
G

Gaussian Distribution

Xinhua Zhang

Australian National University, Canberra, Australia

NICTA London Circuit, Canberra, Australia

Synonyms
Normal distribution

Definition
�e simplest form of Gaussian distribution is the one-

dimensional standard Gaussian distribution, which can

be described by the probability density function (pdf):

p(x) = ϕ(x) =


√
π
e−x

/
,

where √
π
ensures the normalization, i.e., ∫R p(x)dx= .

�is distribution centers around x =  and the rate of

decay or “width” of the curve is .

More generally, we can apply translation and scaling

to obtain a Gaussian distribution that centers on arbi-

trary µ ∈ R and with arbitrary width σ > . �e pdf

is:

p(x) =


σ
ϕ (
x − µ

σ
) =


√
πσ

exp(−
(x − µ)

σ 
) .

Technically, µ is called the mean and σ  is called the

variance. Obviously, µ is the peak/mode of the density,

and is also the mean andmedian of the distribution due

to the symmetry of the density around µ. If a random

variable X has this density, then we write

X ∼ N(µ, σ ).

Example density functions are plotted in Fig. a.

As an extension to multivariate random variables,

the multivariate Gaussian distribution is a distribution

on d-dimensional column vector x with mean column
vector µ and positive de�nite variance matrix Σ. �is
gives

p(x∣bµ,bΣ) =


(π)d/ det/ Σ

× exp(−



(x − µ)⊺Σ−(x − µ)) ,

and is denoted by X ∼ N(µ, Σ). An example pdf for the
two dimensional case is plotted in Fig. b.

Motivation and Background
Gaussian distributions are one of the most important

distributions in statistics. It is a continuous probability

distribution that approximately describes some mass of

objects that concentrate about their mean. �e prob-

ability density function is bell-shaped, peaking at the

mean. Its popularity also arises partly from the cen-

tral limit theorem, which says the average of a large

number of independent and identically-distributed ran-

dom variables are approximately Gaussian distributed.

Moreover, under some reasonable conditions, poste-

rior distributions become approximately Gaussian in

the large data limit.�erefore, theGaussian distribution

has been used as a simple model for many theoretical

and practical problems in statistics, natural science, and

social science.

In history, Abraham de Moivre �rst introduced this

distribution in  under the name “normal distribu-

tion” (of course, he did not call it Gaussian distribution

since Gauss had not yet been born). �en Laplace used

it to analyze experiment errors, based on which Leg-

endre invented the least squares in . Carl Friedrich

Gauss rigorously justi�ed it in , and determined the

formula of its probability density function. Finally this

distribution is named the Gaussian distribution a�er

Gauss. �e name “normal distribution” is also widely

Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, DOI ./----,

© Springer Science+Business Media LLC 

 G Gaussian Distribution

x

p(
x)

−5 0 5
0

0.2

0.4

0.6

0.8

1
μ=0, σ=1
μ=0,σ = 0.5
μ=0, σ=2
μ=1, σ=1

One dimension(a)

−2
0

2

−2
0

2
0

0.1

0.2

x1x2

p(
x)

Two dimension(b)

Gaussian Distribution. Figure . Gaussian probability density functions

used, meaning it is a typical, common, or usual dis-

tribution. It was coined by Peirce, Galton, and Lexis

around , and made popular by Karl Pearson near

the inception of the twentieth century.

Theory/Solution
Canonical Form

�e standard de�nition allows one to easily read o� the

moments from the pdf. Another useful parameteriza-

tion is called canonical parameterization:

p(x∣η, Λ) = exp(η⊺x −



x⊺Λx −




(d log(π)

−log det Λ + η⊺Λη)) ,

where η = Σ−µ and Λ = Σ−. Λ is o�en called preci-

sion. �is parameterization is useful when posing the

distribution as a member of the exponential family.

Cumulative Distribution Function

For a one-dimensional Gaussian distribution, the

cumulative distribution function (cdf) is de�ned by

Φ(x) = ∫
x

−∞
ϕ(t)dt.

Formally, it can be conveniently represented by the error

function and its complement:

erf(x) =


√
π
∫

x


e−t



dt,

erfc(x) =  − erf(x) =


√
π
∫

∞

x
e−t



dt.

So

Φ(x) =



( + erf(

x
√

)) =




erfc(−

x
√

) .

�e inverse of the cdf, called quantile function, can be

written as

Φ
−
(s) =

√
erf

−
(s − ), for s ∈ (, ).

�e error function erf() and its inverse erf−() do

not usually have a closed form, and can be computed

numerically by functions like ERF in Fortran, and dou-

ble erf(double x) in C/C++. For the multi-variate case,

the corresponding cdf is highly challenging to compute

numerically.

Moments

�e �rst order moment is E[X] = µ, the variance is
Var[X] = Σ, and all higher order cumulants are . Any

central moments with odd terms are , i.e., E[Πdi=(xi −

µi)
pi] =  when∑i pi is odd.

Entropy and Kullback–Leibler Divergence

�e di�erential entropy of a multi-variate Gaussian is

h(p) = −∫
Rd
p(x) ln p(x)dx =




ln ((πe)d det Σ) .

�e Kullback–Leibler divergence from N(µ

, Σ) to

N(µ

, Σ) is

KL(N(µ

, Σ)∣∣N(µ


, Σ)) =




(ln
det Σ

det Σ
+ tr Σ

−
 Σ

+ (µ

− µ


)
⊺
Σ
−
 (µ


− µ


) − d) .

Gaussian Distribution G 

G

Properties Under Affine Transform

Let X ∼ N(µ, Σ). Suppose A is a linear transform from
Rd to Rs and c ∈ Rs, then

Ax + c ∼ N(Aµ + c,AΣA⊺)

E[(x − µ)⊺A(x − µ)] = tr AΣ

Var[(x − µ)⊺A(x − µ)] =  tr AΣAΣ.

where the last two relations require s = d.

Conjugate Priors

Conjugate priors where discussed in 7prior probabili-
ties. With known variance, the conjugate prior for the

mean is again a multi-variate Gaussian. With known

mean, the conjugate prior for the variance matrix is the

Wishart distribution, while the conjugate prior for the

precision matrix is the Gamma distribution.

Parameter Estimation

Given n iid observations X, . . . ,Xn, the maximum like-

lihood estimator of themean is simply the samplemean

µ = X̄ =


n

n

∑
i=
Xi.

�e maximum likelihood estimator of the covariance

matrix is:

Σ̃ =


n

n

∑
i=

(Xi − X̄)(Xi − X̄)
⊺
.

�is estimator is biased, and its expectation is E[Σ̃] =
n−
n
Σ. An unbiased estimator is

Σ̃ = S =


n − 

n

∑
i=

(Xi − X̄)(Xi − X̄)
⊺
.

Distributions Induced by the Gaussian

IfX ∼ N(, Σ), thenX⊺Σ−X has aGamma distribution

Gamma(d/, ).

LetX,X ∼N(, ) and they are independent.�eir

ratio is the standard Cauchy distribution, X/X ∼

Cauchy(, ).

