
SIMILARITY SEARCHSIMILARITY SEARCH

The Metric Space ApproachThe Metric Space Approach

Pavel Zezula, Giuseppe Amato,

Vlastislav Dohnal, Michal BatkoVlastislav Dohnal, Michal Batko

Table of ContentTable of Content

Part I: Metric searching in a nutshell

� Foundations of metric space searching � Foundations of metric space searching

� Survey of existing approaches

Part II: Metric searching in large collectionsPart II: Metric searching in large collections

� Centralized index structures

Approximate similarity search � Approximate similarity search

� Parallel and distributed indexes� Parallel and distributed indexes

Similarity Search: Part II, Chapter 3 2

Features of “good” index structuresFeatures of “good” index structures

� Dynamicity
� support insertions and deletions and minimize their costs� support insertions and deletions and minimize their costs

� Disk storage
� for dealing with large collections of data� for dealing with large collections of data

� CPU & I/O optimization
� support different distance measures with completely � support different distance measures with completely

different CPU requirements, e.g., L2 and quadratic-form
distance.distance.

� Extensibility
� similarity queries, i.e., range query, k-nearest neighbors � similarity queries, i.e., range query, k-nearest neighbors

query

Similarity Search: Part II, Chapter 3 3

Centralized Index StructuresCentralized Index Structures

for Large Databases

1. M-tree family

2. hash-based metric indexing

3. performance trials3. performance trials

Similarity Search: Part II, Chapter 3 4

M-tree FamilyM-tree Family

� The M-tree

� Bulk-Loading Algorithm� Bulk-Loading Algorithm

� Multi-Way Insertion Algorithm

� The Slim Tree

� Slim-Down Algorithm� Slim-Down Algorithm

� Generalized Slim-Down Algorithm

� Pivoting M-tree� Pivoting M-tree

� The M+-tree

� The M2-tree

Similarity Search: Part II, Chapter 3 5

The M-treeThe M-tree

� Inherently dynamic structure

� Disk-oriented (fixed-size nodes)� Disk-oriented (fixed-size nodes)

� Built in a bottom-up fashion

� Inspired by R-trees and B-trees

� All data in leaf nodes

� Internal nodes: pointers to subtrees and additional � Internal nodes: pointers to subtrees and additional

information

Similar to GNAT, but objects are stored in leaves.� Similar to GNAT, but objects are stored in leaves.

Similarity Search: Part II, Chapter 3 6

M-tree: Internal NodeM-tree: Internal Node

� Internal node consists of an entry for each subtree

� Each entry consists of:� Each entry consists of:

� Pivot: p

Covering radius of the sub-tree: rc� Covering radius of the sub-tree: rc

� Distance from p to parent pivot pp: d(p,pp)

� Pointer to sub-tree: ptr

〉〈 pc 〉〈 pc〉〈 pc〉〈 1111),,(,, ptrppdrp pc
L 〉〈 m

p
m

c
mm ptrppdrp),,(,,〉〈 2222),,(,, ptrppdrp pc

� All objects in subtree ptr are within the distance rc from p.

Similarity Search: Part II, Chapter 3 7

M-tree: Leaf NodeM-tree: Leaf Node

� leaf node contains data entries

� each entry consists of pairs:� each entry consists of pairs:

� object (its identifier): o

distance between o and its parent pivot: d(o,op)� distance between o and its parent pivot: d(o,op)

〉〈),(, poodo 〉〈),(, poodo 〉〈),(, poodo〉〈),(, 11
poodo 〉〈),(, 22

poodo 〉〈),(, p
mm oodoL

Similarity Search: Part II, Chapter 3 8

M-tree: ExampleM-tree: Example

o
o5 o

o7

o10
o3

o2
o5

o

o11

o1
o6 o4

o

o8

Covering

radius
o9

o 4.5 -.- o 6.9 -.-

radius

Distance

to parent

Distance

to parent
o1 4.5 -.- o2 6.9 -.-

o 1.4 0.0 o 1.2 3.3 o 1.3 3.8 o 2.9 0.0 o 1.6 5.3o1 1.4 0.0 o10 1.2 3.3 o7 1.3 3.8 o2 2.9 0.0 o4 1.6 5.3

o2 0.0 o8 2.9o1 0.0 o6 1.4 o10 0.0 o3 1.2 o2 0.0 o8 2.9o1 0.0 o6 1.4 o10 0.0 o3 1.2

o7 0.0 o5 1.3 o11 1.0 o4 0.0 o9 1.6

Similarity Search: Part II, Chapter 3 9

M-tree: InsertM-tree: Insert

� Insert a new object oN:

� recursively descend the tree to locate the most � recursively descend the tree to locate the most

suitable leaf for oN

in each step enter the subtree with pivot p for which:� in each step enter the subtree with pivot p for which:

� no enlargement of radius rc needed, i.e., d(oN,p) ≤ r
c

� in case of ties, choose one with the nearest p to oNN

� minimize the enlargement of rc� minimize the enlargement of r

Similarity Search: Part II, Chapter 3 10

M-tree: Insert (cont.)M-tree: Insert (cont.)

� when reaching leaf node N then:

� if N is not full then store oN in N� if N is not full then store oN in N

� else Split(N,oN).

Similarity Search: Part II, Chapter 3 11

M-tree: SplitM-tree: Split

Split(N,oN):Split(N,oN):

� Let S be the set containing all entries of N and oN

� Select pivots p and p from S� Select pivots p1 and p2 from S

� Partition S to S1 and S2 according to p1 and p2 1 2 1 2

� Store S1 in N and S2 in a new allocated node N’

� If N is root� If N is root

� Allocate a new root and store entries for p1, p2 there

else (let Np and pp be the parent node and parent pivot of N)� else (let Np and pp be the parent node and parent pivot of N)

� Replace entry pp with p1

If Np is full, then Split(Np,p)� If Np is full, then Split(Np,p2)

� else store p2 in node N
p

Similarity Search: Part II, Chapter 3 12

M-tree: Pivot SelectionM-tree: Pivot Selection

� Several pivots selection policies
� RANDOM – select pivots p1, p2 randomly� RANDOM – select pivots p1, p2 randomly

� m_RAD – select p1, p2 with minimum (r1
c + r2

c)

� mM_RAD – select p1, p2 with minimum max(r1
c, r2

c)� mM_RAD – select p1, p2 with minimum max(r1
c, r2

c)

� M_LB_DIST – let p1 = p
p and p2 = oi | maxi { d(oi,p

p) }

� Uses the pre-computed distances only� Uses the pre-computed distances only

� Two versions (for most of the policies):

Confirmed – reuse the original pivot pp and select only one� Confirmed – reuse the original pivot pp and select only one

� Unconfirmed – select two pivots (notation: RANDOM_2)

� In the following, the mM_RAD_2 policy is used.

Similarity Search: Part II, Chapter 3 13

M-tree: Split PolicyM-tree: Split Policy

� Unbalanced � Balanced

� Partition S to S1 and S2 according to p1 and p2
� Unbalanced

� Generalized hyperplane

� Balanced

� Larger covering radii

Worse than unbalanced � Worse than unbalanced

one

p2
p2

p1
p1

Similarity Search: Part II, Chapter 3 14

M-tree: Range SearchM-tree: Range Search

Given R(q,r):

� Traverse the tree in a depth-first manner� Traverse the tree in a depth-first manner

� In an internal node, for each entry 〈p,rc,d(p,pp),ptr〉
� Prune the subtree if |d(q,pp) – d(p,pp)| – rc > r� Prune the subtree if |d(q,pp) – d(p,pp)| – rc > r

� Application of the pivot-pivot constraint

q
p

rc

pp
r

pp

q
r

rc

p
rc

Similarity Search: Part II, Chapter 3 15

M-tree: Range Search (cont.)M-tree: Range Search (cont.)

