. 
How could one build a small system with such a steady state? In order to be 
attractive along the z-axis the system must have a negative loop ofz on itself. In 
order to be periodic in the plane xy it must have a negative loop between x and 
y. But, it is known that in a two-variable system, a focus is stable unless it is 
destabilized by autocatalysis (one-element positive loop) on one of its elements 
(this point does not come from the logical description). This leads to the matrix: 

x y z 

X 

Y + + 

Z 

It is easy to find a system of this structure that behaves as expected. Note that 
the properties of the roots of the characteristic equation (one real negative root 
and a pair of complex conjugate roots with a positive real part) can 
immediately be derived from the matrix provided the loops have the proper 
strength. It is interesting to note that although our method arises from a logical 
formalism, the type of reasoning can be used, mutatis mutandis, for a linear 
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Y 
2.0 

-2.0 
0 . 0 ~  

-2.0 

z 
2.0 

0.0 

-2.0 

2.0 
x 

Figure 8. A steady state that is attractive along the z-axis and repulsive (up to 
infinity) in a periodic way along the x y  plane. The (linear) equations used are 
dx /d t  = - 2 y ,  dy /d t  = 2x + 0.5y and dz /d t  = -10z ;  the initial point is (0.1, 0.1, 2). 

system; for example, the steady state just mentioned can be obtained in a linear 
system (Fig. 8). 

5. A Biological Illustration: The Regulation of Arginine Anabolism. In order to 
show the application of the notion of loop-characteristic state to a concrete 
biological system, an example, inspired from a beautiful experimental work of 
W. Maas and his co-workers, is considered. We will focus here on some aspects 
that have not been touched so far in the experimental work. 

Let us first summarize the most salient experimental facts. In E. coli, the 
enzyme Ornithine Transcarbimylase (OTCase) catalyses the last step of the 
anabolism of arginine. Arginine combines with a repressor, which reduces the 
rate of synthesis of OTCase and of itself. However, in addition to its negatively 
auto-controlled promotor,  the gene coding for the repressor has a second 
promotor  responsible for a minor constitutive expression. This simplified 
description is represented by the reaction scheme shown in Fig. 9A. 

The graph of interactions (Fig. 9B) and the matrix of interactions (Fig. 9C) 
include additional assumptions regarding the order of the thresholds. As both 
the repressor and arginine act at two levels in this scheme, two threshold values, 
s m and s ~2) (and consequently three logical values, 0, 1 and 2), are ascribed to 
both variables. The matrix of interactions can thus be completed in four ways, 
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y 

repressox ~0 0 

' "  z ~.~ Y~ 121 
(i) ~ s  

> arginin~ s 

x 

OTCase 
z 

(A) (S) (C) 
Figure 9. Model for the regulation of arginine synthesis. (A) Reaction scheme; (B) 
graph of interaction; (C) matrix of interactions, x=arginine concentration; 
y = repressor concentration; z = OTCase concentration. (A) Regulatory interac- 
tions are symbolized by simple arrows, whereas metabolic transformation is 
symbolized by a double arrow. Note, in the proposed model, x and y both have two 
distinct actions; thus, associated with these variables are two thresholds and three 
logical levels (0, 1 and 2). In contrast, z acts only on x; consequently, there is 
ascribed to it only one threshold and two logical values (0 and 1). (B) The signs + 
and - correspond to the sign of the interactions; the s(i)s symbolize the 
corresponding threshold. In this graph it is easy to locate the three feedback loops of 
the system (two negative loops, y, x z, and one positive loop, xyz). (C) The feedback 

loops of the system are indicated by a circle (auto-inhibition on y) and lines. 

depending on the order of the thresholds. Which of these possibilities is most 
appropriate is not obvious, but various experimental and theoretical 
arguments may be used to distinguish between them. In particular, one may 
favour the idea that the repression of OTCase synthesis requires lower levels of 
repressor (>  s ~1)) than the auto-repression of repressor synthesis ( > s~2)). If this 
was not the case, the steady level ofrepressor would, at least at first sight, be too 
low to exert an efficient repression of OTCase synthesis. 

We focus on one of the four threshold combinations, shown in Fig. 9B and C, 
which is favoured by W. Maas (pers. comm.). It is seen immediately that this 
structure comprises three feedback loops: 

(1) a negative loop between x and z, symbolized by x(-1)z (+1), which 
describes the mutual regulation between arginine and OTCase; 

(2) a negative loop on y, symbolized by y(-2), which describes the 
auto-regulation of the repressor; 

(3) a positive loop, x~- /) y(-1) z ~+a), whose existence was not obvious a 
priori. 