Given n independent univariate random variables

Xi ∼N(, ), the random variable Z :=
√
∑i X


i has a

χ distribution with degree of freedom n. And Z has a

χ distribution with degree of freedom n.

Using Basu’s theoremorCochran’s theorem, one can

show that the samplemean ofX, . . . ,Xn and the sample

standard deviation are independent. �eir ratio

t :=
X̄

S
=



n
(X +⋯ + Xn)

√


n− [(X − X̄)
 +⋯ + (Xn − X̄)]

has the student’s t-distribution with degree of freedom

n − .

Applications
�is section discusses some applications and properties

of the Gaussian.

Central Limit Theorem

Given n independent and identically distributed obser-

vations drawn from a distribution whose variance is

�nite, the average of the observations is asymptotically

Gaussian distributed when n tends to in�nity. Under

certain conditions, the requirement for identical dis-

tribution can be relaxed and asymptotic normality still

holds.

Approximate Gaussian Posterior

Consider n independent and identically distributed

observations drawn from a distribution p(Xi∣θ), so the

data set is X=(X, . . . ,Xn)
⊺. Under certain conditions,

saying roughly that the posterior on θ converges in

probability to a single interior point in its domain as

n → ∞, the posterior for θ⃗ is approximately Gaussian

for large n, θ∣X ≈ N (θ̂, I (θ̂)), where θ̂ is the maxi-

mum likelihood or aposterior value for θ and I (θ) is

the observed (Fisher) information, the negative of the

second derivative (Hessian) of the likelihood w.r.t. the

parameters θ.

�e Gaussian approximation to the posterior, while

a poor approximation in many cases, serves as a use-

ful insight into the nature of asymptotic reasoning. It is

justi�ed based on the multi-dimensional Taylor expan-

sion of the log likelihood at the maximum likelihood

or aposterior value, together with its asymptotic conver-

gence property.

-σ Rule

For standard Gaussian distribution, .% of the prob-

ability mass lie within the three standard deviations

[−σ , σ], i.e., ∫
σ

−σ ϕ(x)dx > .. About % mass

 G Gaussian Process

lies within two standard deviations, and about %

within one standard deviation. �is empirical rule is

called -σ rule, and can be easily extended to general

one dimensional Gaussian distributions.

Combination of Random Variables

Let d-dimensional random variables Xi ∼N(µi, Σi). If
they are independent, then for any set of linear trans-

forms Ai from Rd to Rs, we have∑i AiXi ∼N(∑i Aiµi,
∑i AiΣiA

⊺
i). �e converse is also true by the Cramer’s

theorem: if Xi are independent and their sum ∑i Xi is

Gaussian distributed, then all Xi must be Gaussian.

Correlations and Independence

In general, independent random variables must be

uncorrelated but not vice versa. However, if a multi-

variate random variable is jointly Gaussian, then any

uncorrelated subset of the random variables must be

independent. Notice the precondition of joint Gaus-

sian. It is possible for two Gaussian random variables

to be uncorrelated but not independent, for the rea-

son that they are not jointly Gaussian. For example, let

X ∼ N(, ) and Y = −X if ∣X∣ < c, and Y = X if ∣X∣ > c.

By properly setting c,Y andX can bemade uncorrelated

but obviously not independent.

Marginalization, Conditioning, and Agglomeration

Suppose the vector x can be written as (x⊺ , x
⊺
)

⊺ and

correspondingly the mean and covariance matrix can

be written as

µ =

⎛
⎜
⎜
⎝

µ


µ


⎞
⎟
⎟
⎠

, Σ =

⎛
⎜
⎜
⎝

Σ Σ

Σ Σ

⎞
⎟
⎟
⎠

�en the marginal distribution of x is Gaussian

N(µ, Σ), and the conditional distribution of x con-

ditioned on x isN(µ
∣, Σ∣), where

µ
∣ = µ


+ ΣΣ

−
(x − µ


), Σ∣ = Σ − ΣΣ

−
Σ.

Suppose the multi-variate Gaussian vector x ∼N(µ,

Σ), and a vector x is a linear function of x with Gaus-

sian noise, i.e., x∣x ∼ N(Ax + µ, Σ). �en the joint
distribution of (x⊺ , x

⊺
)

⊺ is also Gaussian:

⎛
⎜
⎜
⎝

x

x

⎞
⎟
⎟
⎠

∼ N

⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

µ


Aµ

+ µ



⎞
⎟
⎟
⎠

,

⎛
⎜
⎜
⎝

Σ +A
⊺ΣA −A⊺Σ

−ΣA Σ

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

.

For a complete treatment of Gaussian distributions

from a statistical perspective, see Casella and Berger

(), and Mardia, Kent, and Bibby () provides

details for the multi-variate case. Bernardo and Smith

() shows how Gaussian distributions can be used

in the Bayesian theory. Bishop () introduces Gaus-

sian distributions in Chap. , and shows how it is

extensively used inmachine learning. Finally, some his-

torical notes on Gaussian distributions can be found

at http://je�.tripod.com/mathword.html, especially

under the entries “NORMAL” and “GAUSS.”

Cross References
7Gaussian Processes

Recommended Reading
Bernardo, J. M., & Smith, A. F. M. (). Bayesian theory. Chich-

ester: Wiley.

Bishop, C. (). Pattern recognition and machine learning. New

York: Springer.

Casella, G., & Berger, R. (). Statistical inference (nd ed.). Pacific

Grove, CA: Duxbury.

Jolliffe, I. T. (). Principal component analysis (nd ed.). Springer

series in statistics. New York: Springer.

Mardia, K. V., Kent, J. T., & Bibby, J. M. ().Multivariate analysis.

London: Academic Press.

Miller, J., Aldrich, J., Cabillón, J. G., de Araújo, C. C., Landau,

J. A. Earliest known uses of some of the words of mathematics.

http://jeff.tripod.com/mathword.html

Gaussian Process

Novi Quadrianto, Kristian Kersting, Zhao Xu

Department of Engineering and Computer Science,

RSISE, ANU and SML, NICTA, Canberra, Australia
Fraunhofer IAIS, Sankt Augustin, Germany

Synonyms
Expectation propagation; Kernels; Laplace estimate;

Nonparametric Bayesian

Definition
Gaussian processes generalizemultivariateGaussian dis-

tributions over �nite dimensional vectors to in�nite

dimensionality. Speci�cally, a Gaussian process is a

http://jeff560.tripod.com/mathword.html
http://jeff560.tripod.com/mathword.html

Gaussian Process G 

G

stochastic process that has Gaussian distributed �nite

dimensional marginal distributions, hence the name.

In doing so, it de�nes a distribution over functions,

i.e., each draw from a Gaussian process is a function.

Gaussian processes provide a principled, practical, and

probabilistic approach to inference and learning in ker-

nel machines.

Motivation and Background
Bayesian probabilistic approaches have many virtues,

including their ability to incorporate prior knowledge

and their ability to link related sources of information.

Typically, we are given a set of data points sampled

from an underlying but unknown distribution, each of

which includes input x and output y, such as the ones

shown in Fig. a. �e task is to learn a functional rela-

tionship between x and y. Traditionally, in a parametric

approach, an assumption on the mathematical form of

the relationship such as linear, polynomial, exponential,

or combination of them needs to be chosen a priori.

