Evaluation of Czech Distributional Thesauri

Pavel Rychlý
Natural Language Processing Centre
Faculty of Informatics, Masaryk University

December 7, 2019

Sketch Engine Thesaurus

Lemma	Score	Freq
king	0.242	16,899
prince	0.213	6,355
charles	0.189	8,952
elizabeth	0.177	3,567
edward	0.176	6,484
mary	0.173	6,870
gentleman	0.171	6,274
lady	0.170	11,905
husband	0.167	11,669
sister	0.167	8,062
mother	0.164	27,536
princess	0.160	2,944
father	0.159	23,824
wife	0.157	18,308
brother	0.155	11,049
henry	0.151	6,699
daughter	0.150	11,216
anne	0.149	4,386

Thesaurus evaluation

Gold standard

Source	Most similar words to queen
serelex	king, brooklyn, bowie, prime minister, mary, bronx, rolling stone, elton john, royal family, princess monarch, ruler, consort, empress, regent, female ruler, female sovereign, queen consort, queen dowager SkE on BNC SkE on enTenTen08 king, prince, charles, elizabeth, edward, mary, gentle- man, lady, husband, sister, mother, princess, father princess, prince, king, emperor, monarch, lord, lady, sister, lover, ruler, goddess, hero, mistress, warrior princess, prince, Princess, king, Diana, Queen, duke, palace, Buckingham, duchess, lady-in-waiting, Prince powerthesaurus.org BNC empress, sovereign, monarch, ruler, czarina, queen con- sort, king, queen regnant, princess, rani, queen regent

Analogy queries

- evaluation of word embeddings (word2vec)

■ " a is to a^{*} as b is to $b^{* ", ~ w h e r e ~} b^{*}$ is hidden

Analogy queries

- evaluation of word embeddings (word2vec)

■ " a is to a^{*} as b is to $b^{* "}$, where b^{*} is hidden

- syntactic: good is to best as smart is to smarter
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:

Analogy queries

- evaluation of word embeddings (word2vec)

■ " a is to a^{*} as b is to $b^{* "}$, where b^{*} is hidden

- syntactic: good is to best as smart is to smarter
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:

Berlin -

Analogy queries

- evaluation of word embeddings (word2vec)

■ " a is to a^{*} as b is to $b^{* "}$, where b^{*} is hidden

- syntactic: good is to best as smart is to smarter
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:

Berlin - Germany

Analogy queries

- evaluation of word embeddings (word2vec)

■ " a is to a^{*} as b is to $b^{* "}$, where b^{*} is hidden

- syntactic: good is to best as smart is to smarter
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:

Berlin - Germany
London -

Analogy queries

- evaluation of word embeddings (word2vec)

■ " a is to a^{*} as b is to $b^{* ",}$, where b^{*} is hidden

- syntactic: good is to best as smart is to smarter
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:

Berlin - Germany London - England / Britain / UK ?

Analogy queries

- evaluation of word embeddings (word2vec)
- " a is to a^{*} as b is to $b^{* "}$, where b^{*} is hidden
- syntactic: good is to best as smart is to smarter
- semantic: Paris is to France as Tokyo is to Japan
- agreement by humans:

Berlin - Germany London - England / Britain / UK ?

- best match for linear combination of vectors:
$\arg \max _{b^{*} \in V} \cos \left(b^{*}, a^{*}-a+b\right)$

Problems of analogy queries

- Pair of words does not define an exact relation
- Berlin - Germany: capital, biggest city
- in what time?
- Canberra

Problems of analogy queries

- Pair of words does not define an exact relation
- Berlin - Germany: capital, biggest city
- in what time?
- Canberra, Rome

Problems of analogy queries

- Pair of words does not define an exact relation
- Berlin - Germany: capital, biggest city
- in what time?
- Canberra, Rome
- rare words/phrases

■ Baltimore - Baltimore Sun: Cincinnati -

Problems of analogy queries

- Pair of words does not define an exact relation
- Berlin - Germany: capital, biggest city
- in what time?
- Canberra, Rome
- rare words/phrases

■ Baltimore - Baltimore Sun: Cincinnati - Cincinnati Enquirer

Outlier detection

- list of words
- find the one which is not part of the cluster
- examples:
- red, blue, green, dark, yellow, purple, pink, orange, brown

Outlier detection

- list of words
- find the one which is not part of the cluster
- examples:
- red, blue, green, dark, yellow, purple, pink, orange, brown
- t-shirt, sheet, dress, trousers, shorts, jumper, skirt, shirt, coat

Evaluating Outlier Detection

- original data set by Camacho-Collados, Navigli
- 8 pairs of 8 words in a cluster and 8 outliers
- $8 \times 8=64$ queries
- Accuracy - the percentage of successfully answered queries,
- Outlier Position Percentage (OPP) Score - average percentage of the right answer (Outlier Position) in the list of possible clusters ordered by their compactness

Problems of original data set

- English only
- needs extra knowledge
- Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart

Problems of original data set

- English only
- needs extra knowledge
- Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart
- (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple)

Problems of original data set

- English only
- needs extra knowledge
- Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart
- (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple)
- Peter, Andrew, James, John, Thaddaeus, Bartholomew, Thomas, Noah, Matthew

Problems of original data set

- English only
- needs extra knowledge
- Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart
- (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple)
- Peter, Andrew, James, John, Thaddaeus, Bartholomew, Thomas, Noah, Matthew
- January, March, May, July, Wednesday, September, November, February, June

Problems of original data set

- English only
- needs extra knowledge
- Mercedes Benz, BMW, Michelin, Audi, Opel, Volkswagen, Porsche, Alpina, Smart
- (Bridgestone, Boeing, Samsung, Michael Schumacher, Angela Merkel, Capri, pineapple)
- Peter, Andrew, James, John, Thaddaeus, Bartholomew, Thomas, Noah, Matthew
- January, March, May, July, Wednesday, September, November, February, June
- tiger, dog, lion, cougar, jaguar, leopard, cheetah, wildcat, lynx
- mostly proper names (7 out of 8)

New data set

■ 5 languages: Czech, Slovak, English, German, French

- 48 clusters (8 words +8 outliers)

New data set - example

Colors			Electronics	
Czech	English	Czech	English	
červená	red	televize	television	
modrá	blue	reproduktor	speaker	
zelená	green	notebook	laptop	
žlutá	yellow	tablet	tablet	
fialová	purple	mp3 přehrávač	mp3 player	
rǔžová	pink	mobil	phone	
oranžová	orange	rádio	radio	
hnědá	brown	playstation	playstation	
dřevěná	wooden	blok	notebook	
skleněná	glass	sešit	workbook	
temná	dark	kniha	book	
zářivá	bright	CD	CD	
pruhovaný	striped	energie	energy	
puntíkovaný	dotted	světlo	light	
smutná	sad	papír	paper	
nízká	low	ráno	morning	

Evaluation

- 9 clusters only, 72 queries

	OOP	Accuracy
Czes2	92.2	70.8
czTenTen12	93.4	79.2
csTenTen17	94.3	81.9
czTenTen12 (fasttext)	97.7	87.5
Czech Common Crawl	98.1	95.8