In addition, the union of the disjoint loops x (- i) z (+ 1) and y(- z) (symbolized 
by x ( - 1) z ( + 1) + y(- 2)) must be considered. 

The presence of a positive feedback loop suggests that under appropriate 
conditions the system might display multi-stationarity. This means that for 
proper parameter values (e.g. in proper mutants) there could be different states 
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of regulation of repressor and OTCase synthesis, depending not on the present 
environmental conditions, but on a historical detail, e.g. whether or not there 
has been a pulse of arginine in the external medium in the past. 

The logical analysis of the situation is summarized in the appendix. In any 
case, one can immediately read from the graph or matrix of interactions that 
the loop-characteristic state of the union of the negative loops is [s ~1) s ~2) sm], 
and that the loop-characteristic state of the positive loop is [s ~2) s m s~)]. It is 
now quite easy to compute (see Thieffry et al., 1993) the constraints on the 
parameters that render Is (a) S (2) S (1)] or Is (2) S (1) S(1)], or both, steady. This would 
render, respectively, the negative or the positive loops, or both, functional, with 
resultant homeostasis on all three variables, multistationarity or both. 

A closer analysis of the parameter values that would render the positive loop 
functional shows (see appendix) that for the threshold combination chosen the 
positive loop cannot be functional unless parameter K3. 2 is nil. This is not 
reasonable, because it would mean that the repressibility of OTCase only 
depends on arginine and not on the presence of the repressor! However, for 
other threshold combinations, it is found that realistic parameter values are 
consistent with multiple steady states. Thus, even though one does not expect 
multistationarity with the standard strains, it would be worthwhile checking 
mutants with altered threshold orders. 

It was mentioned above that the state of a positive loop is typically 
determined by a transient signal. Depending on whether or not the signal has 
been given, the system is durably blocked in either of its permanent states. In 
the present case, an obvious signal is the extraceUular concentration of 
arginine. The model suggests that for proper parameter values the state of the 
system will durably depend not only on the present but also on the past 
extracellular concentration of arginine. Of course, arginine must then be 
introduced as an input variable in the model. For mutants thermosensitive for 
one of the gene products, transient temperature shifts as a signal may also be 
used. 

But, what is really meant by "for proper parameter values"? The logical 
parameters describe the strength of the different interactions of the system, 
which is, here at least, partly genetically determined. A mutation affecting the 
coding part of the repressor could modify its affinity for the promoters 
( p a r a m e t e r s  K2.  2 and K3.2) or its interaction with arginine, thus its combined 
effect with arginin on its own synthesis and on the synthesis of OTCase 
(parameters K2.t2 and K3.~2 ), etc. Thus, it is expected that mutants will exhibit 
a whole range of values of the logical parameters. If the wild-type does not lead 
to such interesting behaviour as multistationarity the constraints on the 
parameters can be used in order to determine which mutants might. 

In the appendix the parameter range chosen (all three loops functional) is the 
richest from the dynamical viewpoint. However, it is by no means the only 
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interesting one. In fact, it seems obvious that the realistic values for some of 
these parameters will be different for E. coli K12 and E. coli B. Maas and his co- 
workers found striking behavioural differences, which can be ascribed to a 
single amino-acid difference in the sequences of the repressor (Lim et al., 1988; 
Tian et al., 1994). 

6. Discussion. Few works consider regulatory networks in terms of feedback 
loops (see, however, Rosen, 1968; Eisenfeld and De Lisi, 1985; Eisenfeld, 1987). 
Of special relevance is the paper in which Tyson (1975) starts from the concept 
of "community matrix", previously developed by Quirk and Ruppert (1965) 
and May (1973). For a system d x i / d t = F i ( x l ,  x2 ,  . . . ,  X i ,  . . . ,  Xn) , one can 
derive a matrix A = [aij]0, in which aij = (~Fi/c3xj) o , i.e. the Jacobian matrix of 
the system at a steady state, and analyse the relation between the presence of 
feedback circuits and the stability of the steady state. 

The situation is considered here under a slightly different angle. First, as 
most biological regulations have a sigmoid shape, our systems can often be 
described by equations in which the F~s are monotonic in each of the variables 
(when it is not the case, it prevents description of the system with a matrix of 
interactions, but not from performing its logical analysis). Thus, most terms of 
the Jacobian matrix usually have a well-defined sign throughout the space of 
the variables. Consequently, instead of considering the signs of the terms of 
Jacobian matrices at steady states, we have a qualitative Jacobian matrix which 
is descriptive of the whole system. In fact, in our case, the signs of the terms of 
the Jacobian matrix coincide with those of the matrix of interactions of the 
system. 