Subsequently, weights (or parameters) are placed on

each of the chosen forms, and a prior distribution is

then de�ned over parameters. �us, the learning task

is now reduced to the Bayesian estimation over the

parameters, cf. Fig. a–c. �is approach, however, may

not always be practical, as illustrated in Fig. d. To dis-

cover the latent input–output relationship in Fig. d,

we might need in�nitely many functional forms, and

this translates to in�nite number of parameters. Instead

of working over a parameter space, Gaussian processes

place a prior directly on the space of functions without

parameterizing the function, hence nonparametric. As

will be shown, the computational complexity of infer-

ence now scales as the number of data points instead of

the number of parameters.

Several nonparametric Bayesian models have been

developed for di�erent tasks such as density estima-

tion, regression, classi�cation, survival time analysis,

topic modeling, etc. Among the most popular ones

are 7Dirichlet processes and Gaussian processes. Just as
the Gaussian process, a Dirichlet process has Dirichlet

distributed �nite dimensional marginal distributions,

hence the name.

Gaussian processeswere �rst formalized formachine

learning tasks by Williams and Rasmussen () and

Neal ().

Theory
Formally, a Gaussian process is a stochastic process

(i.e., a collection of random variables) in which all the

�nite-dimensional distributions are multivariate Gaus-

sian distributions for any �nite choice of variables. In

general, Gaussian processes are used to de�ne a proba-

bility distribution over functions f : X → R such that
the set of values of f evaluated at an arbitrary set of

points {xi}
N
i= ∈ X will have an N-variate Gaussian dis-

tribution. Note that, for xi ∈ R, this may also be known
as a Gaussian random �eld.

Gaussian Process

A Gaussian distribution is completely speci�ed by its

mean and covariance matrix. Similarly, a Gaussian

process is characterized by its mean function m(x) :=

E[f (x)] and covariance function

C(x, x′) := E[(f (x) −m(x))(f (x′) −m(x′))] .

We say a real process f (x) is Gaussian process dis-

tributed with a mean function m(x) and a covari-

ance function C(x, x′), written as f ∼ GP(m(x),

C(x, x′)).

�e mean function can be arbitrarily chosen (for

convenience, it is o�en taken to be a zero function

since we can always center our observed outputs to

have a zero mean), but the covariance function must

be a positive de�nite function to ensure the existence

of all �nite-dimensional distributions. �at is, the pos-

itive de�niteness of C(., .) ensures the positive (semi-)

de�niteness of all covariance matrices, Σ, appearing

in the exponent of the �nite-dimensional multivariate

Gaussian distribution.

�e attractiveness of Gaussian processes is that

they admit the marginalization property (7Gaussian
Distribution), i.e., if the Gaussian process speci�es

(f (x), f (x))∼N(µ, Σ), then it must also specify

f (x)∼N(µ, Σ), where Σ is the relevant subma-

trix of Σ. �is means, addition of novel points will

not in�uence the distribution of existing points. �e

marginalization property allows us to concentrate on

distribution of only observed data points with the rest of

unobserved points considered to be marginalized out;

thus a �nite amount of computation for inference can

be achieved.

 G Gaussian Process

20

15

10

5

0
0 1 2

x

y

3 4 5

4

2

0

–2

–4
–4 –2 0 2 4

w1

w
2

4

2

0

–2

–4
–4 –2 0 2 4

w1

w
2

0

1

0

–1

–2

1 2
x

y

3 4 5

2

Gaussian Process. Figure . (a) Ten observations (one-dimensional input x and output y variables) generated from a

7linear regression model y = x +  + є with Gaussian noise є. The task is to learn the functional relationship between

x and y. Assuming the parametric model y =ωx + ω + є, i.e., ω =(ω, ω) is the vector of parameters, and the prior

distribution over ω be a -dimensional Gaussian as shown in (b), the posterior distribution over ω can be estimated as

shown in (c). Its mean (., .) is close to the true parameters (, ). The inference, however, was performed in

an ideal situation where in the relationship between x and y was indeed linear. If the true relationship is not known in

advances and/or cannot easily be described using a finite set of parameters, this approach may fail. For example, in (d),

infinite number of parameters might be required to recover the functional relationship

Covariance Functions

A covariance function bears an essential role in a Gaus-

sian process model as its continuity properties deter-

mine the continuity properties of samples (functions)

from the Gaussian process. In the literature, covariance

functions are also known as positive (semi-)de�nite

kernels or Mercel kernels.

�ere are generally two types of covariance func-

tions: stationary and non-stationary. A stationary

covariance function is a function that is transla-

tion invariant, i.e., C(x, x′)=D(x − x′) for some

function D. �e typical examples include squared

exponential, Matérn class, γ-exponential, exponential,

rational quadratic, while examples of non-stationary

covariance functions are dot product and polynomial.

Squared exponential (SE) is a popular form of sta-

tionary covariance function, and it corresponds to the

class of sums of in�nitely many Gaussian shaped basis

functions placed everywhere, f (x) := limn→∞
s
n ∑i γi

exp (−((x − xi)/ℓ)
)with γi ∼ N(, )∀i.�is covari-

ance function is in the form of

C(x, x′) = E[f (x)f (x′)] = s exp(−


ℓ
∥x − x′∥




) .

Gaussian Process G 

G

Typical functions sampled from this covariance func-

tion can be seen in Fig. a.�is covariance function has

the characteristic length scale ℓ and the signal variance

s as free parameters (hyperparameters). �e longer

the characteristic length scale, the more slowly vary-

ing the typical sample function is. �e signal variance

de�nes the vertical scale of variations of a sample func-

tion. Figure  illustrates prediction with SE covariance

function with varying characteristic length scale. Sev-

eral other covariance functions are listed in Table .

For a comprehensive review on the �eld of co-

variance functions, we refer interested readers to

(Abrahamsen, ).

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

Gaussian Process. Figure . (a) Three functions drawn at

random from a Gaussian process prior. (b) Three random

functions drawn from the posterior, i.e., the distribution

learned with the prior from Fig. a and the ten observa-

tions from Fig. d. In both plots the shaded area shows the

pointwise mean plus and minus two times the standard

deviation for each input value, i.e., the % confidence

region

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

0

1

0

–1

–2

1 2
x

f(
x)

3 4 5

2

Gaussian Process. Figure . Gaussian process prediction

with the SE kernel. (a) mean of the prediction distribution

with length-scale . and signal variance . (the hyperpa-

rameters of the original process used to generate the data

in Fig. ). The other two plots show the prediction setting

the length-scale (b) longer (.) and (c) shorter (.). In all

plots, the % confidence region is shown

 G Gaussian Process

Gaussian Process. Table  Examples of covariance functions. θcov denotes the set of hyperparameters

Name C(x, x′) θcov Remark

Squared exp. (SE) s exp (− 
ℓ ∥x − x′∥

) {s, ℓ} Strong smoothness assumption

Matérn class −ν

Γ(ν)
(
√

ν∣x−x′ ∣
ℓ

)
ν

Kν(
√

νr
ℓ

) {ν, ℓ} Less smooth than SE

γ-exponential exp(−(∣x − x′∣/ℓ)γ), with  < γ <=  {ℓ} Includes both Exp. and SE

Exponential exp (−∣x−x′ ∣
ℓ

) {ℓ} ν = / in the Matérn class

Rational quadratic ( + ∥x−x′∥


αℓ)
−α

{α, ℓ} An infinite sum of SE

Dot product σ 
w ⟨x, x′⟩ + σ 

c {σw , σc}

Polynomial (⟨x, x′⟩ + σ 
c)p {σc} Effective for high-dimensional

classification with binary or grayscale
input

Applications
For Gaussian processes, there are two main classes of

applications: regression and classi�cation. We will dis-

cuss each of them in turn.

