
Mind your Git Manners

OSSDev: Advanced Git

Irina Gulina
Senior Quality Engineer

1

Tomas Tomecek
Principal Software Engineer

Source: https://octodex.github.com/

Happy Birthday, Git!

2

3

● Commit
● Push
● PR/MR submitting and review
● Merge
● Rebase
● Quiz

Agenda

Git Commit

4

5

● Don’t: Two and more changes in one commit

1e4faa0 Fix login timeout BZ, add logout step

● Do: One commit = One logical change

1e4faa0 Fix login timeout BZ
2r5asy8 Add logout step

Commit content

6

● Separate whitespace changes from code changes, especially
unrelated.
○ Mixing those is a great way to introduce a bug and
○ Complicates code review

Commit content

7

● Title/subject line
● Body

What is a commit message?

8

Commit message example
$ git log

commit <commit_id>
Author: <author_name> <author_email>
Date: Mon Apr 2 15:10:03 2020 -0400

Change how workers are represented

* Don't serialize the 'gracefully_shutdown' field
* Create a new 'missing' property and serialize it
* In the status API, list both online and missing workers

Requires PR: https://github.com/<project>/pull/921
 closes #354498

https://bugzilla.redhat.com/show_bug.cgi?id=354498

Commit Title or Subject line

Commit Body

9

What is a “bad” message?

 $ git log --oneline -5 --author irina --before "Wed Apr 7 2021"

dcc2d35 address comments
b7aac30 fix issue #123
0b7a4e4 various docs fixes
1e4faa0 ui bug fix
fc3d081 readme update
d21660dc ToDo
0b7a4e4 Mix fixes and cleanups
5h3d28g refactoring

10

What is a “bad” message?

 $ git log --oneline -5 --author irina --before "Wed Apr 7 2021"

dcc2d35 address comments <- what comments?
b7aac30 fix issue #123 <- of what project?
0b7a4e4 various docs fixes <- what docs? why?
1e4faa0 ui bug fix <- what was the bug?
fc3d081 readme update <- why?
d21660dc ToDo <- 😩😩😩😩
0b7a4e4 Mix fixes and cleanups <-🙈 🙉 🙊
5h3d28g refactoring <- 😭

Uninformative, look-elsewhere commit messages (titles)

11

● git log --pretty=oneline
● git rebase --interactive
● merge.summary
● git shortlog
● git format-patch, git send-email, …
● reflogs
● GUI tools for committing and browsing
● GitHub, SourceForge, Bitbucket, GitLab, … service

Usage of a commit title

Poor quality code can be refactored.
A terrible commit message lasts

forever.

12

13

For whom do you write commit messages?

14

● To help to understand the code change
○ What has been changed?
○ Why is that change necessary?

● To speed up the reviewing process
● To help to locate a bug
● To write a good release note or script it

Why should I write ‘good’ commit messages?

15

● git commit -m “Fix login timeout bug”
● git commit or git commit --verbose

What constitutes a good commit message?

Redirect user to the requested page after login

https://link/to/issue/tracker

16

● Capital letter, 50/72, no punctuation in the end

What constitutes a good commit message?

$ git commit

A brief summary of the commit

A paragraph describing what changed and its impact.

17

● Present Tense and Imperative Mood

“If accepted, this commit will <your commit message goes here>.”

What constitutes a good commit message?

cf31d12 Adds login unit tests

7a9kj4f Fixed login unit tests

101q2wd Update login unit tests

1b7hn61 Removing login unit test

18

● Ticketing system != git log
○ “TICKET-123456 add missing params to class”
○ “Add missing meta fields to response”

❏ Takes space in 50 chars limit title
❏ Look-elsewhere for details message, I’m lazy
❏ May be not available for interested user or reviewer

(permissions, outage)

Ticket number in commit messages

19

● Clear Title - What is commit about?
● Present Tense and Imperative Mood
● No punctuation in a title
● Clear Body - What and why is it needed/changed vs how?
● 50/72
● Reference to an issue in a body message
● Follow the commit convention defined by the team

What constitutes a good commit message?

Git Push

20

IF YOU DO FORCE PUSH...
May the force stay with you.

21

22

● It’s ok to force push to your local branch
● It’s ok to force push to your (unmerged/open) PR/MR
● It’s not ok to force push to a public branch

Git push --force trap

23

Git push --force consequences

24

● Lost data
● Altered history
● Not happy colleagues
● Lost karma points

Git push --force consequences

25

How to avoid unwanted force push

26

● Protect important branches
● Backup
● Use git checkout -b
● Use --force-with-lease, carefully
● Use PR revert

How to avoid unwanted force push

You have a great freedom...
to change your history locally.

27

Submitting a PR

28

29

Why do we use PR/MR workflow?

30

● Share changes
● Get review and feedback
● Encourage quality

Why do we use PR/MR workflow?

31

What constitutes a good PR/MR?

32

● Complete piece of work
● Adds value in some way
● Solid title and body
● Clear commit history
● Small
● Meets project’s contribution guidelines

What constitutes a good PR/MR?

33

● Follow the repo’s conventions
● Double check your code (and ToDos)
● Add docs
● Keep changes small
● Separate branch
● Be clear and specific
● Check your ego and be polite,

Contributors (before submitting a PR/MR)

Open Source Contribution (GitHub)

34

Open Source Contribution (GitLab)

35

36

● Check your ego and be polite
○ @username ping!

○ @username review please

● Ensure your branch merge and tests pass
● Use --amend, --fixup or rebase -i
● Don’t merge your own PR

Contributors (after submitting a PR/MR)

37

● Don’t overuse WIP label
● Remove WIP label when ready
● “This is ready for review, please.”

WIP PR/MR

Reviewing a PR

38

39

● Be kind and polite
○ @username ping, error here!

○ @username s/foo/bar

● Check commit history
● Don’t fix issues
● Ensure the branch can be merged
● CI Tests pass
● Don’t merge WIPs
● Squash
● Delete branch

PR Reviewers

Source: https://octodex.github.com/

40

Rebasing

41

42

Rebase

Source: https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase

https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase

43

Interactive rebase

Source: Tomas’ laptop

HEAD

DEMO

44

QUIZ

45

QUESTIONS?
Irina Gulina, QE
igulina@redhat.com

46

Tomas Tomecek, Dev
ttomecek@redhat.com

mailto:igulina@redhat.com

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

47