According to the limited choice of logical parameter values, each "logical 
structure" (e.g. each system as described by a graph or by a matrix of 
interactions) splits up into a finite (and often small) number of qualitatively 
distinct schemes, each representative of a qualitatively distinct facet of the 
system. In practice, this is seen in the general state table, in which the elements 
of the image vectors are parameters that can each take a limited number of 
integer values. 

A distinctive feature of this present approach consists of operating at the 
level of the feedback loops of the system rather than at the level of its individual 
elements. Firstly, the feedback loops and their characteristic state are 
identified, then for each loop (or union of disjoint loops) the parametric 
constraints which make the loop functional are computed. This analysis (see 
appendix) fully respects the interactions between the loops, however complex 
they are. Depending on the logical structure and parameter values, one or more 
feedback loops are functional, with straightforward consequences regarding 
the number, location and nature of the steady states. 

In this respect, the analysis is almost immediate in those systems that 
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comprise only negative loops; whatever the complexity of the network, it is 
known that in this particular case there cannot be any trace of multi- 
stationarity. Thus, in such a system, there is only one steady state, which may 
be either of the loop-characteristic states. If none of the loops is functional the 
steady state is a regular and stable state (Snoussi, 1989). 

Ifa system has just one positive loop, either this loop is not functional and we 
revert to the preceding situation, or it is functional and we know immediately 
that the system has three steady states, one of which is characteristic of the 
positive loop. 

It should be noted that logical states are generally not points; in the real 
space of the variables a regular logical state is a segment, a surface, a three- 
volume or an n-volume, according to whether the system has 1, 2, 3 or n 
variables. Thus, it is not surprising that a logical state can have a choice 
between two or more successors; this, at least, is the case in the asynchronous 
logical description used here (Thomas, 1973). The factors of the choice between 
follower states are not discussed in this paper. It suffices to recall that they are 
usually treated in terms of time delays, which are generally different for each 
transition, and which can introduce stochasticity, if each delay has an average 
value and a distribution rather than a fixed value (Thomas, 1979; Van Ham, 
1979). 

The generalized logical method described here has already been used to 
analyse genetic, immunological and neurobiological regulatory networks 
(Kaufman, 1988; Thomas and D'Ari, 1990; Thieffry et al., 1993). The second 
paper in this series deals with the modelization of the genetic regulation of 
bacteriophage lambda. 
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A P P E N D I X  

A1. A Partial Analysis of  the System of  Fig.  6. 

x y z 

0 0 +1 

-2  -2  0 

-1 -1 0 

X 

Y 

Z 

Table A1. State table for the three- 
variable example. For  each value of 

the state vector (x y z), this table 
gives the value of the image vector in 

terms of logical parameters. K i 
("basal term") corresponds to the 

expression of element i in the 
absence of its activators, but  in the 

presence of its inhibitors; Ki4 
corresponds to the expression of 

element i in the presence of element j 
if it is an activator of element i, or in 
the absence ofj  if it is an inhibitor. 

Ki.jk represents "positive 
contributions" of both elements j 

and k on element i 

y z  X Y 

0 0 K 1 K2A 2 

0 1 K1. 3 K2.12 
1 0 K 1 K2.12 
1 1 K1. 3 K2.12 
2 0 K 1 K2.1 
2 1 K1. 3 K2.1 
0 0 K 1 K2.12 
0 1 K1. 3 K2.12 
1 0 K 1 K2.12 
1 1 K1. 3 K2.12 
2 0 K 1 K2.1 
2 1 K1. 3 K2.1 
0 0 K 1 K2. 2 
0 1 K1. 3 K2. 2 
1 0 K 1 K2. 2 
1 1 K1. 3 K2. 2 
2 0 K 1 K 2 
2 1 K1. 3 K 2 

Z 

K3.12 
K3.12 
K3.1 
K3.1 
K3.1 
K3.1 
K3.2 
K3.2 
K3 
K3 
K3 
K3 
K3.2 
K3.2 
K3 
K3 
K 3 
K 3 
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AI.1. State table. As described in previous papers, from the above matrix it is possible to 
construct a state table (Table A 1). How can the state table be completed starting from the matrix 
of interactions? 

