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� In many data mining situations, we do not 

know the entire data set in advance

� Stream Management is important when the 

input rate is controlled externally:

� Google queries

� Twitter or Facebook status updates

� We can think of the data as infinite and 

non-stationary (the distribution changes 

over time)
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� Input elements enter at a rapid rate, 

at one or more input ports (i.e., streams)

� We call elements of the stream tuples

� The system cannot store the entire stream 

accessibly

� Q: How do you make critical calculations 

about the stream using a limited amount of 

(secondary) memory?
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� Types of queries one wants on answer on 
a data stream:

� Sampling data from a stream

� Construct a random sample

� Queries over sliding windows

� Number of items of type x in the last k elements 
of the stream

� Filtering a data stream

� Select elements with property x from the stream

� Counting distinct elements

� Number of distinct elements in the last k elements 
of the stream
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� Mining query streams

� Google wants to know what queries are 

more frequent today than yesterday

� Mining click streams

� Yahoo wants to know which of its pages are 

getting an unusual number of hits in the past hour

� Mining social network news feeds

� E.g., look for trending topics on Twitter, Facebook
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� Sensor Networks 

� Many sensors feeding into a central controller

� Telephone call records 

� Data feeds into customer bills as well as 

settlements between telephone companies

� IP packets monitored at a switch

� Gather information for optimal routing

� Detect denial-of-service attacks
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As the stream grows the sample 

also gets bigger



� Since we can not store the entire stream, 

one obvious approach is to store a sample

� Two different problems:

� (1) Sample a fixed proportion of elements 

in the stream (say 1 in 10)

� (2) Maintain a random sample of fixed size 

over a potentially infinite stream

� At any “time” k we would like a random sample 

of s elements

� What is the property of the sample we want to maintain?

For all time steps k, each of k elements seen so far has 

equal prob. of being sampled
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� Problem 1: Sampling fixed proportion

� Scenario: Search engine query stream

� Stream of tuples: (user, query, time)

� Answer questions such as: How often did a user 

run the same query in a single days

� Have space to store 1/10th of query stream

� Naïve solution:

� Generate a random integer in [0..9] for each query

� Store the query if the integer is 0, otherwise 

discard  
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� Simple question: What fraction of queries by an 
average search engine user are duplicates?
� Suppose each user issues x queries once and d queries 

twice (total of x+2d queries)
� Correct answer: d/(x+d)

� Proposed solution: We keep 10% of the queries
� Sample will contain x/10 of the singleton queries and 

2d/10 of the duplicate queries at least once

� But only d/100 pairs of duplicates
� d/100 = 1/10 ∙ 1/10 ∙ d

� Of d “duplicates” 18d/100 appear exactly once
� 18d/100 = ((1/10 ∙ 9/10)+(9/10 ∙ 1/10)) ∙ d

� So the sample-based answer is 
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Solution:

� Pick 1/10th of users and take all their 

searches in the sample

� Use a hash function that hashes the 

user name or user id uniformly into 10 

buckets
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� Stream of tuples with keys:

� Key is some subset of each tuple’s components

� e.g., tuple is (user, search, time); key is user

� Choice of key depends on application

� To get a sample of a/b fraction of the stream:

� Hash each tuple’s key uniformly into b buckets

� Pick the tuple if its hash value is at most a
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Hash table with b buckets, pick the tuple if its hash value is at most a.

How to generate a 30% sample?

Hash into b=10 buckets, take the tuple if it hashes to one of the first 3 buckets



As the stream grows, the sample is of 

fixed size



� Problem 2: Fixed-size sample

� Suppose we need to maintain a random

sample S of size exactly s tuples

� E.g., main memory size constraint

� Why? Don’t know length of stream in advance

� Suppose at time n we have seen n items

� Each item is in the sample S with equal prob. s/n
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How to think about the problem: say s = 2

Stream: a x c y z k c d e g…

At n= 5, each of the first 5 tuples is included in the sample S with equal prob.

At n= 7, each of the first 7 tuples is included in the sample S with equal prob.

