HMM Parameter Estimation: the Baum-Welch algorithm
 PA154 Jazykové modelování (6.1)

Pavel Rychlý
pary@fi.muni.cz
April 6, 2021

Source: Introduction to Natural Language Processing (600.465)
Jan Hajič, CS Dept., Johns Hopkins Univ.
www.cs.jhu.edu/"hajic

A variant of Expectation-Maximization

- Idea(~EM, for another variant see LM smoothing (lect. 3)):
- Start with (possibly random) estimates of P_{S} and P_{Y}.
- Compute (fractional) "counts" of state transitions/emissions taken, from P_{S} and P_{Y}, given data Y
- Adjust the estimates of P_{S} and P_{Y} from these "counts" (using MLE, i.e. relative frequency as the estimate).
- Remarks:
- many more parameters than the simple four-way smoothing
- no proofs here; see Jelinek Chapter 9

Setting

- HMM (without $\left.P_{S}, P_{Y}\right)\left(S, S_{0}, Y\right)$, and data $T=\left\{y_{i} \in Y\right\}_{i=1 \ldots|T|}$
- will use $T \sim|T|$
- HMM structure is given: $\left(S, S_{0}\right)$
- P_{S} : Typically, one wants to allow "fully connected" graph
- (i.e. no transitions forbidden \sim no transitions set to hard 0)
- why? \rightarrow we better leave it on the learning phase, based on the data!
- sometimes possible to remove some transitions ahead of time
- P_{Y} : should be restricted (if not, we will not get anywhere!)
- restricted \sim hard 0 probabilities of $p\left(y \mid s, s^{\prime}\right)$
- "Dictionary": states \leftrightarrow words, "m:n" mapping on $S \times Y$ (in general)

Data structures

- Will need storage for:
- The predetermined structure of the HMM (unless fully connected \rightarrow need not to keep it!)
- The parameters to be estimated $\left(P_{S}, P_{Y}\right)$
- The expected counts (same size as $\left(P_{S}, P_{Y}\right)$)
- The training data $T=\left\{y_{i} \in Y\right\}_{i=1 \ldots T}$
- The trellis (if f.c.):
ach trellis state: two [float] numbers (forward/backward)

1 Initialize P_{S}, P_{Y}
2 Compute "forward" probabilities:

- follow the procedure for trellis (summing), compute $\alpha(s, i)$ everywhere
- use the current values of $P_{S}, P_{Y}\left(p\left(s^{\prime} \mid s\right), p\left(y \mid s, s^{\prime}\right)\right)$:
$\alpha\left(s^{\prime}, i\right)=\sum_{s \rightarrow s}, \alpha(s, i-1) \times p\left(s^{\prime} \mid s\right) \times p\left(y_{i} \mid s, s^{\prime}\right)$
- NB: do not throw away the previous stage!

3 Compute "backward" probabilities

- start at all nodes of the last stage, proceed backwards, $\beta(s, i)$
- i.e., probability of the "tail" of data from stage it the end of data $\beta\left(s^{\prime}, i\right)=\sum_{s^{\prime} \leftarrow s} \beta(s, i+1) \times p\left(s \mid s^{\prime}\right) \times p\left(y_{i+1} \mid s^{\prime}, s\right)$
- also, keep the $\beta(s, i)$ at all trellis states

Baum-Welch: Tips \& Tricks

- Normalization badly needed

- long training data \rightarrow extremely small probabilities

■ Normalize α, β using the same norm.factor:

$$
N(i)=\sum_{s \in S} \alpha(s, i)
$$

as follows:

- compute $\alpha(s, i)$ as usual (Step 2 of the algorithm), computing the sum $N(i)$ at the given stage i as you go.
- at the end of each stage, recompute all alphas(for each state s):

$$
\alpha^{*}(s, i)=\alpha(s, i) / N(i)
$$

- use the same $N(i)$ for βs at the end of each backward (Step 3) stage: $\beta^{*}(s, i)=\beta(s, i) / N(i)$

