word embeddings what, how and whither

Yoav Goldberg Bar Ilan University understanding word2vec

word2vec

Seems magical.

"Neural computation, just like in the brain!"

Seems magical.

"Neural computation, just like in the brain!"

How does this actually work?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

word2vec implements several different algorithms:

Two training methods

- Negative Sampling
- Hierarchical Softmax

Two context representations

Continuous Bag of Words (CBOW)

(ロ) (同) (三) (三) (三) (○) (○)

Skip-grams

word2vec implements several different algorithms:

Two training methods

- Negative Sampling
- Hierarchical Softmax

Two context representations

- Continuous Bag of Words (CBOW)
- Skip-grams

We'll focus on skip-grams with negative sampling.

intuitions apply for other models as well.

- Represent each word as a d dimensional vector.
- Represent each context as a d dimensional vector.
- Initalize all vectors to random weights.
- ► Arrange vectors in two matrices, *W* and *C*.

While more text:

Extract a word window:

A springer is [a cow or heifer close to calving]. $C_1 \quad C_2 \quad C_3 \quad W \quad C_4 \quad C_5 \quad C_6$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▶ *w* is the focus word vector (row in *W*).

• c_i are the context word vectors (rows in *C*).

While more text:

Extract a word window:

A springer is [a cow or heifer close to calving]. $C_1 \quad C_2 \quad C_3 \quad W \quad C_4 \quad C_5 \quad C_6$

Try setting the vector values such that:

 $\sigma(\mathbf{w} \cdot \mathbf{c}_1) + \sigma(\mathbf{w} \cdot \mathbf{c}_2) + \sigma(\mathbf{w} \cdot \mathbf{c}_3) + \sigma(\mathbf{w} \cdot \mathbf{c}_4) + \sigma(\mathbf{w} \cdot \mathbf{c}_5) + \sigma(\mathbf{w} \cdot \mathbf{c}_6)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

is high

While more text:

Extract a word window:

A springer is [a cow or heifer close to calving]. $C_1 \quad C_2 \quad C_3 \quad W \quad C_4 \quad C_5 \quad C_6$

Try setting the vector values such that:

 $\sigma(\mathbf{w} \cdot \mathbf{c}_1) + \sigma(\mathbf{w} \cdot \mathbf{c}_2) + \sigma(\mathbf{w} \cdot \mathbf{c}_3) + \sigma(\mathbf{w} \cdot \mathbf{c}_4) + \sigma(\mathbf{w} \cdot \mathbf{c}_5) + \sigma(\mathbf{w} \cdot \mathbf{c}_6)$

is high

- Try setting the vector values such that:

 $\sigma(w' \cdot c_1) + \sigma(w' \cdot c_2) + \sigma(w' \cdot c_3) + \sigma(w' \cdot c_4) + \sigma(w' \cdot c_5) + \sigma(w' \cdot c_6)$ is low

The training procedure results in:

- $w \cdot c$ for **good** word-context pairs is **high**.
- $w \cdot c$ for **bad** word-context pairs is **low**.
- $w \cdot c$ for ok-ish word-context pairs is neither high nor low.

As a result:

- Words that share many contexts get close to each other.
- Contexts that share many words get close to each other.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

At the end, word2vec throws away C and returns W.

Imagine we didn't throw away C. Consider the product WC^{\top}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Imagine we didn't throw away C. Consider the product WC^{\top}

The result is a matrix *M* in which:

- Each row corresponds to a word.
- Each column corresponds to a context.
- Each cell correspond to w · c, an association measure between a word and a context.

Does this remind you of something?

Does this remind you of something?

Very similar to SVD over distributional representation:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- A $V_W \times V_C$ matrix
- Each cell describes the relation between a specific word-context pair

 $\vec{w} \cdot \vec{c} = ?$

• We **prove** that for large enough *d* and enough iterations

- We **prove** that for large enough *d* and enough iterations
- We get the word-context PMI matrix

- We **prove** that for large enough *d* and enough iterations
- We get the word-context PMI matrix, shifted by a global constant

- SGNS is doing something very similar to the older approaches
- SGNS is factorizing the traditional word-context PMI matrix
- So does SVD!
- Do they capture the same similarity function?

SGNS vs SVD

Target Word	SGNS	SVD
cat	dog	dog
	rabbit	rabbit
	cats	pet
	poodle	monkey
	pig	pig

SGNS vs SVD

Target Word	SGNS	SVD
wine	wines	wines
	grape	grape
	grapes	grapes
	winemaking	varietal
	tasting	vintages

SGNS vs SVD

Target Word	SGNS	SVD
November	October	October
	December	December
	April	April
	January	June
	July	March

But word2vec is still better, isn't it?

- Plenty of evidence that word2vec outperforms traditional methods
 In particular: "Don't count, predict!" (Baroni et al., 2014)
- How does this fit with our story?

