Probability

PA154 Jazykové modelování (1.2)

Pavel Rychlý

pary@fi.muni.cz
March 2, 2021

```
Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ.
www.cs.jhu.edu/~hajic
```


Experiments \& Sample Spaces

■ Experiment, process, test, ...
■ Set of possible basic outcomes: sample space Ω (základní prostor obsahující možné výsledky)

- coin toss $(\Omega=\{$ head, tail $\})$, die $(\Omega=\{1 . .6\})$
- yes/no opinion poll, quality test (bad/good) $(\Omega=\{0,1\})$
- lottery $\left(|\Omega| \cong 10^{7} . .10^{12}\right)$
- \# of traffic accidents somewhere per year $(\Omega=\mathrm{N})$
- spelling errors ($\Omega=\mathrm{Z}^{*}$), where Z is an aplhabet, and Z^{*} is set of possible strings over such alphabet
- missing word ($|\Omega| \cong$ vocabulary size)

Events

■ Event (jev) A is a set of basic outcomes

- Usually $\mathrm{A} \subset \Omega$, and all $\mathrm{A} \in 2^{\Omega}$ (the event space, jevové pole)
- Ω is the certain event (jistý jev), \emptyset is the impossible event (nemožný jev)
- Example:
- experiment: three times coin toss
- $\Omega=\{$ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT $\}$
- count cases with exactly two tails: then
- $\mathbf{A}=\{$ HTT, THT, TTH $\}$
- all heads:
- $\mathbf{A}=\{\mathbf{H H H}\}$

Probability

- Repeat experiment many times, record how many times a given event A occured ("count" c_{1}).
- Do this whole series many times; remember all c_{i} s.
- Observation: if repeated really many times, the ratios of $\frac{c_{i}}{T_{i}}$ (where T_{i} is the number of experiments run in the i-th series) are close to some (unknown but) constant value.
- Call this constant a probability of \mathbf{A}. Notation: $\mathbf{p}(\mathbf{A})$

Estimating Probability

■ Remember: . . close to an unknown constant.

- We can only estimate it:
- from a single series (typical case, as mostly the outcome of a series is given to us we cannot repeat the experiment):

$$
p(A)=\frac{c_{1}}{T_{1}}
$$

- otherwise, take the weighted average of all $\frac{C_{i}}{T_{i}}$ (or, if the data allows, simply look at the set of series as if it is a single long series).
■ This is the best estimate.

Example

- Recall our example:
- experiment: three times coin toss
- $\Omega=\{H H H, H H T, H T H, H T T$, THH, THT, TTH, TTT $\}$
- count cases with exactly two tails: $A=\{H T T, T H T, T T H\}$

■ Run an experiment 1000 times (i.e. 3000 tosses)
■ Counted: 386 cases with two tails (HTT, THT or TTH)
■ estimate: $\mathrm{p}(\mathrm{A})=386 / 1000=.386$
■ Run again: 373, 399, 382, 355, 372, 406, 359

- $p(A)=.379$ (weighted average) or simply 3032/8000

■ Uniform distribution assumption: $\mathrm{p}(\mathrm{A})=3 / 8=.375$

Basic Properties

- Basic properties:
- $\mathrm{p}: 2^{\Omega} \rightarrow[0,1]$
- $\mathrm{p}(\Omega)=1$
- Disjoint events: $\mathrm{p}\left(\cup \mathrm{A}_{i}\right)=\sum_{i} \mathrm{p}\left(\mathrm{A}_{i}\right)$
- NB: axiomatic definiton of probability: take the above three conditions as axioms
■ Immediate consequences:
- $P(\emptyset)=0$
- $\mathrm{p}(\bar{A})=1-\mathrm{p}(\mathrm{A})$
- $A \subseteq B \Rightarrow p(A) \leq P(B)$
- $\sum_{a \in \Omega} p(a)=1$

Joint and Conditional Probability

- $p(A, B)=p(A \cap B)$
- $p(A \mid B)=\frac{p(A, B)}{p(B)}$
- Estimating form counts:

$$
p(A \mid B)=\frac{p(A, B)}{p(B)}=\frac{\frac{c(A \cap B)}{T}}{\frac{c(B)}{T}}=\frac{c(A \cap B)}{c(B)}
$$