Regression

In a7regression problem, we are interested to recover a
functional dependency yi = f (xi) + єi from N observed

training data points {(xi, yi)}
N
i=, where yi ∈R is the

noisy observed output at input location xi ∈Rd. Tra-
ditionally, in the Bayesian 7linear regression model,
this regression problem is tackled by requiring us to

parameterize the latent function f by a parameter

w ∈RH , f (x) := ⟨ϕ(x),w⟩ for H �xed basis functions

{ϕh(x)}
H
h=. A prior distribution is then de�ned over

parameter w. �e idea of Gaussian process regression

(in the geostatistical literature, this is also called kriging,

see e.g., (Krige, ; Matheron, )) is to place a prior

directly on the space of functions without parameteriz-

ing the function (vide Motivation and Background).

Likelihood Function and Posterior Distribution: Assum-

ing independent and normally distributed noise terms,

єi ∼ N(, σ noise), the likelihood model on an output

vector Y ∈ RN and an input matrix X ∈ RN×d will be

Y ∣ f ,X ∼ N(fX , σ

noiseI).

�at is, the data likelihood is distributed according to

a Gaussian distribution with the function values eval-

uated at training input locations as its mean and the

variance of the noise terms as its variance.

Placing a (zero mean) Gaussian process prior over

functions

f ∼ GP(m(x) ≡ , k(x, x′)), ()

will lead us to a Gaussian process posterior (this form

of posterior process is described in the next section),

f ∣X,Y ∼ GP(mpost(x) = k(x,X)[K + σ noiseI]
−Y ,

kpost(x, x
′
) = k(x, x′) − k(x,X)[K + σ noiseI]

−k(x′,X)).

()

In the above equations, K ∈ RN×N denotes the Gram
matrix with elements Kij = k(xi, xj) and k(x, x

′) is the

kernel function.�e term k(x,X)denotes a kernel func-

tion with one of the inputs �xed at training points.

Predictive Distribution: �e�nal goal in regression is to

make an output prediction for a novel input x∗, given

a set of input-output training points. By the marginal-

ization property, instead of working with a prior over

in�nite dimensional function spaces as in (), we can

concentrate on themarginal distribution over the train-

ing inputs,

fX ∼ N(,K). ()

Gaussian Process G 

G

Subsequently, the marginal distribution over training

outputs (conditioned on inputs) can be computed via

p(Y ∣X) = ∫ p(Y ∣ fX)p(fX)dfX = N(,K + σ noiseI).

()

�e above integration is computed by using the

standard result for the convolution of two Gaussian

distributions (7Gaussian Distribution). �e joint dis-
tribution over sets of training points Y and the quantity

we wish to predict y∗ is given by

p(Y , y∗∣X, x∗) = N(,C), ()

where C ∈ R(N+)×(N+) is the joint covariance matrix.
We can partition this joint covariance matrix as follows:

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K + σ noiseI kX,x∗

k⊺X,x∗ k(x∗, x∗) + σ noise

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the vector kX,x∗ ∈ RN has elements k(xi, x∗) for
i = , . . . ,N and ⊺ denotes a transpose operation. �e

noise variance appears only at the diagonal elements of

the covariancematrixC, this is due to the independence

assumption about the noise. Using a standard Gaussian

property on computing conditional distribution from a

joint Gaussian distribution (7Gaussian Distribution),
the predictive distribution is given by

p(y∗∣x∗,X,Y) = N(µ∗, σ

∗), ()

with

µ∗ = k
⊺
X,x∗

(K + σ noiseI)
−Y , ()

σ ∗ = k(x∗, x∗) − k
⊺
X,x∗

(K + σ noiseI)
−kX,x∗ + σ noise.

()

Note that, () and () are the mean function and the

covariance function of the posterior process in () for

any novel inputs. �e only di�erence is the additional

term σ noise, since there exists observation noise є∗ such

that y∗ = f∗ + є∗.

Point Prediction: �e previous section has shown how

to compute a predictive distribution for outputs y∗
associated with the novel test inputs x∗. To convert

this predictive distribution into a point prediction, we

need the notion of a loss function, L(ytrue, yprediction).

�is function speci�es the loss incurred for pre-

dicting the value yprediction while the true value is

ytrue. �us, the optimal point prediction can be com-

puted by minimizing the expected loss as follows

yoptimal∣x∗ = argminyprediction ∫ L(y∗, yprediction)

× p(y∗∣x∗,X,Y)dy∗. ()

For a squared loss function (or any other symmetric

loss functions) and predictive distribution (), the solu-

tion to the above equation is the mean of the predictive

distribution, i.e.,

yoptimal∣x∗ = Ey∗∼p(y∗∣x∗ ,X,Y)[y∗] = µ∗.

�e above Gaussian process regression description

is known as a function space view in the literature

(Rasmussen & Williams, ). Equivalently, a Gaus-

sian process regression can also be viewed from the

traditional Bayesian linear regression with a possibly

in�nite number of basis functions ϕ(x) and with a zero

mean and arbitrary positive de�nite covariance matrix

Gaussian prior on the parameter w, see e.g., Rasmussen

&Williams ().

Classification

Gaussian process models can also be applied to classi-

�cation problems. In a probabilistic approach to classi-

�cation, the goal is to model posterior probabilities of

an input point xi belonging to one of Ω classes, yi ∈

{, . . . ,Ω}. �ese probabilities must lie in the interval

[, ], however, a Gaussian process model draws func-

tions that lie on (−∞,∞). For the binary classi�cation

(Ω = ), we can turn the output of a Gaussian process

into a class probability using an appropriate nonlinear

activation function. In the following, we will show this

for the case of binary classi�cation. For themore general

cases, see e.g., Rasmussen &Williams ().

Likelihood Function and Posterior Distribution: In a

regression problem, aGaussian likelihood is chosen and

combined with a Gaussian process prior, which leads to

a Gaussian posterior process over functions where in

all required integrations remain analytically tractable.

For classi�cation, however, Gaussian likelihood is not

 G Gaussian Process

the most suitable owing to the discreteness nature of

the class labels. �e most commonly used likelihood

functions are

p(yi∣ f , xi) =


 + exp(−yifxi)
or

p(yi∣ f , xi) = ∫
yi fxi

−∞
N(, )dt = Φ,(yifxi), ()

known as logistic and cumulative Gaussian likelihood

functions, respectively. Assuming that the class labels

(conditioned on f) are generated independent and iden-

tically distributed, the joint likelihood over N data

points can be expressed as p(Y ∣ f ,X) = ∏
N
i= p(yi∣ f , xi).