� If not discarded, compute d(q,p) and

� Prune the subtree if d(q,p) – rc > r� Prune the subtree if d(q,p) – rc > r

� Application of the range-pivot constraint

q
rc r

q
p

� All non-pruned entries are searched recursively.

Similarity Search: Part II, Chapter 3 16

M-tree: Range Search in Leaf NodesM-tree: Range Search in Leaf Nodes

� In a leaf node, for each entry 〈o,d(o,op)〉

� Ignore entry if |d(q,op) – d(o,op)| > r� Ignore entry if |d(q,op) – d(o,op)| > r

� else compute d(q,o) and check d(q,o) ≤ r

� Application of the object-pivot constraint� Application of the object-pivot constraint

Similarity Search: Part II, Chapter 3 17

M-tree: k-NN SearchM-tree: k-NN Search

Given k-NN(q):

� Based on a priority queue and the pruning � Based on a priority queue and the pruning
mechanisms applied in the range search.

� Priority queue: � Priority queue:
� Stores pointers to sub-trees where qualifying objects can

be found.be found.

� Considering an entry E=〈p,rc,d(p,pp),ptr〉, the pair
〈ptr,dmin(E)〉 is stored.〈 min 〉

� dmin(E)=max { d(p,q) – r
c, 0 }

� Range pruning: instead of fixed radius r, use the � Range pruning: instead of fixed radius r, use the
distance to the k-th current nearest neighbor.

Similarity Search: Part II, Chapter 3 18

M-tree FamilyM-tree Family

� The M-tree

� Bulk-Loading Algorithm� Bulk-Loading Algorithm

� Multi-Way Insertion Algorithm

� The Slim Tree

� Slim-Down Algorithm� Slim-Down Algorithm

� Generalized Slim-Down Algorithm

� Pivoting M-tree� Pivoting M-tree

� The M+-tree

� The M2-tree

Similarity Search: Part II, Chapter 3 19

Bulk-Loading AlgorithmBulk-Loading Algorithm

� first extension of M-tree

� improved tree-building (insert) algorithm� improved tree-building (insert) algorithm

� requires the dataset to be given in advance

� Notation:� Notation:

� Dataset X={o1,8,on}

� Number of entries per node: m� Number of entries per node: m

� Bulk-Loading Algorithm:

First phase: build the M-tree� First phase: build the M-tree

� Second phase: refinement of unbalanced tree

Similarity Search: Part II, Chapter 3 20

Bulk-Loading: First PhaseBulk-Loading: First Phase

� randomly select l pivots P={p1,8,pl} from X

� Usually l=m� Usually l=m

� objects from X are assigned to the nearest pivot

producing l subsets P ,8,Pproducing l subsets P1,8,Pl

� recursively apply the bulk-loading algorithm to the

subsets and obtain l sub-trees T1,8,Tl

� leaf nodes with maximally l objectsleaf nodes with maximally l objects

� create the root node and connect all the sub-trees to

it.it.

Similarity Search: Part II, Chapter 3 21

Bulk-Loading: Example (1)Bulk-Loading: Example (1)

o
o1

o4
o5 root

s
u
p
e
r-
tr
e
e

o2

o9

o1 o2 o3

tr
e
e

s
u
p
e
r

o6 o8

o9
o’3 o7o6o’1 o5o4

s
u
b
-t
re
e

o7o3
o”3 o9o8

s
u
b

Similarity Search: Part II, Chapter 3 22

Bulk-Loading: DiscussionBulk-Loading: Discussion

Problem of choosing pivots P={p1,8,pl}

� sparse region → shallow sub-tree� sparse region → shallow sub-tree

� far objects assigned to other pivots

dense region → deep sub-tree� dense region → deep sub-tree

� observe this phenomenon in the example

Similarity Search: Part II, Chapter 3 23

Bulk-Loading: Second PhaseBulk-Loading: Second Phase

� refinement of the unbalanced M-tree

� apply the following two techniques to adjust the set � apply the following two techniques to adjust the set

of pivots P={p1,8,pl}

� under-filled nodes – reassign to other pivots and

corresponding pivots deleted from Pcorresponding pivots deleted from P

� deeper subtrees – split into shallower ones and add the

obtained pivots to Pobtained pivots to P

Similarity Search: Part II, Chapter 3 24

Bulk-Loading: Example (2)Bulk-Loading: Example (2)

� Under-filled nodes in the example: o’1,o9

o1 o4o’3 o’3

o’1 o5o4 o’4 o5o”3 o9o8 o”3 o8

Similarity Search: Part II, Chapter 3 25

Bulk-Loading: Example (3)Bulk-Loading: Example (3)

� After elimination of under-filled nodes.

root

s
u
p
e
r-
tr
e
e

o2 o3

tr
e
e

s
u
p
e
r

o4

o7o6

s
u
b
-t
re
e

o’4 o5 o’3

s
u
b

o”3 o8

Similarity Search: Part II, Chapter 3 26

Bulk-Loading: Example (4)Bulk-Loading: Example (4)

� Sub-trees rooted in o4 and o3 in the tree are deeper

� split them into new subtrees rooted in o’4, o5, o”3, o8,

o , oo6, o7

� add them into P and remove o4,o34 3

� build the super-tree (two levels) over the final set of

pivots P={o2,o’4,o5,o”3,o8,o6,o7} – from Sample (3)pivots P={o2,o’4,o5,o”3,o8,o6,o7} – from Sample (3)

Similarity Search: Part II, Chapter 3 27

Bulk-Loading: Example (5) – FinalBulk-Loading: Example (5) – Final

o1
o4

o5
root

o2 o2

root

o3

s
u
p
e
r-
tr
e
e

o4

o6 o8

o9

o2o3

o3 o6o8

tr
e
e

s
u
p
e
r

o4 o5

o4

o2 o7

o7o3

o3 o6o8

s
u
b
-t
re
eo4 o5 o2 o7

Similarity Search: Part II, Chapter 3 28

Bulk-Loading: OptimizationBulk-Loading: Optimization

� Reduce the number of distance computations in the

recursive calling of the algorithmrecursive calling of the algorithm

� after initial phase, we have distances d(pj,oi) for all

objects X={o1,8,on} and all pivots P={p1,8,pl}objects X={o1,8,on} and all pivots P={p1,8,pl}

� Assume the recursive processing of P1

� New set of pivots is picked {p , 8, p }� New set of pivots is picked {p1,1 , 8, p1,l’}

� During clustering, we are assigning every object o∈P1 to its

nearest pivot.nearest pivot.

� The distance d(p1,j ,o) can be lower-bounded:

|d(p ,o) – d(p ,p)| ≤ d(p ,o)|d(p1,o) – d(p1,p1,j)| ≤ d(p1,j ,o)

Similarity Search: Part II, Chapter 3 29

Bulk-Loading: Optimization (cont.)Bulk-Loading: Optimization (cont.)

� If this lower-bound is greater than the distance to

the closest pivot p1,N so far, i.e.,the closest pivot p1,N so far, i.e.,

|d(p1,o) – d(p1,p1,j)| > d(p1,N ,o)

then the evaluation of d(p ,o) can be avoided.then the evaluation of d(p1,j ,o) can be avoided.