In the matrix, box i-j  (ith row,j th  column) describes the effect of the level of element j on the 
evolution of element i, i.e. the effect of the value of variable j on the value of I, the image of 
variable i; thus, box 1-3 describes the effect o fz  on X. " +  1" in box 1-3 means that there is a 
contribution to X, represented by parameter K~.3, if z > s (1). Thus, when column X of the state 
table is filled in, K~. 3 is entered each time z = 1. Similarly, " - 2 "  in box 2-1 means that there is a 
contribution K2.~ to Y for x < s Iz) and, accordingly, for x = 0 or 1 K/.1 is entered in column Y. If 
conditions x < s ~2) and y < s t/) are both fulfilled, boxes 2-1 and 2-2 both contribute to the value of 
Y and K2.12 is entered in column Y, etc. [Following Snoussi (1989), the logical parameters K2.1 
and K2. 2 result from the discretization of the real parameters k2. t and k2.2, respectively. K2.12 
refers to the discretization of (k 2.1 + k2.2). It is usually not equal to K2.1 + K2.2- For  example, one 
can have kz.x < s  t~) and k2.2<s "~, but k2 .a+k2 .z>s  12). In this case, K2.1 and K2.2=0, but 
K2.12 =2 .  However, K2A 2 is necessarily ~>K2.a, Kz.z. ] 

In addition, allowance is usually made for a constant  term (labelled in the present case as Ka,  
K 2 and K3, for functions X, Y and Z, respectively) which may correspond to the constitutive 
expression of the gene, or, in other cases, to an input variable. 

A 1.2. Identification of the loops. There are three feedback loops: 

(1) a positive loop x (- 2) yl-  1~ z I + 17 (characteristic state s ~2) s ") s(~)); 
(2) a negative loop x (- ~)z ~ + ~ (characteristic state s ") y s")); 
(3) a negative loop y~-2) (characteristic state x s (2) z); 

plus the union of the two disjoint (negative) loops: x (- l )z~+l)+y(-2)  (characteristic state 
S (I) S (2) S(1)). 

A 1.3. Conditions of steadiness of s (2) s ~1) s (1) and s ~) s 12) s ta). State s t2) s ~) s (x) is located at the 
junct ion between 23= 8 regular states; the pair of "relevant" adjacent states (see Snoussi and 
Thomas, 1993) and their images are: 

x y z X Y Z 

2 1 0 K 1 K2, 2 K 3 
1 0 1 K1. 3 K2,12 K3. 2 

The conditions for the state to be steady is that thresholds s~ t/), Sy (1), Sz (1) be included in the 
interval of the corresponding images, i.e.: 

K 1 <sx(2)<Ka.3, K2.2 <sy(1)<K2A2, K3 <SzO)<K3.2. 

These conditions amount  to: 

K a = 0  or 1, K1.3=2 , K2.2 =0 ,  Kz.x2= 1 or 2, K 3 = 0  , K3.2= 1. 

Similarly, for state s ~) s t2) s t~), the relevant regular adjacent states and their images are: 

x y z X Y Z 

1 2 0  
0 1 1 

K1 Kz.1 K3 
K1.3 K2.12 K~A 

Thus, there is a steady state Is  0 )  s (2) s (1)] if: 

K I = 0 ,  K a . 3 = l  or 2, K2.1 = 0  or 1, K2.11=2, K 3 = 0 ,  K3A = 1. 
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Note that the conditions for IS (2) S (1) S (1)] and for [s (1) S (2) S (1)] are not contradictory. Effectively, 
if: 

K2.2=0, K2.~ =0  or 1, K3=0  , K3.1 =K3.2= 1, K1.3=K2A2=2 

both characteristic states are steady, and there must, at the same time, be multi-stationarity and 
(at least in a part of the variable space) a homeostatic behaviour of all three variables. The state 
table for the conditions just stated is given in Table A2. It can be seen that there is a regular 
steady state [2 0 1]. It is easy to check that states s (2) s (1) s (1) and s ta) s t2) s ") are also steady, and 
that there are no other steady states for the system. 

Table A2. State table for the three- 
variable example, with Kt = K 2 = 

K3=K2.2=0,  K2.1 =0  or 1, K3.1 = 
K3. 2 = K3.12 = 1, and K1. 3 = K2.12 =2  

x y z 

0 0 0 
0 0 1 
0 1 0 
0 1 1 
0 2 0 
0 2 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
1 2 0 
1 2 1 
2 0 0 

[2 0 1] 
2 1 0 
2 1 1 
2 2 0 
2 2 1 

X Y Z 

0 2 1 
2 2 1 
0 2 1 
2 2 1 
0 0or  1 1 
2 0o r  1 1 
0 2 1 
2 2 1 
0 2 0 
2 2 0 
0 0o r  1 0 
2 0or  1 0 
0 0 1 
2 0 1 
0 0 0 
2 0 0 
0 0 0 
2 0 0 
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