Transformation-Based Tagging

PA154 Jazykové modelování (7.1)

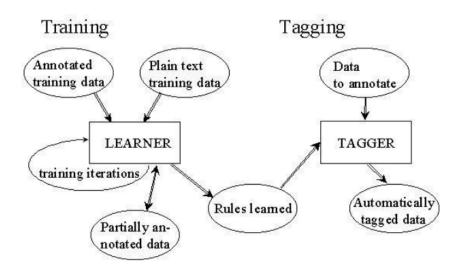
Pavel Rychlý

pary@fi.muni.cz

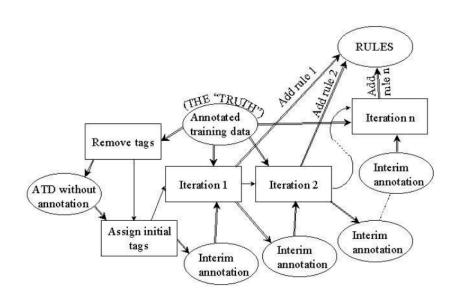
April 13, 2021

Source: Introduction to Natural Language Processing (600.465) Jan Hajič, CS Dept., Johns Hopkins Univ. www.cs.jhu.edu/⁻hajic

The Task, Again


Recall:

- ▶ tagging ~ morphological disambiguation
- ▶ tagset $V_T \in (C_1, C_2, \dots, C_n)$
 - ► C_i moprhological categories, such as POS, NUMBER, CASE, PERSON, TENSE, GENDER,....
- ▶ mapping $w \to \{t \in V_T\}$ exists
 - ► restriction of Morphological Analysis: $A^+ \to 2^{(L,C1,C2,...,Cn)}$, where A is the language alphabet, L is the set of lemmas
- extension to punctuation, sentence boundaries (treated as word)


Setting

- Not a source channel view
- **Not** even a probabilistic model (no "numbers" used when tagging a text after a model is developed)
- Statistical, yes:
 - uses training data (combination of supervised [manually annotated data available] and unsupervised [plain text, large volume] training)
 - learning [rules]
 - criterion: accuracy (that's what we are interested in in the end after all!)

The General Scheme

The Learner

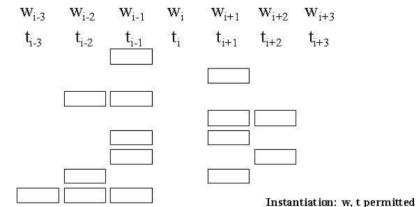
The I/O of an Iteration

- In (iteration i):
 - Intermediate data (initial or the result of previous iteration)
 - ► The TRUTH (the annotated training data)
 - pool of possible rules
- Out:
 - ➤ One rule r_{selected(i)} to enhance the set of rules learned so far
 - ► Intermediate data (input data transformed by the rule learned in this iteration, *r*_{selected(i)})

The Initial Assignment of Tags

- One possibilty:
 - ► NN
- Another:
 - the most frequent tag for a given word form
- Even:
 - use an HMM tagger for the initial assignment
- Not particulary sensitive

The Criterion


- Error rate (or Accuracy):
 - beginning of an iteration: some error rate E_{in}
 - each possible rule r, when applied at every data position:
 - ▶ makes an improvement somewhere in the data $(c_{improved}(r))$
 - ightharpoonup makes it worse at sme places ($c_{worsened}(r)$)
 - and, of course, does not touch the remaining data
- Rule contribution to the improvement of the error rate:
 - ► contrib(r) = $c_{improved(r)} c_{worsened}(r)$
- Rule selection at iteration i:
 - $ightharpoonup r_{selected(i)} = argmax_r contrib(r)$
- New error rate: $E_{out} = E_{in} contrib(r_{selected(i)})$

The Stopping Criterion

- Obvious:
 - no improvement can be made
 - ► contrib(r) ≤ 0
 - or improvement too small
 - ► contrib(r) ≤ Threshold
- NB: prone to overtraining!
 - therefore, setting a reasonable threshold advisable
- Heldout?
 - maybe: remove rules which degrade performance on H

The Pool of Rules(Templates)

- Format: change tag at position i from a to b / condition
- Context rules (condition definition "template"):

Lexical Rules

■ Other type: lexical rules

- Example:
 - ▶ w_i has suffix -ied
 - ▶ w_i has prefix ge-

Rule Application

■ Two possibilities:

- immediate consequences (left-to-right):
 - data: DT NN VBP NN VBP NN...
 - rule: NN → NNS / preceded by NN VBP
 - apply rule at position 4:
 DT NN VBPNN VBPNN... —
 DT NN VBPNNS VBP NN... —
 - ...then rule cannot apply at position 6 (context not NN VBP).
- delayed ("fixed input"):
 - use original input for context
 - ▶ the above rule then applies twice

In Other Words...

- 1 Strip the tags off the truth, keep the original truth
- 2 Initialize the stripped data by some simple method
- 3 Start with an empty set of selected rules S.
- 4 Repeat until the stopping criterion applies:
 - ► compute the contribution of the rule r, for each r: $contrib(r) = c_{improved}(r) c_{worsened}(r)$
 - select r which has the biggest contribution contrib(r), add it to the final set of selected rules S.
- 5 Output the set S

The Tagger

- Input:
 - untagged data
 - ► rules (S) learned by the learner
- Tagging:
 - use the same initialization as the learner did
 - ▶ for i = 1..n (n the number of rules learnt)
 - ► apply the rule i to the whole intermediate data, changing (some) tags
 - the last intermediate data is the output

N-best & Unsupervised Modifications

- N-best modification
 - allow adding tags by rules
 - ► criterion: optimal combination of accuracy and the number of tags per word (we want: close to ↓ 1)
- Unsupervised modification
 - use only unambiguous words for evaluation criterion
 - work extremely well for English
 - does not work for languages with few unambiguous words