� Cuts costs by 11%

� It uses pre-computed distances to a single pivot.� It uses pre-computed distances to a single pivot.

� by 20% when pre-computed distances to multiple pivots

are used.are used.

Similarity Search: Part II, Chapter 3 30

M-tree FamilyM-tree Family

� The M-tree

� Bulk-Loading Algorithm� Bulk-Loading Algorithm

� Multi-Way Insertion Algorithm

� The Slim Tree

� Slim-Down Algorithm� Slim-Down Algorithm

� Generalized Slim-Down Algorithm

� Pivoting M-tree� Pivoting M-tree

� The M+-tree

� The M2-tree

Similarity Search: Part II, Chapter 3 31

Multi-Way Insertion AlgorithmMulti-Way Insertion Algorithm

� another extension of M-tree insertion algorithm

� objective: build more compact trees� objective: build more compact trees

� reduce search costs (both I/O and CPU)

for dynamic datasets (not necessarily given in � for dynamic datasets (not necessarily given in

advance)

� increase insertion costs slightly

� the original single-way insertion visits exactly one � the original single-way insertion visits exactly one

root-leaf branch

� leaf with no or minimum increase of covering radius� leaf with no or minimum increase of covering radius

� not necessarily the most convenient

Similarity Search: Part II, Chapter 3 32

Multi-Way Insertion: PrincipleMulti-Way Insertion: Principle

� when inserting an object oN

� run the point query R(o ,0)� run the point query R(oN,0)

� for all visited leaves (they can store oN without radii

enlargement): compute the distance between oenlargement): compute the distance between oN
and the leaf’s pivot

� choose the closest pivot (leaf)

� if no leaf visited – run the single-way insertion� if no leaf visited – run the single-way insertion

Similarity Search: Part II, Chapter 3 33

Multi-Way Insertion: AnalysisMulti-Way Insertion: Analysis

Insertion costs:

� 25% higher I/O costs (more nodes examined)� 25% higher I/O costs (more nodes examined)

� higher CPU costs (more distances computed)

Search costs:Search costs:

� 15% fewer disk accesses

almost the same CPU costs for the range query� almost the same CPU costs for the range query

� 10% fewer distance computations for k-NN query� 10% fewer distance computations for k-NN query

Similarity Search: Part II, Chapter 3 34

M-tree FamilyM-tree Family

� The M-tree

� Bulk-Loading Algorithm� Bulk-Loading Algorithm

� Multi-Way Insertion Algorithm

� The Slim Tree

� Slim-Down Algorithm� Slim-Down Algorithm

� Generalized Slim-Down Algorithm

� Pivoting M-tree� Pivoting M-tree

� The M+-tree

� The M2-tree

Similarity Search: Part II, Chapter 3 35

The Slim TreeThe Slim Tree

� extension of M-tree – the same structure

� speed up insertion and node splitting � speed up insertion and node splitting

� improve storage utilization

new node-selection heuristic for insertion � new node-selection heuristic for insertion

� new node-splitting algorithm

� special post-processing procedure

� make the resulting trees more compact.� make the resulting trees more compact.

Similarity Search: Part II, Chapter 3 36

Slim Tree: InsertionSlim Tree: Insertion

Starting at the root node, in each step:

� find a node that covers the incoming object� find a node that covers the incoming object

� if none, select the node whose pivot is the nearest

� M-tree would select the node whose covering radius

requires the smallest expansion

� if several nodes qualify, select the one which

occupies the minimum spaceoccupies the minimum space

� M-trees would choose the node with closest pivot

Similarity Search: Part II, Chapter 3 37

Slim Tree: Insertion AnalysisSlim Tree: Insertion Analysis

� fill insufficiently occupied nodes first

� defer splitting, boost node utilization, and cut the tree size� defer splitting, boost node utilization, and cut the tree size

� experimental results (the same mM_RAD_2

splitting policy) show:splitting policy) show:

� lower I/O costs

nearly the same number of distance computations � nearly the same number of distance computations

� this holds true for both the tree building procedure and the

query executionquery execution

Similarity Search: Part II, Chapter 3 38

Slim Tree: Node SplitSlim Tree: Node Split

� splitting of the overfilled nodes – high costs

� mM_RAD_2 strategy is considered the best so far� mM_RAD_2 strategy is considered the best so far

� Complexity O(n3) using O(n2) distance computations

the Slim Tree splitting based on the minimum � the Slim Tree splitting based on the minimum

spanning tree (MST)

� Complexity O(n2logn) using O(n2) distance computations

� the MST algorithm assumes a full graph� the MST algorithm assumes a full graph

� n objects

� n(n-1) edges – distances between objects� n(n-1) edges – distances between objects

Similarity Search: Part II, Chapter 3 39

Slim Tree: Node Split (cont.)Slim Tree: Node Split (cont.)

Splitting policy based on the MST:

1. build the minimum spanning tree on the full graph1. build the minimum spanning tree on the full graph

2. delete the longest edge

3. the two resulting sub-graphs form the new nodes

4. choose the pivot for each node as the object whose 4. choose the pivot for each node as the object whose

distance to the others in the group is the shortest

Similarity Search: Part II, Chapter 3 40

Slim Tree: Node Split – Example Slim Tree: Node Split – Example

o1

oN
o1

oN o1
oN

o1

o2

oo

o5

o7

o6

o1
o2

o5

o7

o6

o1

o2

oo

o5

o

o6

o3o4
o7 o3o4

o7 o3o4
o7

(a) (b) (c)

(a) the original Slim Tree node

(a) (b) (c)

� (a) the original Slim Tree node

� (b) the minimum spanning tree(b) the minimum spanning tree

� (c) the new two nodes

Similarity Search: Part II, Chapter 3 41

Slim Tree: Node Split – DiscussionSlim Tree: Node Split – Discussion

� does not guarantee the balanced split

� a possible variant (more balanced splits):� a possible variant (more balanced splits):

� choose the most appropriate edge from among the longer

edges in the MSTedges in the MST

� if no such edge is found (e.g., for a star-shaped dataset),

accept the original unbalanced splitaccept the original unbalanced split

experiments prove that:� experiments prove that:

� tree building using the MST algorithm is at least forty times

faster than the mM_RAD_2 policy faster than the mM_RAD_2 policy

� query execution time is not significantly better

Similarity Search: Part II, Chapter 3 42

M-tree FamilyM-tree Family

� The M-tree

� Bulk-Loading Algorithm� Bulk-Loading Algorithm

� Multi-Way Insertion Algorithm

� The Slim Tree

� Slim-Down Algorithm� Slim-Down Algorithm

� Generalized Slim-Down Algorithm

� Pivoting M-tree� Pivoting M-tree

� The M+-tree

� The M2-tree

Similarity Search: Part II, Chapter 3 43

Slim-Down AlgorithmSlim-Down Algorithm

� post-processing procedure

� reduce the fat-factor of the tree� reduce the fat-factor of the tree

� basic idea: reduce the overlap between nodes on one level

minimize number of nodes visited by a point query, e.g., � minimize number of nodes visited by a point query, e.g.,

R(o3,0)

Node N
Node N

o3
o2 o1 o4

o3
o2 o1

o4 o5
Node M

o4
o5

Node M

Similarity Search: Part II, Chapter 3 44

Slim-Down Algorithm: The PrincipleSlim-Down Algorithm: The Principle

For each node N at the leaf level:
1. Find object o furthest from pivot of N1. Find object o furthest from pivot of N

2. Search for a sibling node M that also covers o. If such a not
fully occupied node exists, move o from N to M and update

N. the covering radius of N.

Steps 1 and 2 are applied to all nodes at the given � Steps 1 and 2 are applied to all nodes at the given
level. If an object is relocated after a complete loop,
the entire algorithm is executed again.the entire algorithm is executed again.