The Big Impact of "Small" Hyperparameters

Hyperparameters

- word2vec is more than just an algorithm...
- Introduces many engineering tweaks and hyperpararameter settings
 - May seem minor, but make a big difference in practice
 - Their impact is often more significant than the embedding algorithm's
- These modifications can be ported to distributional methods!

the magic of cbow

the magic of cbow

- Represent a sentence / paragraph / document as a (weighted) average vectors of its words.
- Now we have a single, 100-dim representation of the text.
- Similar texts have similar vectors!
- Isn't this magical? (no)

foc A = A + B + Cfoc B = X + Y + Z $COS(\partial OCA, \partial OCB) =$ DOCA. DOCB 11 docall · 11 doc BI

the magic of cbow

- It's all about (weighted) all-pairs similarity
 - ... done in an efficient manner.
- That's it. no more, no less.

• I'm amazed by how few people realize this.

(the math is so simple... even I could do it)

this also explains king-man+woman

this also explains king-man+woman

CONSTRAF = argmax X·K - XM + XW X Similarity arith!!
and once we understand we can improve

and once we understand we can improve

XK - XM - XW

additive.

one term can dominate.

and once we understand we can improve

 $\chi k - \chi m - \chi w$ additive. one term can dominate.

 $\left(\begin{array}{c} & & \\ &$

Multiplication > Addition

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣A@

math > magic

can we improve analogies even further?

which brings me to:

Manaal Faruqui @manaalfar

@yoavgo how to best compare two diff vector models? abolish (toy?) tasks like word-sim, word-analogy? how to standardize evaluation?

which brings me to:

Manaal Faruqui @manaalfar

@yoavgo how to best compare two diff vector models? abolish (toy?) tasks like word-sim, word-analogy? how to standardize evaluation?

- Yes. Please stop evaluating on word analogies.
- It is an artificial and useless task.
- Worse, it is just a proxy for (a very particular kind of) word similarity.
- Unless you have a good use case, don't do it.
- Alternatively: show that it correlates well with a real and useful task.

let's take a step back

- We don't really care about the vectors.
- We care about the **similarity function** they induce.
 - (or, maybe we want to use them in an external task)
- We want similar words to have similar vectors.
- So evaluating on word-similarity tasks is great.
- But what does similar mean?

many faces of similarity

- dog -- cat
- dog -- poodle
- dog -- animal
- dog -- bark
- dog -- leash

many faces of similarity

- dog -- cat
- dog -- poodle
- dog -- animal
- dog -- bark
- dog -- leash

- dog -- chair
- dog -- dig
- dog -- god
- dog -- fog
- dog -- 6op

many faces of similarity

- dog -- cat
- dog -- poodle
- dog -- animal
- dog -- bark
- dog -- leash

- dog -- chair
- dog -- dig

• dog -- god

- edit distance
- same letters

rhyme

- dog -- fog
- dog -- 6op shape

some forms of similarity look more useful than they really are

- Almost every algorithm you come up with will be good at capturing:
 - countries
 - cities
 - months
 - person names

some forms of similarity look more useful than they really are

- Almost every algorithm you come up with will be good at capturing:
 - countries

useful for tagging/parsing/NER

- cities
- months
- person names

some forms of similarity look more useful than they really are

- Almost every algorithm you come up with will be good at capturing:
 - countries
 - cities
 - months
 - person names

useful for tagging/parsing/NER

but do we really want "John went to China in June" to be similar to "Carl went to Italy in February" ??

there is no single downstream task

- Different tasks require different kinds of similarity.
- Different vector-inducing algorithms produce different similarity functions.
- No single representation for all tasks.
- If your vectors do great on task X, I don't care that they suck on task Y.

"but my algorithm works great for all these different word-similarity datasets! doesn't it mean something?" "but my algorithm works great for all these different word-similarity datasets! doesn't it mean something?"

- Sure it does.
- It means these datasets are not diverse enough.
- They should have been a single dataset.
- (alternatively: our evaluation metrics are not discriminating enough.)

which brings us back to:

🔅 🗠 😒 Follow

@yoavgo document vector representation. Not just sentences or paragraph sizes but newspaper article or legal contract size. With use cases?

- This is really, really il-defined.
- What does it mean for legal contracts to be similar?
- What does it mean for newspaper articles to be similar?
- Think about this before running to design your next super-LSTM-recursive-autoencoding-document-embedder.
- Start from the use case!!!!

so how to evaluate?

- Define the similarity / task you care about.
- Score on this particular similarity / task.
- Design your vectors to match this similarity
- ...and since the methods we use are distributional and unsupervised...
- ...design has less to do with the fancy math (= objective function, optimization procedure) and more with what you feed it.

context matters

What's in a Context?