By Bayes’ rule, the posterior distribution over latent

functions is given by p(fX ∣X,Y) =
p(Y ∣ f)p(fX)

∫ p(Y ∣ f)p(fX)dfX
.

�is posterior is no longer analytically tractable (due

to intractable integration in the denominator) and an

approximation is needed.

�ere are several approximation methods to han-

dle intractability of the inference stage in Gaussian

process classi�cation such as Laplace approximation,

expectation propagation, variational bounding, and

MCMC, among others (see (Nickisch & Rasmussen,

) for a comprehensive overview of approximate

inference in binary Gaussian process classi�cation).

Most of the methods (if not all) approximate the

non-Gaussian posterior with a tractable Gaussian

distribution. We describe in detail the straightforward

Laplace approximation method, but note that the more

complicated expectation propagation (7Expectation
Propagation) is almost always the method of choice

unless the computational budget is very tight (Nickisch

& Rasmussen, ).

Laplace’s method approximates the non-Gaussian

posterior with a Gaussian one by performing a

second order Taylor expansion of the log poste-

rior, log p(fX ∣X,Y) at the maximum point of the

posterior

p(fX ∣X,Y) ≈ p̂(fX ∣X,Y) = N(f̂X ,H
−
), ()

where f̂X = argmaxfX log p(fX ∣X,Y) and H = −∇∇ log p

(fX ∣X,Y)∣fX=f̂X is the Hessian of the negative log poste-

rior at the maxima. Since the denominator of the Bayes’

theorem is independent of the latent function, themode

of the posterior can be computed instead from the log

un-normalized posterior

Ψ(fX) := log p(Y ∣ f) + log p(fX), ()

with the expression for p(fX) given in (). Computa-

tion of the mode requires us to evaluate the gradient of

Ψ(fX) which is given as

∇Ψ(fX) = ∇ log p(Y ∣ f) + K
−fX . ()

To �nd the stationary point, however, we cannot sim-

ply set this gradient to zero as ∇ log p(Y ∣ f) depends

non-linearly on fX . We need to resort to an iterative

scheme based on the Newton–Raphson’s method with

the update equation given by

f newX ← f oldX − (∇∇Ψ(fX))
−
∇Ψ(fX), ()

and the Hessian given by

∇∇Ψ(fX) = −W − K−, ()

and W := −∇∇ log p(Y ∣ f) is a diagonal matrix. It is

important to note that if the likelihood function

p(Y ∣f ,X) is log-concave, the diagonal elements ofW are

non-negative and the Hessian in () is negative de�nite

(since −K and its inverse is negative de�nite by con-

struction and the sum of two negative de�nite matrices

is also negative de�nite). �us, Ψ(fX) is concave and

has a unique maxima point.

Predictive Distribution: �e latent function fX plays the

role of a nuisance function, i.e., we do not observe

values of fX itself, and more importantly, we are not

particularly interested in the values of fX . What we are

interested in is a class conditional posterior probabil-

ity, p(y∗ = +∣x∗,X,Y) (as the probability of the two

classes must sum to , p(y∗ = −∣x∗,X,Y) =  − p(y∗ =

+∣x∗,X,Y) is a class conditional probability of a class

label of not ) for a novel input x∗.

�e inference strategy involves marginalizing out

the nuisance function and is divided into two steps.

First, we need to compute the distribution of the latent

function at the novel input x∗,

p(f∗∣X,Y , x∗) = ∫ p(f∗∣x∗,X, fX)p(fX ∣X,Y)dfX .

()

Gaussian Process G 

G

�econditional distribution p(f∗∣x∗,X, fX) is computed
by invoking the Gaussian process regression model in

() to arrive at

p(f∗∣x∗,X, fX) = N(k⊺X,x∗K
−
fX , k(x∗, x∗) − k⊺X,x∗K

−
kX,x∗).
()

Note that, the underlying Gaussian process regression

model is assumed to be a noise-free process. Another

approach would be assuming an independent Gaussian

noise in combination with a step function likelihood

function. However, this is equivalent to the noise-free

latent process with a cumulative Gaussian likelihood

function (Rasmussen & Williams, ). With Laplace

approximation of posterior distribution p(fX ∣X,Y) ≈

N(f̂X , (K
− + W)−), we can now compute the inte-

gration in () by using the standard result for the

convolution of two Gaussian distributions. �us, the

conditional distribution is given by

p(f∗∣x∗,X,Y) = N(E[f∗∣x∗,X,Y],Var[f∗∣x∗,X,Y]),
()

with

E[f∗∣x∗,X,Y] = k⊺X,x∗K
− f̂X ,

Var[f∗∣x∗,X,Y] = k(x∗, x∗) − k⊺X,x∗(K +W
−
)
−kX,x∗ .

�e predictive distribution can now be computed as

follows

π∗ := p(y∗ = +∣x∗,X,Y)

= ∫ p(y∗ = +∣f∗)p(f∗∣x∗,X,Y)df∗.

�e above integral can be solved analytically for a cumu-

lative Gaussian likelihood function,

π∗ = ∫

E[f∗∣x∗ ,X,Y]
(y−
∗
+Var[f∗∣x∗ ,X,Y])/

−∞
N(t∣, )dt

= Φ, (
E[f∗∣x∗,X,Y]

(y−∗ +Var[f∗∣x∗,X,Y])/
) ,

and can be approximated for a logistic likelihood func-

tion (MacKay, ),

π∗ =


 + exp(−E[f∗∣x∗,X,Y]κ(Var[f∗∣x∗,X,Y]))
,

with κ(c) = ( + cπ/)−/.

Point Prediction: Similar to the regression case, we

might need to make a point prediction from the pre-

dictive distribution described in the section above. For

a zero-one loss function, i.e., a loss of one unit is suf-

fered for a wrong classi�cation and  for not making a

classi�cation mistake, the optimal point prediction (in

the sense of expected loss) is

yoptimal∣x
∗
= argmax
y∗∈{,. . .,Ω}

p(y∗∣x∗,X,Y). ()

It is worth noting that the probabilistic approach to

classi�cation allows the same inference stage to be re-

used with di�erent loss functions. In some situations,

a cost sensitive loss function, i.e., di�erent classi�ca-

tion mistakes incur di�erent losses, is more desirable.

�e optimal point prediction is now taken by minimiz-

ing expected cost sensitive loss with respect to the same

p(y∗∣x∗,X,Y).

Extension of the Laplace approximation to multi-

class Gaussian process classi�cation (Ω > ) (Williams

& Barber, ) can be achieved via the so�max activa-

tion function, i.e., a generalization of logistic activation

function.