� Observe moving of o3 from N to M on previous slide.

Similarity Search: Part II, Chapter 3 45

Slim-Down Algorithm: DiscussionSlim-Down Algorithm: Discussion

� Prevent from infinite loop

� cyclic moving of objects o4,o5,o6

o4

� cyclic moving of objects o4,o5,o6

� Limit the number of algorithm

cycles

o1 o2

oo

o8o7

cycles
o3

o5o6

� Trials proved reducing of I/O costs of at least 10%

o9

� Trials proved reducing of I/O costs of at least 10%

� The idea of dynamic object relocation can be also

applied to defer splitting.applied to defer splitting.

� Move distant objects from a node instead of splitting it.

Similarity Search: Part II, Chapter 3 46

M-tree FamilyM-tree Family

� The M-tree

� Bulk-Loading Algorithm� Bulk-Loading Algorithm

� Multi-Way Insertion Algorithm

� The Slim Tree

� Slim-Down Algorithm� Slim-Down Algorithm

� Generalized Slim-Down Algorithm

� Pivoting M-tree� Pivoting M-tree

� The M+-tree

� The M2-tree

Similarity Search: Part II, Chapter 3 47

Generalized Slim-Down AlgorithmGeneralized Slim-Down Algorithm

� generalization of Slim-down algorithm for non-leaf

tree levelstree levels

� the covering radii rc must be taken into account

before moving a non-leaf entrybefore moving a non-leaf entry

� the generalized Slim-down starts from the leaf level

� follow the original Slim-down algorithm for leaves

� ascend up the tree terminating in the root� ascend up the tree terminating in the root

Similarity Search: Part II, Chapter 3 48

Generalized Slim-Down: The PrincipleGeneralized Slim-Down: The Principle

For each entry E=〈p,rc,8〉 at given non-leaf level:

� pose range query R(p,rc),� pose range query R(p,rc),

� the query determines the set of nodes that entirely

contain the query region,contain the query region,

� from this set, choose the node M whose parent pivot � from this set, choose the node M whose parent pivot

is closer to p than to pp,

� if such M exists, move the entry E from N to M,� if such M exists, move the entry E from N to M,

� if possible, shrink the covering radius of N.

Similarity Search: Part II, Chapter 3 49

Generalized Slim-Down: ExampleGeneralized Slim-Down: Example

Node M Node N

o o4 o o4

Node M
Node M Node N

o1
o4

o2

o

o1
o4

o2

oNode No3 o3Node N

� Leaf level:
� move two objects from o3 and o4 to o1 – shrink o3 and o4

� Upper level:
� originally node M contains o1,o4 and node N contains o2,o3
� swap the nodes of o3 and o4

Similarity Search: Part II, Chapter 3 50

M-tree FamilyM-tree Family

� The M-tree

� Bulk-Loading Algorithm� Bulk-Loading Algorithm

� Multi-Way Insertion Algorithm

� The Slim Tree

� Slim-Down Algorithm� Slim-Down Algorithm

� Generalized Slim-Down Algorithm

� Pivoting M-tree� Pivoting M-tree

� The M+-tree

� The M2-tree

Similarity Search: Part II, Chapter 3 51

Pivoting M-treePivoting M-tree

� upgrade of the standard M-tree

� bound the region covered by nodes more tightly� bound the region covered by nodes more tightly

� define additional ring regions that restrict the ball regions

ring regions: pivot p and two radii r , r� ring regions: pivot p and two radii rmin, rmax

� such objects o that: rmin ≤ d(o,p) ≤ rmax

� basic idea:

� Select additional pivots� Select additional pivots

� Every pivot defines two boundary values between which all

node’s objects lie.node’s objects lie.

� Boundary values for each pivot are stored in every node.

(see a motivation example on the next slide)

Similarity Search: Part II, Chapter 3 52

PM-tree: Motivation ExamplePM-tree: Motivation Example

p2r r

q

p2r

q

original M-tree PM-tree (two pivots)

p1

� original M-tree

� range query R(q,r)

� PM-tree (two pivots)

� this node not visited � range query R(q,r)

intersects the node

region

� this node not visited

for query R(q,r)

region

Similarity Search: Part II, Chapter 3 53

PM-tree: StructurePM-tree: Structure

� select additional set of pivots |P|=np

� leaf node entry: 〈o,d(o,op),PD〉� leaf node entry: 〈o,d(o,op),PD〉

� PD – array of npd pivot distances: PD[i]=d(pi,o)

Parameter n < n� Parameter npd < np

� internal node entry: 〈p,rc,d(p,pp),ptr,HR〉

� HR – array of nhr intervals defining ring regions

})|),(min({min].[ptropodjHR j ∈∀=

})|),(max({max].[

})|),(min({min].[

ptropodjHR

ptropodjHR

j

j

∈∀=

∈∀=

� parameter nhr < np

Similarity Search: Part II, Chapter 3 54

PM-tree: InsertionPM-tree: Insertion

� insertion of object oN

� the HR arrays of nodes visited during insertion must � the HR arrays of nodes visited during insertion must

be updated by values d(oN,pi) for all i ≤ nhr

the leaf node: � the leaf node:

� create array PD and fill it with values d(oN,pj), ∀ j ≤ npdN j pd

� values d(oN,pj) are computed only once and used

several times – max(nhr ,npd) distance computationsseveral times – max(nhr ,npd) distance computations

� insertions may force node splits

Similarity Search: Part II, Chapter 3 55

PM-tree: Node SplitPM-tree: Node Split

� node splits require some maintenance

� leaf split:� leaf split:

� set arrays HR of two new internal entries

set HR[i].min and HR[i].max as min/max of PD[j]� set HR[i].min and HR[i].max as min/max of PD[j]

� compute additional distances: d(pj ,o), ∀ j (npd < j ≤ nhr)

and take them into accountand take them into account

� can be expensive if nhr >> npd

internal node split:� internal node split:

� creating two internal node entries with HRcreating two internal node entries with HR

� set these HR arrays as union over all HR arrays of

respective entries

Similarity Search: Part II, Chapter 3 56

PM-tree: Range QueryPM-tree: Range Query

Given R(q,r):

� evaluate distances d(q,pi), ∀ i (i ≤ max(nhr ,npd))� evaluate distances d(q,pi), ∀ i (i ≤ max(nhr ,npd))

� traverse the tree, internal node 〈p,rc,d(p,pp),ptr,HR〉
is visited if both the expressions hold:is visited if both the expressions hold:

crrpqd +≤),(
nhr

≥+∧≤− min)].[),(max].[),((

1

iHRrpqdiHRrpqd ii

i

≥+∧≤−
= npd

� leaf node entry test:

1i=

)|][),((|

1

riPDpqd i

n

i

pd

≤−
=

� M-tree: the first condition only
1i=

Similarity Search: Part II, Chapter 3 57

PM-tree: Parameter SettingPM-tree: Parameter Setting

� general statements:

� existence of PD arrays in leaves reduce number of � existence of PD arrays in leaves reduce number of

distance computations but increase the I/O cost

� the HR arrays reduce both CPU and I/O costs� the HR arrays reduce both CPU and I/O costs