- Importing ideas from embeddings improves distributional methods
- Can distributional ideas also improve embeddings?
- Idea: change SGNS's default BoW contexts into dependency contexts

Example

Australian scientist discovers star with telescope

Target Word

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Bag of Words (BoW) Context

Australian scientist discovers star with telescope

Syntactic Dependency Context

Australian scientist discovers star with telescope

Syntactic Dependency Context

Syntactic Dependency Context

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies
	Dumbledore	Sunnydale
	hallows	Collinwood
Hogwarts	half-blood	Calarts
(Harry Potter's school)	Malfoy	Greendale
	Snape	Millfield
Related to Harry Potter		Schools

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies
	nondeterministic	Pauling
	non-deterministic	Hotelling
Turing	computability	Heting
(computer scientist)	deterministic	Lessing
	finite-state	Hamming
Related to computability		Scientists

Embedding Similarity with Different Contexts

Target Word	Bag of Words (k=5)	Dependencies
dancing (dance gerund)	singing	singing
	dance	rapping
	dances	breakdancing
	dancers	miming
	tap-dancing	busking
	Related to dance	Gerunds

What is the effect of different context types?

- Thoroughly studied in distributional methods
 - Lin (1998), Padó and Lapata (2007), and many others...

General Conclusion:

- Bag-of-words contexts induce *topical* similarities
- Dependency contexts induce *functional* similarities
 - Share the same semantic type
 - Cohyponyms
- Holds for **embeddings** as well

- Same algorithm, different inputs -- very different kinds of similarity.
- Inputs matter much more than algorithm.
- Think about your inputs.

what's left to do?

- Pretty much nothing, and pretty much everything.
- Word embeddings are just a small step on top of distributional lexical semantics.
- All of the previous open questions remain open, including:
 - composition.
 - multiple senses.
 - multi-word units.

looking beyond words

- word2vec will easily identify that "hotfix" if similar to "hf", "hot-fix" and "patch"
- But what about "hot fix"?
- How do we know that "New York" is a single entity?
- Sure we can use a collocation-extraction method, but is it really the best we can do? can't it be integrated in the model?
what happens when we look outside of English?

- Things don't work nearly as well.
- Known problems from English become more extreme.
- We get some new problems as well.

a quick look at Hebrew

word senses

ספר

book(N). barber(N). counted(V). tell!(V). told(V).

חומה

brown (feminine, singular) wall (noun) her fever (possessed noun)

- בית שימוש
- ראש עיר •
- יושב ראש •
- שומר ראש •
- בית ספר
- עורך דין •

multi-word units

words vs. tokens

וכשמהבית

and when from the house

words vs. tokens

וכשמהבית

and when from the house

בצל in shadow

> בצל onion

- nouns, pronouns and adjectives
 --> are inflected for *number* and *gender*
- verbs
 - --> are inflected for *number*, *gender*, *tense*, *person*
- syntax requires *agreement* between
 - nouns and adjectives
 - verbs and subjects

she **saw** a **brown** fox

he saw a brown fence

[fem] [masc] she saw a brown fox

he **saw** a **brown** fence [masc] [fem]

inflections and dist-sim

- More word forms -- more sparsity
- But more importantly: *agreement patterns affect the resulting similarities.*

adjectives

green [m,sg] ירוק	green [f,sg] ירוקה	green [m,pl] ירוקים
blue [m,sg]	gray [f,sg]	gray [m,pl]
orange [m,sg]	orange [f,sg]	blue [m,pl]
yellow [m,sg]	yellow [f,sg]	black [m,pl]
red [m,sg]	magical [f,g]	heavenly [m,pl]

verbs

(he) walked) הלך	(she) thought חשבה	(they) ate אכלו
(they) walked	(she) is thinking	(they) will eat
(he) is walking	(she) felt	(they) are eating
(he) turned	(she) is convinved	(he) ate
(he) came closer	(she) insisted	(they) drank

Doctor [m,sg] רופא	Doctor [f, sg] רופאה
psychiatrist [m,sg]	student [f, sg]
psychologist [m, sg]	nun [f, sg]
neurologist [m, sg]	waitress [f, sg]
engineer [m, sg]	photographer [f, sg]

sweater סוודר	shirt חולצה
jacket	suit
down	robe
overall	dress
turban	helmet

sweater סוודר	shirt חולצה
jacket	suit
down	robe
overall	dress
turban	helmet
masculine	feminine

sweater סוודר	shirt חולצה
jacket	suit
down	robe
overall	dress
turban	helmet
masculine	feminine
completely arbitrary	

inflections and dist-sim

- Inflections and agreement really influence the results.
- We get a mix of syntax and semantics.
- Which aspect of the similarity we care about? what does it mean to be similar?
- Need better control of the different aspects.

inflections and dist-sim

- Work with lemmas instead of words!!
- Sure, but where do you get the lemmas?
- ...for unknown words?
- And what should you lemmatize? everything? somethings? context-dependent?
- Ongoing work in my lab -- but still much to do.

to summarize

- Magic is bad. Understanding is good. Once you Understand you can control and improve.
- Word embeddings are just distributional semantics in disguise.
- Need to think of what you actually want to solve.
 --> focus on a specific task!
- Inputs >> fancy math.
- Look beyond just words.
- Look beyond just English.