Practical Issues
We have seen how to do regression and classi�ca-

tion using Gaussian processes. Like other kernel based

methods such as support vector machines, they are

very �exible in that all operations are kernelized, i.e.,

the operations are performed in the (possibly in�nite

dimensional) feature space. However, this feature space

is only de�ned implicitly via positive de�nite kernels

(covariance functions), which only requires computa-

tion in the (lower dimensional) input space. Compared

to other non-Bayesian kernel approaches, Gaussian

processes provide an explicit probabilistic formulation

of the model. �is directly provides us with con�dence

intervals (for regression) or posterior class probabilities

(for classi�cation).

So far, however, we have assumed a covariance func-

tion with the known functional form and hyperparam-

eters. In many practical applications, it may not be easy

to specify all aspects of the covariance function by hand.

Furthermore, inverting the correspondingN ×N Gram

matrix is the main computational cost and it may be

 G Gaussian Process

prohibitive as it scales as O(N). We will now discuss

approaches to overcome both limitations in turn.

Model Selection

In many practical applications, the functional form of

the covariance function needs to be chosen and any

values of hyperparameters associated with the chosen

covariance function and possible free parameters of the

likelihood function needs to be optimally determined.

�is is called model selection.

Ideally, we would like to de�ne a prior distribu-

tion over the hyperparameters θ, and predictions are

made by integrating over di�erent possible choice of

hyperparameters. More formally,

p(y∗∣x∗,X,Y) = ∫ p(y∗∣x∗,X,Y , θ)p(θ∣X,Y)dθ.

()

�e evaluation of the above integral, however, may

be di�cult, and an approximation is needed either

by using the most likely value of hyperparameters,

p(y∗∣x∗,X,Y) ≈ p(y∗∣x∗,X,Y , θML), or by performing

the integration numerically via Monte Carlo methods.

We will focus here on the approximation approach and

show how to use it for regression and classi�cation

problems respectively.

Marginal Likelihood for Regression: �eposterior prob-

ability of the hyperparameters θ in () is

p(θ∣X,Y) ∝ p(Y ∣X, θ)p(θ), ()

where the �rst term is known as marginal likelihood or

evidence for the hyperparameters and its logarithm is in

the form of (from ())

log p(Y ∣X, θ) = −



Y⊺K̄−Y −




log ∣K̄∣ −

N


log(π),

with K̄ := K + σ noiseI. We can then set the hyperpa-

rameters by maximizing this marginal likelihood (We

can alsomaximize the un-normalized posterior instead,

assuming�nding the derivatives of the priors is straight-

forward.) (also known as type II maximum likelihood

approximation, ML-II) and its partial derivatives with

respect to hyperparameters is

∂

∂θ j

log p(Y ∣X, θ) =



Y⊺K̄−

∂K̄

∂θ j

K̄−Y −



tr(K̄−

∂K̄

∂θ j

) .

Marginal Likelihood for Classification: �eLaplace appr-

oximation of the marginal likelihood, p(Y ∣X, θ)≈

p̂(Y ∣X, θ)

= ∫ exp(Ψ(fX))dfX

= exp(Ψ(f̂X))∫ exp(−



(fX − f̂X)

⊺H(fX − f̂X))dfX ,

which is achieved via a Taylor expansion of () locally

around f̂X to obtainΨ(fX) ≈ Ψ(f̂X)−



(fX− f̂X)

⊺H(fX−

f̂X). Computing the integral analytically gives us the

approximate marginal likelihood

log p̂(Y ∣X, θ) = −



f̂XK

− f̂X

+ log p(Y ∣ f̂ ,X) −



log ∣I +W


KW


 ∣.

Subsequently, the partial derivatives with respect to

hyperparameters is given by

∂

∂θ j

log p̂(Y ∣X, θ) =



f̂ ⊺XK

− ∂K

∂θ j

K− f̂X

−



tr((K +W−

)
− ∂K

∂θ j

)

+
N

∑
i=

∂ log p̂(Y ∣X, θ)

∂f̂xi

∂f̂xi
∂θ j
.

�e familiar multiple local optima problem is also

present in the marginal likelihood maximization. How-

ever, practical experiences suggest that local optima

are not a devastating problem especially with simple

functional forms of covariance function.

Sparse Approximation

A signi�cant problem with Gaussian process model is

associated with the computation cost of inverting the

N × N Gram matrix. A number of sparse approxima-

tion methods have been proposed to overcome this

high computational demand. Common to all these

methods is that only a subset of the latent function

values of size M < N are treated exactly and the

remaining latent values are approximated with cheaper

computational demand. Quiñonero-Candela and Ras-

mussen () describe a unifying view of sparse

Gaussian Process G 

G

approximation. All existing sparse methods are shown

to be an instance of it. �e framework is described

for regression problems, however, it should also be

applicable for classi�cation learning settings, albeit

with complicacy associated with the non-Gaussian

likelihood.

In this unifying treatment, an additional set of M

latent variables fU ∈ RM , called inducing variables,
are introduced. �ese latent variables are latent func-

tion values corresponding to a set of input locations

XU ∈ RM×d, called inducing inputs. �e choice of
inducing inputs are not restricted to only from the

training or test inputs. Due to themarginalization prop-

erty, introducing more latent variables will not change

the distribution of the original variables. Consider ()

with the covariance matrix contains no noise compo-

nents, that is the distribution now de�nes joint dis-

tribution over latent training and test function values,

p(fX , f∗∣X, x∗)

= ∫ p(fX , f∗, fU ∣X, x∗)dfU

= ∫ p(fX , f∗∣X, x∗, fU)p(fU)dfU , ()

with p(fU)=N(,Ku,u). So far, no approximations

have been introduced. Introducing the key assumption

which is fX is conditionally independent of f∗ given fU ,

f∗⊥⊥fX ∣ fU , allow us to approximate () as

p(fX , f∗∣X, x∗) ≈ ∫ p(f∗∣x∗, fU)p(fX ∣X, fU)p(fU)dfU ,

()

where p(f∗∣x∗, fU) and p(fX ∣X, fU) admit the same form

as () without noise components. Di�erent computa-

tionally e�cient algorithms in the literature correspond

to di�erent assumptionsmade on those two conditional

distributions. Table  shows various sparse approxima-

tion methods with their corresponding approximated

conditional distributions. For all sparse approxima-

tion methods, the computational complexity is reduced

fromO(N) toO(NM).

Current and Future Directions
Gaussian processes are an active area of research both

within the machine learning and the Bayesian statis-

tics community. First, there is the issue of e�cient

inference and learning as already discussed in the text

above. Second, there is interest in adapting Gaussian

processes to other learning settings. �ey have been

used for ordinal regression (Chu&Ghahramani, a;

Yu, Yu, Tresp & Kriegel, ), preference learning

(Chu & Ghahramani, b), ranking (Guiver &

Snelson, ), mixtures of experts (Tresp, b),

transductive learning (Schwaighofer & Tresp, ),

multi-task learning (Yu, Tresp, & Schwaighofer, ),

dimensionality reduction (Lawrence, ), matrix fac-

torization (Lawrence & Urtasun, ), reinforcement

learning (Deisenroth & Rasmussen, ; Engel, Man-

nor, & Meir, ), among other settings. �ey have

also been extended to handle relational data (Chu,

Sindhwani, Ghahramani, & Keerthi, ; Kersting &

Xu, ; Silva, Chu, & Ghahramani, ; Xu, Kerst-

ing, & Tresp, ; Yu, Chu, Yu, Tresp, & Xu, ).