Bayes Rule

- $p(A, B)=p(B, A)$ since $p(A \cap B)=p(B \cap A)$
- therefore $p(A \mid B) p(B)=p(B \mid A) p(A)$, and therefore:

Bayes Rule

$$
p(A \mid B)=\frac{p(B \mid A) \times p(A)}{p(B)}
$$

Independence

- Can we compute $p(A, B)$ from $p(A)$ and $p(B)$?
- Recall from previous foil:

$$
\begin{gathered}
p(A \mid B)=\frac{p(B \mid A) \times p(A)}{p(B)} \\
p(A \mid B) \times p(B)=p(B \mid A) \times p(A) \\
p(A, B)=p(B \mid A) \times p(A)
\end{gathered}
$$

... we're almost there: how $p(B \mid A)$ relates to $p(B)$?

- $p(B \mid A)=p(B)$ iff A and B are independent

■ Example: two coin tosses, weather today and weather on March 4th 1789;

- Any two events for which $p(B \mid A)=P(B)$!

Chain Rule

$$
\begin{aligned}
& p\left(A_{1}, A_{2}, A_{3}, A_{4}, \ldots, A_{n}\right)= \\
& p\left(A_{1} \mid A_{2}, A_{3}, A_{4}, \ldots, A_{n}\right) \times p\left(A_{2} \mid A_{3}, A_{4}, \ldots, A_{n}\right) \times \\
& \times p\left(A_{3} \mid A_{4}, \ldots, A_{n}\right) \times \cdots \times p\left(A_{n-1} \mid A_{n}\right) \times p\left(A_{n}\right)
\end{aligned}
$$

- this is a direct consequence of the Bayes rule.

The Golden Rule of Classic Statistical NLP

■ Interested in an event A given B (where it is not easy or practical or desirable) to estimate $p(A \mid B)$:
■ take Bayes rule, max over all Bs:

- $\operatorname{argmax}_{A} p(A \mid B)=\operatorname{argmax}_{A} \frac{p(B \mid A) \times p(A)}{p(B)}=$ $\operatorname{argmax}_{A}(p(B \mid A) \times p(A))$
■ ... as $p(B)$ is constant when changing As

Random Variables

- is a function $X: \Omega \rightarrow Q$
- in general $Q=R^{n}$, typically R
- easier to handle real numbers than real-world events
- random variable is discrete if Q is countable (i.e. also if finite)

■ Example: die: natural "numbering" [1,6], coin: $\{0,1\}$

- Probability distribution:
- $p_{X}(x)=p(X=x)={ }_{d f} p\left(A_{x}\right)$ where $A_{x}=\{a \in \Omega: X(a)=x\}$
- often just $p(x)$ if it is clear from context what X is

Expectation

Joint and Conditional Distributions

■ is a mean of a random variable (weighted average)

$$
-E(X)=\sum_{x \in X(\Omega)} x \cdot p_{X}(x)
$$

■ Example: one six-sided die: 3.5, two dice (sum): 7

- Joint and Conditional distribution rules:
- analogous to probability of events
- Bayes: $p_{X \mid Y}(x, y)={ }_{\text {notation }} p_{X Y}(x \mid y)=$ even simpler notation

$$
p(x \mid y)=\frac{p(y \mid x) \cdot p(x)}{p(y)}
$$

- Chain rule: $p(w, x, y, z)=p(z) \cdot p(y \mid z) \cdot p(x \mid y, z) \cdot p(w \mid x, y, z)$

Standard Distributions

- Binomial (discrete)
- outcome: 0 or 1 (thus binomial)
- make n trials
- interested in the (probability of) numbers of successes r

■ Must be careful: it's not uniform!

- $p_{b}(r \mid n)=\frac{\binom{n}{r}}{2^{n}}$ (for equally likely outcome)
- ($\left.\begin{array}{l}n \\ r\end{array}\right)$ counts how many possibilities there are for choosing r objects out of n;
■ $\binom{n}{r}=\frac{n!}{(n-r)!r!}$

Continuous Distributions

- The normal distribution ("Gaussian")
- $p_{\text {norm }}(x \mid \mu, \sigma)=\exp \left[\frac{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}{\sigma \sqrt{2 \pi}}\right]$
- where:
- μ is the mean (x-coordinate of the peak) (0)
- σ is the standard deviation (1)

■ other: hyperbolic, t