Impractical solution would be to store all the n tuples seen 

so far and out of them pick s at random



� Algorithm (a.k.a. Reservoir Sampling)

� Store all the first s elements of the stream to S

� Suppose we have seen n-1 elements, and now 

the nth element arrives (n > s)

� With probability s/n, keep the nth element, else discard it

� If we picked the nth element, then it replaces one of the 

s elements in the sample S, picked uniformly at random

� Claim: This algorithm maintains a sample S

with the desired property:

� After n elements, the sample contains each 

element seen so far with probability s/n
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� We prove this by induction:

� Assume that after n elements, the sample contains 
each element seen so far with probability s/n

� We need to show that after seeing element n+1 
the sample maintains the property

� Sample contains each element seen so far with 
probability s/(n+1)

� Base case:

� After we see n=s elements the sample S has the 
desired property

� Each out of n=s elements is in the sample with 
probability s/s = 1
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� Inductive hypothesis: After n elements, the sample 

S contains each element seen so far with prob. s/n

� Now element n+1 arrives

� Inductive step: For elements already in S, 

probability that the algorithm keeps it in S is:

� So, at time n, tuples in S were there with prob. s/n

� Time n→→→→n+1, tuple stayed in S with prob. n/(n+1)

� So prob. tuple is in S at time n+1 = 
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� Sliding window on a single stream:
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� A useful model of stream processing is that 
queries are about a window of length N –
the N most recent elements received

� Interesting case: N is so large that the data 
cannot be stored in memory, or even on disk

� Or, there are so many streams that windows 
for all cannot be stored

� Amazon example: 

� For every product X we keep 0/1 stream of whether 
that product was sold in the n-th transaction

� We want answer queries, how many times have we 
sold X in the last k sales
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� Problem:

� Given a stream of 0s and 1s

� Be prepared to answer queries of the form 

How many 1s are in the last k bits? where k≤≤≤≤ N

� Obvious solution: 

Store the most recent N bits

� When new bit comes in, discard the N+1st bit

0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0

Past                              Future

Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212)
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� You can not get an exact answer without 

storing the entire window

� Real Problem:

What if we cannot afford to store N bits?

� E.g., we’re processing 1 billion streams and 

N = 1 billion

� But we are happy with an approximate 

answer
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� Q: How many 1s are in the last N bits?
� A simple solution that does not really solve 

our problem: Uniformity assumption

� Maintain 2 counters: 

� S: number of 1s from the beginning of the stream

� Z: number of 0s from the beginning of the stream

� How many 1s are in the last N bits? 

� But, what if stream is non-uniform?

� What if distribution changes over time?
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� DGIM solution that does not assume 

uniformity

� We store bits per stream

� Solution gives approximate answer, 

never off by more than 50%

� Error factor can be reduced to any fraction > 0, 

with more complicated algorithm and 

proportionally more stored bits
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� Solution that doesn’t (quite) work:

� Summarize exponentially increasing regions 

of the stream, looking backward

� Drop small regions if they begin at the same point 

as a larger region
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� Stores only O(log2N ) bits

� counts of bits each

� Easy update as more bits enter

� Error in count no greater than the number 

of 1s in the “unknown” area
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� As long as the 1s are fairly evenly distributed, 

the error due to the unknown region is small 

– no more than 50%

� But it could be that all the 1s are in the 

unknown area at the end

� In that case, the error is unbounded!
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� Idea: Instead of summarizing fixed-length 

blocks, summarize blocks with specific 

number of 1s:

� Let the block sizes (number of 1s) increase 

exponentially

� When there are few 1s in the window, block 

sizes stay small, so errors are small
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� Each bit in the stream has a timestamp, 

starting 1, 2, …

� Record timestamps modulo N (the window 

size), so we can represent any relevant

timestamp in bits
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� A bucket in the DGIM method is a record 

consisting of:

� (A) The timestamp of its end [O(log N) bits]

� (B) The number of 1s between its beginning and 

end [O(log log N) bits]

� Constraint on buckets:

Number of 1s must be a power of 2

� That explains the O(log log N) in (B) above
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� Either one or two buckets with the same 

power-of-2 number of 1s

� Buckets do not overlap in timestamps

� Buckets are sorted by size

� Earlier buckets are not smaller than later buckets

� Buckets disappear when their 

end-time is > N time units in the past
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Three properties of buckets that are maintained:

- Either one or two buckets with the same power-of-2 number of 1s

- Buckets do not overlap in timestamps

- Buckets are sorted by size



� When a new bit comes in, drop the last 

(oldest) bucket if its end-time is prior to N

time units before the current time

� 2 cases: Current bit is 0 or 1

� If the current bit is 0:

no other changes are needed
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� If the current bit is 1:

� (1) Create a new bucket of size 1, for just this bit

� End timestamp = current time

� (2) If there are now three buckets of size 1, 

combine the oldest two into a bucket of size 2

� (3) If there are now three buckets of size 2,

combine the oldest two into a bucket of size 4

� (4) And so on …
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Current state of the stream:

Bit of value 1 arrives

Two orange buckets get merged into a yellow bucket

Next bit 1 arrives, new orange bucket is created, then 0 comes, then 1:

Buckets get merged…

State of the buckets after merging
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� To estimate the number of 1s in the most 

recent N bits:

1. Sum the sizes of all buckets but the last
(note “size” means the number of 1s in the bucket)

2. Add half the size of the last bucket

� Remember: We do not know how many 1s 

of the last bucket are still within the wanted 

window
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� Each element of data stream is a tuple

� Given a list of keys S

� Determine which tuples of stream are in S

� Obvious solution: Hash table

� But suppose we do not have enough memory to 

store all of S in a hash table

� E.g., we might be processing millions of filters 

on the same stream
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� Example: Email spam filtering

� We know 1 billion “good” email addresses

� If an email comes from one of these, it is NOT

spam

� Publish-subscribe systems

� You are collecting lots of messages (news articles)

� People express interest in certain sets of keywords

� Determine whether each message matches user’s 

interest
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� Given a set of keys S that we want to filter

� Create a bit array B of n bits, initially all 0s

� Choose a hash function h with range [0,n)

� Hash each member of s∈∈∈∈ S to one of 

n buckets, and set that bit to 1, i.e., B[h(s)]=1

� Hash each element a of the stream and 

output only those that hash to bit that was 

set to 1

� Output a if B[h(a)] == 1
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� Creates false positives but no false negatives

� If the item is in S we surely output it, if not we may 

still output it
43

Item

0010001011000

Output the item since it may be in S.

Item hashes to a bucket that at least 

one of the items in S hashed to.

Hash 

func h

Drop the item.

It hashes to a bucket set 

to 0 so it is surely not in S.

Bit array B
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� |S| = 1 billion email addresses
|B|= 1GB = 8 billion bits

� If the email address is in S, then it surely 
hashes to a bucket that has the big set to 1, 
so it always gets through (no false negatives)

� Approximately 1/8 of the bits are set to 1, so 
about 1/8th of the addresses not in S get 
through to the output (false positives)

� Actually, less than 1/8th, because more than one 
address might hash to the same bit
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� Consider: |S| = m, |B| = n

� Use k independent hash functions h1 ,…, hk

� Initialization:

� Set B to all 0s

� Hash each element s∈∈∈∈ S using each hash function hi, 

set B[hi(s)] = 1 (for each i = 1,.., k)

� Run-time:

� When a stream element with key x arrives

� If B[hi(x)] = 1 for all i = 1,..., k then declare that x is in S

� That is, x hashes to a bucket set to 1 for every hash function hi(x)

� Otherwise discard the element x
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(note: we have a 

single array B!)



� m = 1 billion, n = 8 billion

� k = 1: (1 – e-1/8) = 0.1175

� k = 2: (1 – e-1/4)2 = 0.0493

� What happens as we 

keep increasing k?

� “Optimal” value of k: n/m ln(2)

� In our case: Optimal k = 8 ln(2) = 5.54 ≈ 6
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� Bloom filters guarantee no false negatives, 

and use limited memory

� Great for pre-processing before more 

expensive checks

� Suitable for hardware implementation

� Hash function computations can be parallelized

� Is it better to have 1 big B or k small Bs?

� It is the same: (1 – e-km/n)k  vs. (1 – e-m/(n/k))k

� But keeping 1 big B is simpler
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� Problem:

� Data stream consists of a universe of elements 

chosen from a set of size N

� Maintain a count of the number of distinct 

elements seen so far

� Obvious approach:

Maintain the set of elements seen so far

� That is, keep a hash table of all the distinct 

elements seen so far
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� How many different words are found among 

the Web pages being crawled at a site?

� Unusually low or high numbers could indicate 

artificial pages (spam?)

� How many different Web pages does each 

customer request in a week?

� How many distinct products have we sold in 

the last week?
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� Real problem: What if we do not have space 

to maintain the set of elements seen so far?

� Estimate the count in an unbiased way

� Accept that the count may have a little error, 

but limit the probability that the error is large

51Pavel Zezula, Jan Sedmidubsky. Advanced Search Techniques for Large Scale Data Analytics (PA212)



� Pick a hash function h that maps each of the 

N elements to at least  log2 N bits

� For each stream element a, let r(a) be the 

number of trailing 0s in h(a)

� r(a) = position of first 1 counting from the right

� E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2

� Record R = the maximum r(a) seen

� R = maxa r(a),  over all the items a seen so far

� Estimated number of distinct elements = 2R
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� Very very rough and heuristic intuition why 
Flajolet-Martin works:

� h(a) hashes a with equal prob. to any of N values

� Then h(a) is a sequence of log2 N bits, 
where 2-r fraction of all as have a tail of r zeros 

� About 50% of as hash to ***0

� About 25% of as hash to **00

� So, if we saw the longest tail of r=2 (i.e., item hash 
ending *100) then we have probably seen 
about 4 distinct items so far

� So, it takes to hash about 2r items before we 
see one with zero-suffix of length r
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