Standard Gaussian processes only exploit the available

information about attributes of instances and typically

Gaussian Process. Table  Sparse approximation methods

Method p̂(fX ∣X, fU) p̂(f∗∣x∗, fU) Ref.

SR N(KX ,XU K−
XU ,XU

fU, ) N(Kx∗ ,XU K−
XU ,XU

fU, ) Silverman ()

PP N(KX ,XU K−
XU ,XU

fU, ) p(f∗∣x∗, fU) Seeger, Williams, and Lawrence ()

SPGPs
N(KX ,XU K−

XU ,XU
fU,∆)

∆ = diag[KX ,X − KX ,XU K−
XU ,XU

KXU ,X] p(f∗∣x∗, fU) Snelson and Ghahramani ()

BCM N(KX ,XU K−
XU ,XU

fU,∆) p(f∗∣x∗, fU) Tresp (a)

∆ = blockdiag[KX ,X − KX ,XU K−
XU ,XU

KXU ,X]
SR subset of regressors; PP projected process; SPGPs sparse pseudo-input gaussian processes; BCM: bayesian committe machine

 G Gaussian Process

ignore any relations among the instances. Intuitively,

however, we would like to use our information about

one instance to help us reach conclusions about other,

related instances.

Gaussian processes are also of great interest for

practical applications because they naturally deal with

noisy measurements, unevenly distributed observa-

tions, and �ll small gaps in the data with high con-

�dence while assigning higher predictive uncertainty

in sparsely sampled areas. For instance, Platt ()

generated music playlists using Gaussian processes.

Schwaighofer, Grigoras, Tresp, and Ho�mann ()

used them for realizing positioning systems using cel-

lular networks. Chu, Ghahramani, and Falciani ()

proposed a gene selection algorithm based on Gaus-

sian processes to discover consistent gene expression

patterns associated with ordinal clinical phenotypes.

Brooks, Makarenko, and Upcro� () proposed a

Gaussian process model in the context of appearance-

based localization with an omni-directional camera.

Ferris, Haehnel, and Fox () applied Gaussian pro-

cesses to locate a mobile robot from wireless signal

strength. Plagemann, Fox, and Burgard () used

them to detect failures on amobile robot. Gao, Honkela,

Rattray, and Lawrence () inferred latent chemi-

cal species in biochemical interaction networks using

Gaussian processes. Krause, Singh, and Guestrin ()

modeled precipitation data using Gaussian processes.

Finally, there is the issue of relaxing the assump-

tion of the standard Gaussian process model that the

noise on the output is uniform throughout the domain.

If we assume that the noise is a smooth function of

the inputs, the noise variance can be modeled using a

secondGaussian process, in addition to the process gov-

erning the noise-free output values. �e posterior dis-

tribution of the noise levels can then be sampled using

MCMC or approximated using maximum-aposteriori

inference. �e resulting heteroscedastic, i.e., input-

dependent noise regression model has been shown to

outperform state-of-the-art methods for mobile robot

localization (Plagemann, Kersting, Pfa�, & Burgard,

).

In addition to the references embedded in the

text above, we also recommend http://www.gaussian-

process.org/. A highly recommended textbook is Ras-

mussen &Williams ().

Cross References
7Dirichlet Process

Recommended Reading
Abrahamsen, P. (). A review of Gaussian random fields and cor-

relation functions. Rapport , Norwegian Computing Center,

Oslo. www.nr.no/publications/_Rapport.ps.

Brooks, A., Makarenko, A., & Upcroft, B. (). Gaussian process

models for sensor-centric robot localisation. In Proceedings of

ICRA. IEEE.

Chu, W., & Ghahramani, Z. (a). Gaussian processes for ordinal

regression. Journal of Machine Learning Research, , –.

Chu, W., & Ghahramani, Z. (b). Npreference learning with

gaussian processes. In: Proceedings of the international confer-

ence on machine learning (pp. –). New York: ACM.

Chu, W., Ghahramani, Z., Falciani, F., & Wild, D. (). Biomarker

discovery in microarray gene expression data with Gaussian

processes. Bioinformatics, (), –.

Chu, W., Sindhwani, V., Ghahramani, Z., & Keerthi, S. (). Rela-

tional learning with gaussian processes. In Proceedings of neural

information processing systems. Canada: Vancouver.

Deisenroth, M. P., Rasmussen, C. E., & Peters, J. (). Gaus-

sian process dynamic programming. Neurocomputing, (–),

–.

Engel, Y., Mannor, S., & Meir, R. (). Reinforcement learning

with Gaussian processes. In Proceedings of the international con-

ference on machine learning, Bonn, Germany (pp. –). New

York: ACM.

Ferris, B., Haehnel, D., & Fox, D. (). Gaussian processes for

signal strength-based location estimation. In Proceedings of

robotics: Science and systems, Philadelphia, USA. Cambridge,

MA: The MIT Press.

Gao, P., Honkela, A., Rattray, M., & Lawrence, N. (). Gaussian

process modelling of latent chemical species: applications to

inferring transcription factor activities. Bioinformatics (),

i–i.

Guiver, J., & Snelson, E. (). Learning to rank with softrank and

gaussian processes. In Proceedings of SIGIR. (pp. –). New

York: ACM.

Kersting, K., & Xu, Z. (). Learning preferences with hidden

common cause relations. In Proceedings of ECML PKDD. Berlin:

Springer.

Krause, A., Singh, A., & Guestrin, C. (). Near-optimal sensor

placements in Gaussian processes: Theory, efficient algorithms

and empirical studies. Journal of Machine Learning Research, ,

–.

Krige, D. G. (). A statistical approach to some basic mine val-

uation problems on the witwatersrand. Journal of the Chem-

ical, Metallurgical and Mining Society of South Africa, (),

–.

Lawrence, N. (). Probabilistic non-linear principal component

analysis with gaussian process latent variable models. Journal of

Machine Learning Research, , –.

Lawrence, N., & Urtasun, R. (). Non-linear matrix factoriza-

tion with Gaussian processes. In Proceedings of the international

conference on machine learning (pp. –). New York: ACM.

MacKay, D. J. C. (). The evidence framework applied to classifi-

cation networks. Neural Computation, (), –.

www.nr.no/publications/917_Rapport.ps
http://www.gaussian-process.org/
http://www.gaussian-process.org/

Gaussian Process Reinforcement Learning G 

G

Matheron, G. (). Principles of geostatistics. Economic Geology

(), –.

Neal, R. (). Bayesian learning in neural networks. New York:

Springer.

Nickisch, H., & Rasmussen, C. E. (). Approximations for binary

gaussian process classification. Journal of Machine Learning

Research, , –.

Plagemann, C., Fox, D., & Burgard, W. (). Efficient failure

detection on mobile robots using particle filters with gaus-

sian process proposals. In Proceedings of the international joint

conference on artificial intelligence (IJCAI), Hyderabad, India.

Morgan Kaufmann.