Example: Initialization

- Output probabilities:
- $p_{\text {init }}(w \mid c)=c(c, w) / c(c) ;$ where $c(S$, the $)=c(L$, the $)=c($ the $) / 2$ (other than that, everything is deterministic)
- Transition probabilities:

$$
\text { - } p_{\text {init }}\left(c^{\prime} \mid c\right)=1 / 4(\text { uniform })
$$

- Don't forget:
- about the space needed
- initialize $\alpha(X, 0)=1$ (X : the never-occuring front buffer st.)
- initialize $\beta(s, T)=1$ for all s (except for $s=X$)

1 Collect counts:

- for each output/transition pair compute

$c\left(s, s^{\prime}\right)=\sum_{y \in Y} c\left(y, s, s^{\prime}\right)$ (assuming all observed y_{i} in Y)
$c(s)=\sum_{s^{\prime} \in S} c\left(s, s^{\prime}\right)$
2 Reestimate: $p^{\prime}\left(s^{\prime} \mid s\right)=c\left(s, s^{\prime}\right) / c(s) \quad p^{\prime}\left(y \mid s, s^{\prime}\right)=c\left(y, s, s^{\prime}\right) / c\left(s, s^{\prime}\right)$
3 Repeat 2-5 until desired convergence limit is reached

Example

- Task: pronunciation of "the"

■ Solution: build HMM, fully connected, 4 states:

- S - short article, L - long article, C,V - word starting w/consonant, vowel
- thus, only "the" is ambiguous (a, an, the - not members of C, V)

■ Output form states only $\left(p\left(w \mid s, s^{\prime}\right)=p\left(w \mid s^{\prime}\right)\right)$

Fill in alpha, beta

- Left to right, alpha:
$\alpha\left(s^{\prime}, i\right)=\sum_{s \rightarrow s^{\prime}} \alpha(s, i-1) \times p\left(s^{\prime} \mid s\right) \times p\left(w_{i} \mid s^{\prime}\right)$, where s^{\prime} is the output from states
- Remember normalization ($\mathrm{N}(\mathrm{i})$).
- Similary, beta (on the way back from the end).

Counts \& Reestimation

- One pass through data
- At each position i, go through all pairs $\left(s_{i}, s_{i+1}\right)$

■ Increment appropriate counters by frac. counts (Step 4):

- inc $\left(y_{i+1}, s_{i}, s_{i+1}\right)=a\left(s_{i}, i\right) p\left(s_{i+1} \mid s_{i}\right) p\left(y_{i+1} \mid s_{i+1}\right) b\left(s_{i+1, i+1}\right)$
- $c\left(y, s_{i}, s_{i+1}\right)+=\operatorname{inc}$ (for y at pos $\mathrm{i}+1$)
- $c\left(s_{i}, s_{i+1}\right)+=$ inc (always)
- $c\left(s_{i}\right)+=$ inc (always)
$\operatorname{inc}($ big,L,C $)=\alpha(L, 7) p(C \mid L) p($ big, $C) \beta(V, 8)$
$\operatorname{inc}($ big,S,C $)=\alpha(S, 7) p(C \mid S) p($ big, $C) \beta(V, 8)$
- Reestimate $p\left(s^{\prime} \mid s\right), p(y \mid s)$
- and hope for increase in $p(C \mid S)$ and $p(V \mid L) \ldots!!$

HMM: Final Remarks

- Parameter "tying"
- keep certain parameters same (\sim just one "counter" for all of them)
- any combination in principle possible
- ex.: smoothing (just one set of lambdas)
- Real Numbers Output
- Y of infinite size $\left(R, R^{n}\right)$
- parametric (typically: few) distribution needed (e.g., "Gaussian")

■ "Empty" transitions: do not generate output

- ~ vertical areas in trellis; do not use in "counting"