� experiments proof that:

n =0 decreases I/O costs by 15% to 35% comparing to M-� npd=0 decreases I/O costs by 15% to 35% comparing to M-

tree (for various values of nhr)

CPU cost reduced by about 30%� CPU cost reduced by about 30%

� npd=nhr / 4 leads to the same I/O costs as for M-tree

with this setting – up to 10 times faster� with this setting – up to 10 times faster

� particular parameter setting depends on application

Similarity Search: Part II, Chapter 3 58

M-tree FamilyM-tree Family

� The M-tree

� Bulk-Loading Algorithm� Bulk-Loading Algorithm

� Multi-Way Insertion Algorithm

� The Slim Tree

� Slim-Down Algorithm� Slim-Down Algorithm

� Generalized Slim-Down Algorithm

� Pivoting M-tree� Pivoting M-tree

� The M+-tree

� The M2-tree

Similarity Search: Part II, Chapter 3 59

The M+-treeThe M -tree

� modification of the M-tree

� restrict the application to L metrics (vector spaces)� restrict the application to Lp metrics (vector spaces)

� based on the concept of key dimension

� each node partitioned into two twin-nodes

� partition according to a selected key dimension� partition according to a selected key dimension

Similarity Search: Part II, Chapter 3 60

M+-tree: PrinciplesM -tree: Principles

� in an n-dimensional vector space

� key dimension for a set of objects is the dimension � key dimension for a set of objects is the dimension

along which the data objects are most spread

for any dimension D and vectors (x ,8x),(y ,8y)� for any dimension Dkey and vectors (x1,8xn),(y1,8yn)

22)()(|| yxyxyx −++−≤− L

� this holds also for other Lp metrics

22
11)()(|| nnDD yxyxyx

keykey
−++−≤− L

� this holds also for other Lp metrics

� this fact is applied to prune the search space

Similarity Search: Part II, Chapter 3 61

M+-tree: StructureM -tree: Structure

� internal node is divided into two subsets

� according to a selected dimension� according to a selected dimension

� leaving a gap between the two subsets

� the greater the gap the better filtering� the greater the gap the better filtering

� internal node entry:

〉〈 pc ptrddptrDppdrp ,,,,),,(,,

� Dkey – number of the key dimension

〉〈 rightrminlmaxleftkey
pc ptrddptrDppdrp ,,,,),,(,,

� Dkey – number of the key dimension

� ptrleft ,ptrright – pointers to the left and right twin-nodes

� dlmax – maximal key-dimension value of the left twin� dlmax – maximal key-dimension value of the left twin

� drmin – minimal key-dimension value of the right twin

Similarity Search: Part II, Chapter 3 62

M+-tree: ExampleM -tree: Example

o ooN oN

� splitting of an overfilled node:� splitting of an overfilled node:

� objects of both twins are considered as a single set

apply standard mM_RAD_2 strategy� apply standard mM_RAD_2 strategy

� select the key dimension for each node separately

Similarity Search: Part II, Chapter 3 63

M+-tree: PerformanceM -tree: Performance

� slightly more efficient than M-tree

� better filtering for range queries with small radii� better filtering for range queries with small radii

� practically the same for larger radii

� nearest neighbor queries:

� a shorter priority queue – only one of the twin-nodes� a shorter priority queue – only one of the twin-nodes

� save some time for queue maintenance

� moderate performance improvements

application restricted to vector datasets with L� application restricted to vector datasets with Lp

Similarity Search: Part II, Chapter 3 64

M-tree FamilyM-tree Family

� The M-tree

� Bulk-Loading Algorithm� Bulk-Loading Algorithm

� Multi-Way Insertion Algorithm

� The Slim Tree

� Slim-Down Algorithm� Slim-Down Algorithm

� Generalized Slim-Down Algorithm

� Pivoting M-tree� Pivoting M-tree

� The M+-tree

� The M2-tree

Similarity Search: Part II, Chapter 3 65

The M2-treeThe M -tree

� generalization of M-tree

� able to process complex similarity queries� able to process complex similarity queries

� combined queries on several metrics at the same time

for instance: an image database with keyword-annotated � for instance: an image database with keyword-annotated

objects and color histograms

query: Find images that contain a lion and the scenery � query: Find images that contain a lion and the scenery

around it like this.

qualifying objects identified by a scoring function d� qualifying objects identified by a scoring function df
� combines the particular distances (according to several

different measures)different measures)

Similarity Search: Part II, Chapter 3 66

M2-tree: StructureM -tree: Structure

� each object characterized by several features

� e.g. o[1],o[2]� e.g. o[1],o[2]

� respective distance measures may differ: d1,d2

leaf node: M-tree vs. M2-tree� leaf node: M-tree vs. M2-tree

〉〈),(, podo 〉〈])2[],1[(],2[]),1[],1[(],1[21 podopodo

� internal node: M-tree vs. M2-tree

〉〈 ptrppdrp pc),,(,, 〉〈 ptrppdrp pc),,(,,

〉〈 ptrppdrpppdrp pcpc]),2[],2[(],2[],2[]),1[],1[(],1[],1[21 〉〈 ptrppdrpppdrp]),2[],2[(],2[],2[]),1[],1[(],1[],1[21

Similarity Search: Part II, Chapter 3 67

M2-tree: ExampleM -tree: Example

])2[],2[(2 pod i

o1

o2
o5

o4
]2[cr

o1

])1[],1[(1 pod i
])2[],1[pp

]1[cr

� the space transformation according to particular

features can be seen as an n-dimensional spacefeatures can be seen as an n-dimensional space

� the subtree region forms a hypercube

Similarity Search: Part II, Chapter 3 68

M2-tree: Range SearchM -tree: Range Search

Given R(q,r):

� M-tree prunes a subtree if |d(q,pp) – d(p,pp)| – rc > r� M-tree prunes a subtree if |d(q,pp) – d(p,pp)| – rc > r

� M2-tree: compute the lower bound for every feature

)0],[|])[],[(])[],[(min(|, iripipdipiqdi cpp −−∀

� combine these bounds using the scoring function df

)0],[|])[],[(])[],[(min(|, iripipdipiqdi cp
i

p
i −−∀

� combine these bounds using the scoring function df

� visit those entries for which the result is ≤ r

� analogous strategy for nearest neighbor queries� analogous strategy for nearest neighbor queries

Similarity Search: Part II, Chapter 3 69

M2-tree: PerformanceM -tree: Performance

� running k-NN queries

� image database mentioned in the example� image database mentioned in the example

� M2-tree compared with sequential scan

� the same I/O costs

� reduced number of distance computations

� M2-tree compared with Fagin’s A0 (two M-trees)

M2-tree saves about 30% of I/Os� M2-tree saves about 30% of I/Os

� about 20% of distance computations

� A0 have higher I/O cost than the sequential scan

Similarity Search: Part II, Chapter 3 70

Centralized Index StructuresCentralized Index Structures

for Large Databases

1. M-tree family

2. hash-based metric indexing

� Distance Index (D-index)

� Extended D-Index (eD-index)

3. performance trials3. performance trials

Similarity Search: Part II, Chapter 3 71

Distance Index (D-index)Distance Index (D-index)

� Hybrid structure

� combines pivot-filtering and partitioning.� combines pivot-filtering and partitioning.

� Multilevel structure based on hashing

one ρ-split function per level.� one ρ-split function per level.
� The first level splits the whole data set.The first level splits the whole data set.

� Next level partitions the exclusion zone of the

previous level.previous level.

