HMM Algorithms: Trellis and Viterbi

PA154 Jazykové modelování (5.2)

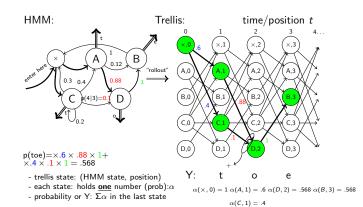
Pavel Rychlý

pary@fi.muni.cz

March 30, 2021

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/~hajic

Trellis - Deterministic Output



PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

Trellis: The Next Step

- \blacksquare Suppose we are in stage i,
- Creating the next stage:
 - ► create all trellis state in the next stage which generate y_{i+1} , but only those reachable from any of the stage-i states
 - set their $\alpha(state, i + 1)$ to: $P_S(state|\ prev.state) \times \alpha(prev.state,\ i)$ (add up all such numbers on arcs going to a common trellis state)
 - ightharpoonup . . . and forget about stage i

position/stage i=1 $\alpha = .568$ $y_{i+1} = y_2$: o

HMM: The Two Tasks

- HMM (the general case):
 - five-tuple (S, S₀, Y, P₅, PY), where:
 - $S = \{s_1, s_2, \dots, s_T\}$ is the set of states, S_0 is the initial,
 - $Y = \{y_1, y_2, \dots, y_v\}$ is the output alphabet,
 - ▶ $P_s(s_i|s_i)$ is the set of prob. distributions of transitions,

lacktriangle Given an HMM & an output sequence $Y = \{y_1, y_2, \dots, y_k\}$

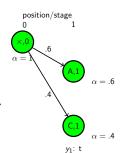
- ▶ $P_Y(y_k|s_i,s_j)$ is the set of output (emission) probability distributions.
- (Task 1) compute the probability of Y;

(Task 2) compute the most likely sequence of states which has generated Y.

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

Creating the Trellis: The Start

- Start in the start state (\times) ,
 - ▶ its $\alpha(\times,0)$ to 1.
- Create the first stage:
 - ▶ get the first "output" symbol y₁
 - ► create the first stage (column)
 - but only those trellis states which generate y_1
 - set their $\alpha(state,1)$ to the $P_s(state|\times)$ $\alpha(\times,0)$
- ...and forget about the *0*-th stage

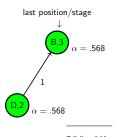


.154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

4/22

Trellis: The Last Step

- Continue until "output" exhausted
- -|Y|=3: until stage 3
- Add together all the $\alpha(state, |Y|)$
- That's the P(Y).
- Observation (pleasant):
 - ► memory usage max: 2|S
 - ▶ multiplications max: |S|²|Y|

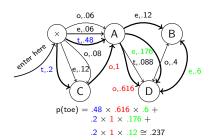


P(Y)=.568

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

Trellis: The General Case (still, bigrams)

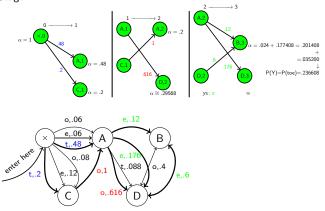
- Start as usual:
 - start state (\times), set its $\alpha(\times,0)$ to 1.



A154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

Trellis: The Complete Example

Stage:

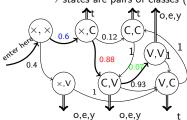


vání (5.2) HMM Algorithms: Trellis and Viterbi

9/22

Trigrams with Classes

- More interesting:
 - ▶ n-gram class LM: $p(w_i|w_{i-2}, w_{i-1}) = p(w_i|c_i)p(c_i|c_{i-2}, c_{i-1})$
 - \rightarrow states are pairs of classes (c_{i-1}, c_i) , and emit "words":



(letters in our example)

p(t|C) = 1 usual, p(o|V) = .3 non-

p(e|V) = .6 overlapping

p(y|V) = .1 classes

 $p(teo) = .6 \times 1 \times .88 \times .6 \times .07 \times .3 \cong .00665$ $p(toy) = .6 \times 1 \times .88 \times .3 \times .07 \times .1 \cong .00111$

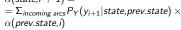
 $p(tty) = .6 \times 1 \times .12 \times 1 \times 1 \times .1 \cong .0072$

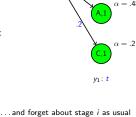
General Trellis: The Next Step

■ We are in stage i:

0,.06 e,.06

- ▶ Generate the next stage i+1 as before (except now arcs generate output, thus use only those arcs marked by the output symbol y_{i+1})
- ► For each generated *state* compute $\alpha(state, i + 1) =$



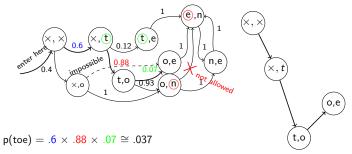


position/stage

ní (5.2) HMM Algorithms: Trellis and Viterbi

The Case of Trigrams

- Like before, but:
 - states correspond to bigrams,
 - ▶ output function always emits the second output symbol of the pair (state) to which the arc goes:



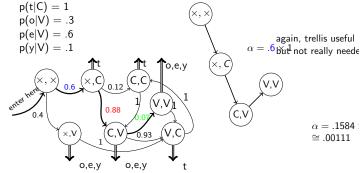
Multiple paths not possible \rightarrow trellis not really needed

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

10/22

Class Trigrams: the Trellis

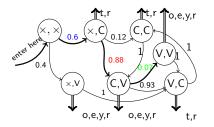
■ Trellis generation (Y = "toy"):



 $\alpha = .6 \times .88 \times .3$

Overlapping Classes

- Imagine that classes may overlap
 - ▶ e.g. 'r' is sometimes vowel sometimes consonant, belongs to V as well as C:



$$p(t|C) = .3$$

$$p(r|C) = .7$$

$$p(o|V) = .1$$

$$p(e|V) = .3$$

$$p(y|V) = .4$$

$$p(r|V) = .2$$

$$p(try) = ?$$

é modelování (5.2) HMM Algorithms: Trellis and Viterbi

Trellis: Remarks

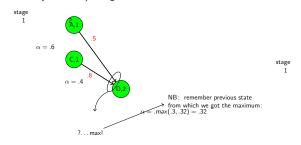
- So far, we went left to right (computing α)
- Same result: going right to left (computing β)
 - ▶ supposed we know where to start (finite data)
- In fact, we might start in the middle going left and right
- Important for parameter estimation (Forward-Backward Algortihm alias Baum-Welch)
- Implementation issues:
 - scaling/normalizing probabilities, to avoid too small numbers & addition problems with many transitions

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

15/22

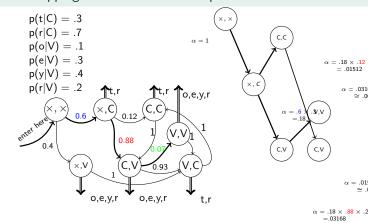
The Crucial Observation

■ Imagine the trellis build as before (but do not compute the α s yet; assume they are o.k.); stage i:



this is certainly the "backwards" maximum to (D,2)...but it cannot change even whenever we go forward (M. Property: Limited History)

Overlapping Classes: Trellis Example



ní (5.2) HMM Algorithms: Trellis and Vite

The Viterbi Algorithm

- Solving the task of finding the most likely sequence of states which generated the observed data
- i.e., finding

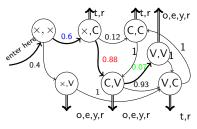
 $S_{best} = argmax_SP(S|Y)$ which is equal to (Y is constant and thus P(Y) is fixed): $S_{best} = argmax_SP(S,Y) =$ $= \textit{argmax}_{S} \mathsf{P} \big(s_0, s_1, s_2, \ldots, s_k, y_1, y_2, \ldots, y_k \big) =$ = $argmax_SP\Pi_{i=1..k} p(y_1|s_i, s_{i-1})p(s_i|s_{i-1})$

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

16/22

Viterbi Example

'r' classification (C or V?, sequence?):



p(t|C) = .3p(r|C) = .7p(o|V) = .1

p(e|V) = .3p(y|V) = .4p(r|V)=.2

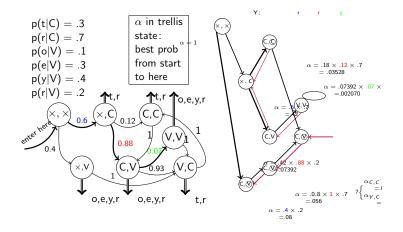
 $argmax_{XYZ} p(rry|XYZ) = ?$

 $(\times, V)(V, C)(C, V)[VCV], (\times, C)(C, C)(C, V)[CCV], (\times, C)(C, V)(V, V)[CVV]$

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

Viterbi Computation



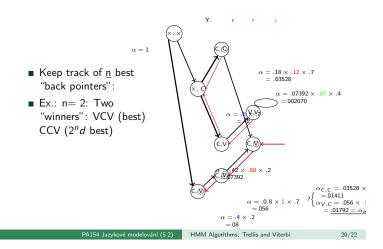
Tracking Back the n-best paths

- Backtracking-style algorithm:
 - ► Start at the end, in the best of the n states (s_{best})
 - ▶ Put the other n-1 best nodes/back pointer pairs on stack, except those leading from s_{best} to the same best-back state.

vé modelování (5.2) HMM Algorithms: Trellis and Viterbi

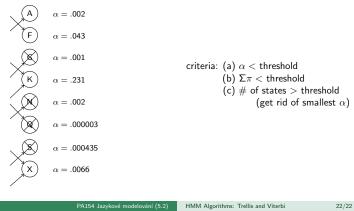
- Follow the back "beam" towards the start of the data, spitting out nodes on the way (backwards of course) using always only the best back pointer.
- At every beam split, push the diverging node/back pointer pairs onto the stack (node/beam width is sufficient!).
- When you reach the start of data, close the path, and pop the topmost node/back pointer(width) pair from the stack.
- Repeat until the stack is empty; expand the result tree if necessary.

n-best State Sequences



Pruning

■ Sometimes, too many trellis states in a stage:



PA154 Jazykové modelování (5.2) HMM Algorithms: Trellis and Viterbi

21/22

22/22