� The exclusion zone of the last level forms the

exclusion bucket of the whole structure.exclusion bucket of the whole structure.

Similarity Search: Part II, Chapter 3 72

D-index: StructureD-index: Structure

4 separable buckets at 4 separable buckets at

the first level

2 separable buckets at

the second level

exclusion bucket of

the whole structure

Similarity Search: Part II, Chapter 3 73

D-index: PartitioningD-index: Partitioning

� Based on excluded middle partitioning

� ball partitioning variant is used.� ball partitioning variant is used.

0 if d(x,p) ≤ dm - ρ
Exclusion set

� bps1,ρ(x)=

0 if d(x,p) ≤ dm - ρ
1 if d(x,p) > dm + ρ
− otherwise

2ρ
− otherwise

dm
p

dm
pSeparable set 1

Separable set 0

Similarity Search: Part II, Chapter 3 74

D-index: Binary ρ-Split FunctionD-index: Binary ρ-Split Function

� Binary mapping: bps1,ρ: D→ {0,1,−}

� ρ-split function, ρ ≥ 0� ρ-split function, ρ ≥ 0

� also called the first order ρ-split function

� Separable property (up to 2ρ):

D∀x,y ∈D, bps1,ρ(x) = 0 and bps1,ρ(y) = 1⇒ d(x,y) > 2ρ
� No objects closer than 2ρ can be found in both the

separable sets.
No objects closer than 2ρ can be found in both the
separable sets.

� Symmetry property: ∀x,y ∈ D, ρ2 ≥ ρ1, � Symmetry property: ∀x,y ∈ D, ρ2 ≥ ρ1,

bps1,ρ2(x) ≠ −, bps1,ρ1(y) = − ⇒ d(x,y) > ρ2 - ρ1

Similarity Search: Part II, Chapter 3 75

D-index: Symmetry PropertyD-index: Symmetry Property

� Ensures that the exclusion set “shrinks” in a

symmetric way as ρ decreases.symmetric way as ρ decreases.

� We want to test whether a query intersects the

exclusion set or not.

2ρ

exclusion set or not.

r

2(ρ+r)
q1

r

2(ρ+r)

q

r

q2

Similarity Search: Part II, Chapter 3 76

D-index: General ρ-Split FunctionD-index: General ρ-Split Function

� Combination of several binary ρ-split functions
� two in the example

2

� two in the example

Separable

Separable

set 2

dm1

2

ρ

2

ρ

Separable

set 0

Separable dm1

dm2

ρ
Separable

set 1

Separable

set 3

dm2set 1

Exclusion Exclusion

set

Similarity Search: Part II, Chapter 3 77

D-index: General ρ-Split FunctionD-index: General ρ-Split Function

� A combination of n first order ρ-split functions:
bpsn,ρ:D→ {0..2n-1, −}� bpsn,ρ:D→ {0..2n-1, −}

− if ∃i, bps 1,ρ(x) = −
� bpsn,ρ(x) =

− if ∃i, bpsi1,ρ(x) = −
b all bpsi

1,ρ(x) form a binary number b

� Separable & symmetry properties hold

� resulting sets are also separable up to 2ρ.� resulting sets are also separable up to 2ρ.

Similarity Search: Part II, Chapter 3 78

D-index: InsertionD-index: Insertion

Similarity Search: Part II, Chapter 3 79

D-index: Insertion AlgorithmD-index: Insertion Algorithm

� Dindexρ(X, m1, m2, 8, mh)

� h – number of levels,� h – number of levels,

� mi – number of binary functions combined on level i.

� Algorithm – insert the object o :� Algorithm – insert the object oN:

for i=1 to h do

if bpsmi,ρ(o) ≠ ‘-’ thenif bpsmi,ρ(oN) ≠ ‘-’ then

oN → bucket with the index bpsmi,ρ(oN).

exitexit

end if

end do

oN → global exclusion bucket.

Similarity Search: Part II, Chapter 3 80

D-index: Insertion Algorithm (cont.)D-index: Insertion Algorithm (cont.)

� The new object is inserted with one bucket access.

� Requires distance computations∑ =

j

i im1
� assuming oN was inserted in a bucket on the level j.

∑ =i i1

Similarity Search: Part II, Chapter 3 81

D-index: Range QueryD-index: Range Query

� Dindexρ(X, m1, m2, 8, mh)

� h – number of levels,� h – number of levels,

� mi – number of binary functions combined on level i.

Given a query R(q,r) with r ≤ρ:
for i=1 to h dofor i=1 to h do

search in the bucket with the index bpsmi,0(q).

end doend do

search in the global exclusion bucket.

� Objects o, d(q,o)≤r, are reported on the output.

Similarity Search: Part II, Chapter 3 82

D-index: Range Search (cont.)D-index: Range Search (cont.)

q

r r

q q

r q

r

q

r q

r
q

r

q

r

Similarity Search: Part II, Chapter 3 83

D-index: Range Query (cont.)D-index: Range Query (cont.)

� The call bpsmi,0(q) always returns a value between

0 and 2mi -1.0 and 2mi -1.

� Exactly one bucket per level is accessed if r ≤ρ
h+1 bucket access.� h+1 bucket access.

� Reducing the number of bucket accesses:

� the query region is in the exclusion set ⇒ proceed the next the query region is in the exclusion set ⇒ proceed the next

level directly,

� the query region is in a separable set ⇒ terminate the ⇒

search.

Similarity Search: Part II, Chapter 3 84

D-index: Advanced Range QueryD-index: Advanced Range Query

for i = 1 to h

if bpsmi,ρ+r (q) ≠ − then (exclusively in the separable bucket)

search in the bucket with the index bpsmi,ρ+r (q).search in the bucket with the index bpsmi,ρ+r (q).

exit (search terminates)

end if

if r ≤ ρ then (the search radius up to ρ)if r ≤ ρ then (the search radius up to ρ)
if bpsmi,ρ-r (q) ≠ − then (not exclusively in the exclusion zone)

search in the bucket with the index bpsmi,ρ−r (q).

end ifend if

else (the search radius greater than ρ)
let {i1,8in} = G(bps

mi,r−ρ (q))let {i1,8in} = G(bps (q))

search in the buckets with the indexes i1,8,in.

end if

end forend for
search in the global exclusion bucket.

Similarity Search: Part II, Chapter 3 85

D-index: Advanced Range Query (cont.)D-index: Advanced Range Query (cont.)

� The advanced algorithm is not limited to r≤ρ.
� All tests for avoiding some bucket accesses are � All tests for avoiding some bucket accesses are

based on manipulation of parameters of split

functions (i.e. ρ).functions (i.e. ρ).
� The function G() returns a set of bucket indexes:

� all minuses (-) in the split functions’ results are substituted

by all combinations of ones and zeros,

� e.g. bps3,ρ(q)=‘1--’

� G(bps3,ρ(q))={100,101,110,111}

Similarity Search: Part II, Chapter 3 86

D-index: FeaturesD-index: Features

� supports disk storage

� insertion needs one bucket access� insertion needs one bucket access

� distance computations vary from m1 up to ∑i=1..h mi

h+1 bucket accesses at maximum� h+1 bucket accesses at maximum

� for all queries such that qualifying objects are within ρ
� exact match (R(q,0))

� successful – one bucket access� successful – one bucket access

� unsuccessful – typically no bucket is accessed

Similarity Search: Part II, Chapter 3 87

Similarity Join QuerySimilarity Join Query

� The similarity join can be evaluated by a simple

algorithm which computes |X||Y| distances between algorithm which computes |X||Y| distances between

all the pairs of objects.

X Y

= NM distance computations

Similarity Search: Part II, Chapter 3 88

Similarity Self Join QuerySimilarity Self Join Query

� The similarity self join examines all pairs of

objects of a set X, which is |X||X| distance objects of a set X, which is |X||X| distance

computations.

Due to the symmetry property, d(x,y) = d(y,x), we � Due to the symmetry property, d(x,y) = d(y,x), we

can reduce the costs.

X
)1(−= NN
distance computations

This is called the nested loops algorithm (NL).

X

2
= distance computations

� This is called the nested loops algorithm (NL).

Similarity Search: Part II, Chapter 3 89

Similarity Self Join Query (cont.)Similarity Self Join Query (cont.)

� Specialized algorithms

� usually built on top of a commercial DB system, or� usually built on top of a commercial DB system, or

� tailored to specific needs of application.

D-index provides a very efficient algorithm for range � D-index provides a very efficient algorithm for range

queries:

a self join query can be evaluated using� a self join query can be evaluated using

Range Join Algorithm (RJ):Range Join Algorithm (RJ):

for each o in dataset X do

range_query(o, µ)range_query(o, µ)
end do

Similarity Search: Part II, Chapter 3 90

Extended D-index (eD-index)Extended D-index (eD-index)

� A variant of D-index which provides a specialized

algorithm for similarity joins.algorithm for similarity joins.

� Application independent – general solution.

� Split functions manage replication.� Split functions manage replication.

� D-index’s algorithms for range & k-NN queries are

only slightly modified. only slightly modified.

Similarity Search: Part II, Chapter 3 91

eD-index: Similarity Self Join QueryeD-index: Similarity Self Join Query

� Similarity self join is elaborated independently in each

bucket.bucket.

� The result set is a union of answers of all sub-queries.

µµµµ
Separable set 1

The lost pair!!!

Separable set 0
Exclusion set

Similarity Search: Part II, Chapter 3 92

eD-index: Overloading PrincipleeD-index: Overloading Principle

� Lost pairs are handled by replications

� areas of width ε are replicated in the exclusion set.� areas of width ε are replicated in the exclusion set.
� µ ≤ ε

µµµµ
εεεε Separable set 1

µµµµ
εεεε

The duplicate !!!

Separable set 0Separable set 0
Exclusion set

Objects replicated to the exclusion set

Similarity Search: Part II, Chapter 3 93

eD-index: ρ-Split Function ModificationeD-index: ρ-Split Function Modification

2ρ 2(ρ +ε)
Separable set 1

dm

2ρ

Exclusion set

p

Separable set 0

dmp

The modification of ρ-split function is implemented in

Separable set 0

� The modification of ρ-split function is implemented in
the insertion algorithm by varying the parameter ρρ
� the original stop condition in the D-index’s algorithm is

changed.

Similarity Search: Part II, Chapter 3 94

eD-index: Insertion AlgorithmeD-index: Insertion Algorithm

� eDindexρ,ε(X, m1, m2, 8, mh)

� Algorithm – insert the object oN:� Algorithm – insert the object oN:
for i=1 to h do

if bpsmi,ρ(oN) ≠ ‘-’ thenif bpsmi,ρ(oN) ≠ ‘-’ then

oN → bucket with the index bpsmi,ρ(oN).

if bpsmi,ρ+ε(oN) ≠ ‘-’ then (not in the overloading area)if bps i ρ+ε(oN) ≠ ‘-’ then (not in the overloading area)

exit

end ifend if

end if

end doend do

oN → global exclusion bucket.

Similarity Search: Part II, Chapter 3 95

eD-index: Handling Duplicates

Bucket of 1st level

eD-index: Handling Duplicates

εεεε
Bucket of 1st level

Bucket of 2nd level

εεεε

brown
green

1st level brown

2nd level

1 level

green

3rd level blueThe duplicates received

brown & green colors.

Similarity Search: Part II, Chapter 3 96

eD-index: Overloading Join AlgorithmeD-index: Overloading Join Algorithm

Given similarity self-join query SJ(µ):
� Execute the query in every separable bucket on � Execute the query in every separable bucket on

every level

and in the global exclusion bucket.� and in the global exclusion bucket.

� In the bucket, apply sliding window algorithm.

� The query’s result is formed by concatenation of all

sub-results.sub-results.

Similarity Search: Part II, Chapter 3 97

eD-index: Sliding WindoweD-index: Sliding Window

� Use the triangle inequality
� to avoid checking all pairs of objects in the bucket.to avoid checking all pairs of objects in the bucket.

� Order all objects on distances to one pivot.

� The sliding window is then moved over all objects.� The sliding window is then moved over all objects.
� only pairs of objects in the window are examined.

µµµµ
p

µµµµ

� Due to the triangle inequality, the pair of objects
outside the window cannot qualify:outside the window cannot qualify:
� d(x,y) ≥ d(x,p) - d(y,p) > µ

Similarity Search: Part II, Chapter 3 98

eD-index: Sliding Window (cont.)eD-index: Sliding Window (cont.)

� The algorithm also employs

� the pivot filtering and � the pivot filtering and

� the eD-index’s coloring technique.

� Given a pair of objects o1,o2:

� if a color is shared, this pair must have been reported on

the level having this color – the pair is ignored without

distance computation, elsedistance computation, else

� if d(o1,o2)≤µ , it is an original qualifying pair.

Similarity Search: Part II, Chapter 3 99

eD-index: LimitationseD-index: Limitations

� Similarity self-join queries only

� the query selectivity must satisfy: µ ≤ ε.� the query selectivity must satisfy: µ ≤ ε.
� it is not very restrictive since we usually look for close pairs.

The parameters ρ and ε depend on each other.� The parameters ρ and ε depend on each other.
� ε ≤ 2ρ

ε ρ� If ε > 2ρ, the overloading zone is wider than the exclusion
zone.

because we do not replicate objects between separable sets –� because we do not replicate objects between separable sets –

only between a separable set and the exclusion zone,

� some qualifying pairs might be missed.� some qualifying pairs might be missed.

Similarity Search: Part II, Chapter 3 100

Centralized Index StructuresCentralized Index Structures

for Large Databases

1. M-tree family

2. hash-based metric indexing

3. performance trials3. performance trials

Similarity Search: Part II, Chapter 3 101

Performance TrialsPerformance Trials

� experiments on M-tree and D-index

� three sets of experiments:� three sets of experiments:

1. comparison of M-tree (tree-based approach) vs. D-index

(hash-based approach)(hash-based approach)

2. processing different types of queries

scalability of the centralized indexes – growing the size of 3. scalability of the centralized indexes – growing the size of

indexed dataset

Similarity Search: Part II, Chapter 3 102

Datasets and Distance MeasuresDatasets and Distance Measures

� trials performed on three datasets:

� VEC: 45-dimensional vectors of image color features � VEC: 45-dimensional vectors of image color features

compared by the quadratic distance measure

� URL: sets of URL addresses; the distance measure is � URL: sets of URL addresses; the distance measure is

based on the similarity of sets (Jaccard’s coefficient)

� STR: sentences of a Czech language corpus compared � STR: sentences of a Czech language corpus compared

using an edit distance

Similarity Search: Part II, Chapter 3 103

Datasets: Distance DistributionDatasets: Distance Distribution

distribution of distances within the datasets:� distribution of distances within the datasets:

� VEC: practically normal distance distribution

� URL: discrete distribution

� STR: skewed distribution

Similarity Search: Part II, Chapter 3 104

Trials: Measurements & SettingsTrials: Measurements & Settings

� CPU costs: number of distance computations

� I/O costs: number of block reads� I/O costs: number of block reads

� The same size of disk blocks

� Query objects follow the dataset distribution� Query objects follow the dataset distribution

� Average values over 50 queries:

� Different query objects� Different query objects

� The same selectivity

� Radius or number of nearest neighbors� Radius or number of nearest neighbors

Similarity Search: Part II, Chapter 3 105

Comparison of IndexesComparison of Indexes

� Comparing performance of

� M-tree – a tree-based approach� M-tree – a tree-based approach

� D-index – hash-based approach

� sequential scan (baseline)� sequential scan (baseline)

� Dataset of 11,100 objects

� Range queries – increasing radius

maximal selectivity about 20% of the dataset� maximal selectivity about 20% of the dataset

Similarity Search: Part II, Chapter 3 106

Comparison: CPU CostsComparison: CPU Costs

� generally, D-index outperforms M-tree for smaller radii

� D-index: pivot-based filtering depends on data distribution

and query size

M-tree outperforms D-index for discrete distribution� M-tree outperforms D-index for discrete distribution

� pivot selection is more difficult for discrete distributions

Similarity Search: Part II, Chapter 3 107

Comparison: I/O CostsComparison: I/O Costs

� M-tree needs twice the disk space to stored data than SEQ

inefficient if the distance function is easy to compute� inefficient if the distance function is easy to compute

� D-index more efficient

a query with r=0: D-index accesses only one page � a query with r=0: D-index accesses only one page

(important, e.g., for deletion)

Similarity Search: Part II, Chapter 3 108

Different Query TypesDifferent Query Types

� comparing processing performance of different

types of queriestypes of queries

� range query

� nearest neighbor query� nearest neighbor query

� similarity self join

� M-tree, D-index, sequential scanM-tree, D-index, sequential scan

Similarity Search: Part II, Chapter 3 109

Range vs. k-NN: CPU CostsRange vs. k-NN: CPU Costs

� nearest neighbor query:

similar trends for M-tree and D-index� similar trends for M-tree and D-index

� the D-index advantage of small radii processing decreases

expensive even for small k – similar costs for both 1 and 100� expensive even for small k – similar costs for both 1 and 100

� D-index still twice as fast as M-tree

Similarity Search: Part II, Chapter 3 110

Range vs. k-NN: I/O CostsRange vs. k-NN: I/O Costs

� nearest neighbor query:

� similar trends for I/O costs as for CPU costs

� D-index four times faster than M-tree� D-index four times faster than M-tree

Similarity Search: Part II, Chapter 3 111

Similarity Self Join: SettingsSimilarity Self Join: Settings

� J(X,X,µ) – very demanding operation

� three algorithms to compare:� three algorithms to compare:

� NL: nested loops – naive approach

RJ: range join – based on D-index� RJ: range join – based on D-index

� OJ: overloading join – eD-index

for µ: 2µ ≤ ρ, i.e. µ ≤ 600 for vectors� for µ: 2µ ≤ ρ, i.e. µ ≤ 600 for vectors

� datasets of about 11,000 objects

� selectivity – retrieving up to 1,000,000 pairs (for high

values of µ)values of µ)

Similarity Search: Part II, Chapter 3 112

Similarity Self Join: ComplexitySimilarity Self Join: Complexity

� Quadratic complexity

� prohibitive for large DB� prohibitive for large DB

� example: 50,000 sentences

� a range query:� a range query:

� sequential scan takes about 16 seconds

� a self join query:

� nested loops algorithm takes 25,000 times more� nested loops algorithm takes 25,000 times more

� about 4 days and 15 hours!

Similarity Search: Part II, Chapter 3 113

Similarity Join: ResultsSimilarity Join: Results

RJ and OJ costs increase rapidly (logarithmic scale)� RJ and OJ costs increase rapidly (logarithmic scale)

� OJ outperforms RJ twice (STR) and 7 times for VEC:� OJ outperforms RJ twice (STR) and 7 times for VEC:

� high distances between VEC objects

� high pruning effectiveness of pivot-based filtering for � high pruning effectiveness of pivot-based filtering for

smaller µ

Similarity Search: Part II, Chapter 3 114

Scalability: CPU CostsScalability: CPU Costs

range query: r = 1,000; 2,000 � k-NN query: k = 1; 100

� labels: radius or k + D (D-index), M (M-tree), SEQ

� range query: r = 1,000; 2,000 � k-NN query: k = 1; 100

� labels: radius or k + D (D-index), M (M-tree), SEQ

� data: from 100,000 to 600,000 objects

� M-tree and D-index are faster (D-index slightly better)� M-tree and D-index are faster (D-index slightly better)

� linear trends

Similarity Search: Part II, Chapter 3 115

Scalability: I/O CostsScalability: I/O Costs

� the same trends as for CPU costs

� D-index more efficient than M-tree� D-index more efficient than M-tree

� exact match contrast:

M-tree: 6,000 block reads + 20,000 d. c. for 600,000 objects� M-tree: 6,000 block reads + 20,000 d. c. for 600,000 objects

� D-index: read 1 block + 18 d. c. regardless of the data size

Similarity Search: Part II, Chapter 3 116

Scalability: Similarity Self JoinScalability: Similarity Self Join

� We use the speedup s as the performance

measure:measure:

s
NN)1(−=
n

s
2

=
Distance

computations of

An algorithm’s

distance computations of

Nested Loops

distance

computations

� Speedup measures how many times is a specific

algorithm faster than NL.algorithm faster than NL.

Similarity Search: Part II, Chapter 3 117

Scalability: Similarity Self Join (cont.)Scalability: Similarity Self Join (cont.)

� RJ: range join � OJ: overloading join

� STR dataset: from 50,000 to 250,000 sentences

� RJ: range join � OJ: overloading join

� constant speedup
� E.g. a join query on 100,000 objects takes 10 minutes.E.g. a join query on 100,000 objects takes 10 minutes.

� The same join query on 200,000 objects takes 40 minutes.

� OJ at least twice faster than RJ

Similarity Search: Part II, Chapter 3 118

� OJ at least twice faster than RJ

Scalability Experiments: ConclusionsScalability Experiments: Conclusions

� similarity search is expensive

� the scalability of centralized indexes is linear� the scalability of centralized indexes is linear

� cannot be applied to huge data archives

� become inefficient after a certain point� become inefficient after a certain point

Possible solutions:Possible solutions:

� sacrifice some precision: approximate techniques

use more storage & computational power: � use more storage & computational power:

distributed data structures

Similarity Search: Part II, Chapter 3 119

eD-index: ρ-Split Function ModificationeD-index: ρ-Split Function Modification

Separable set 1

2ρ 2(ρ +ε)

Exclusion set

Separable set 1

dm
Exclusion set

p

Separable set 0

0 if d(x,p) ≤ dm - ρ - ε
0 copy if d(x,p) > d - ρ - ε ∧ d(x,p) ≤ d - ρ

� bsp1,ρ(x)=

0 copy if d(x,p) > dm - ρ - ε ∧ d(x,p) ≤ dm - ρ
1 if d(x,p) > dm + ρ + ε

ρ ∧ ρ ε1 copy if d(x,p) > dm + ρ ∧ d(x,p) ≤ dm + ρ + ε
− otherwise

Similarity Search: Part II, Chapter 3 120

− otherwise