Plagemann, C., Kersting, K., Pfaff, P., & Burgard, W. ().

Gaussian beam processes: A nonparametric bayesian measure-

ment model for range finders. In Proceedings of the robotics:

Science and systems conference (RSS-), Atlanta, GA, USA. The

MIT Press.

John C. Platt., Christopher J. C. Burges., Steven Swenson., Christo-

pher Weare., & Alice Zheng. (). Learning a gaussian

process prior for automatically generating music playlists. In

Advances in Neural Information Processing Systems, –,

MIT Press.

Quiñonero-Candela, J., & Rasmussen, C. E. (). A unifying view

of sparse approximate gaussian process regression. Journal of

Machine Learning Research, , –.

Rasmussen, C. E., & Williams, C. K. I. (). Gaussian processes for

machine learning. Cambridge, MA: MIT Press.

Schwaighofer, A., Grigoras, M., Tresp, V., & Hoffmann, C. ().

A Gaussian process positioning system for cellular networks.

In Advances in neural information processing systems . Cam-

bridge, MA: MIT Press.

Schwaighofer, A., & Tresp, V. (). Transductive and inductive

methods for approximate guassian process regression. InNeural

information processing systems. Cambridge, MA: MIT Press.

Seeger, M., Williams, C. K. I., & Lawrence, N. (). Fast for-

ward selection to speed up sparse gaussian process regression.

In Ninth international workshop on artificial intelligence and

statistics. Society for Artificial Intelligence and Statistics.

Silva, R., Chu, W., & Ghahramani, Z. (). Hidden common

cause relations in relational learning. In Proceedings of neural

information processing systems. Canada: Vancouver.

Silverman, B. W. (). Some aspects of the spline smoothing

approach to non-parametric regression curve fitting. Journal of

Royal Statistical Society B, (), –.

Snelson, E., & Ghahramani, Z. (). Sparse gaussian processes

using pseudo-inputs. In Advanes in neural information process-

ing systems (pp. –). The MIT Press.

Tresp, V. (a). A Bayesian committee machine. Neural Computa-

tion, (), –.

Tresp, V. (b). Mixtures of gaussian processes. In T. K. Leen,

T. G. Dietterich, V. Tresp (Eds.), Advances in neural information

processing systems  (pp. –). The MIT Press.

Williams, C., & Barber, D. (). Bayesian classification with

Gaussian processes. IEEE Transactions on Pattern Analysis and

Machine Intelligence PAMI, (), –.

Williams, C., & Rasmussen, C. (). Gaussian processes for regres-

sion. In D. S. Touretzky, M. C. Mozer, M. E. Hasselmo (Eds.),

Advances in neural information processing systems  (Vol. ,

pp. –). Cambridge, MA: MIT Press.

Xu, Z., Kersting, K., & Tresp, V. (). Multi-relational learn-

ing with gaussian processes. In Proceedings of the interna-

tional joint conference on artificial intelligence (IJCAI). Morgan

Kaufmann.

Yu, K., Chu, W., Yu, S., Tresp, V., & Xu, Z. (). Stochastic rela-

tional models for discriminative link prediction. In Proceedings

of neural information processing systems. Canada: Vancouver.

Yu, K., Tresp, V., & Schwaighofer, A. (). Learning gaussian pro-

cesses from multiple tasks. In Proceedings of the international

conference on machine learning (pp. –). New York:

ACM.

Yu, S., Yu, K., Tresp, V., & Kriegel, H. P. (). Collaborative

ordinal regression. In W. Cohen, A. Moore (Eds.), Proceed-

ings of the rd international conference on machine learning

(pp. –). New York: ACM.

Gaussian Process Reinforcement
Learning

Yaakov Engel

University of Alberta, Edmonton, Alberta, Canada

Definition
Gaussian process reinforcement learning generically

refers to a class of 7reinforcement learning (RL) algo-
rithms that use Gaussian processes (GPs) to model and

learn some aspect of the problem.

Such methods may be divided roughly into two

groups:

. Model-based methods: Here, GPs are used to

learn the transition and reward model of the

7Markov decision process (MDP) underlying the
RL problem. �e estimated MDP model is then

used to compute an approximate solution to the

true MDP.

. Model-free methods: Here no explicit representation

of the MDP is maintained. Rather, GPs are used to

learn either the MDP’s value function, state-action

value function, or some other quantity that may be

used to solve the MDP.

�is entry is concerned with the latter class of

methods, as these constitute the majority of published

research in this area.

 G Gaussian Process Reinforcement Learning

Motivation and Background
7Reinforcement learning is a class of learning problems
concerned with achieving long-term goals in unfamil-

iar, uncertain, and dynamic environments. Such tasks

are conventionally formulated by modeling the envi-

ronment as a 7MDPs (Or more generally as partially
observable MDPs (7POMDPs).), and modeling the
agent as an adaptive controller implementing an action-

selection policy.

Markov Decision Processes

Let us denote by P(S) the set of probability distribu-

tions over (Borel) subsets of a set S . A discrete time

MDP is a tuple (X ,U , p, p, q, γ), whereX andU are the

state and action spaces, respectively; p(⋅) ∈ P(X) is a

probability density over initial states; p(⋅∣x,u) ∈ P(X)

is a probability density over successor states, condi-

tioned on the current state x and action u; q(⋅∣x,u) ∈

P(R) is a probability distribution over immediate

single-step rewards, conditioned on the current state

and action. We denote by R(x,u) the random variable
distributed according to q(⋅∣x,u). Finally, γ ∈ [, ] is

a discount factor. We assume that both p and q are sta-

tionary, that is, they do not depend explicitly on time. To

maintain generality, we use z to denote either a state x or
a state-action pair (x,u). �is overloaded notation will
allow us to present models and algorithms in a concise

and uni�ed form.

In the context of control it is useful to make sev-

eral additional de�nitions. A stationary policy µ(⋅∣x) ∈

P(U) is a time-independent mapping from states to

action selection probabilities. A stationary policy µ

induces a Markov reward process (MRP) (Puterman,

) via policy-dependent state-transition probability

density, de�ned as (Here and in the sequel, whenever

integration is performed over a �nite or discrete space,

the integral should be understood as a summation.)

pµx (x
′
∣x) = ∫

U
du µ(u∣x)p(x′∣u, x).

Similarly, the policy µmay also be used to de�ne a state-

action transition probability density, de�ned as

p
µ
x,u(x′,u′∣x,u) = p(x′∣u, x)µ(u′∣x′).

Using our overloaded notational convention, we refer to

either of these as p
µ
z . Let us denote by ξ(z) a path that

starts at z. Hence, for a �xed policy µ and a �xed initial
state or state-action pair z, the probability (density) of
observing the path ξ(z) = (z, z, . . . , zt) of length t is
(we take z as given) P(ξ(z)) = ∏

t
i= p

µ
z (zi∣zi−). �e

discounted return Dµ(ξ(z)) of a path ξ(z) is a random
process, de�ned (with some abuse of notation) as

Dµ(z) = Dµ(ξ(z)) =
∞
∑
i=

γiR(zi)∣(z = z), ()

where γ ∈ [, ] is the discount factor (When γ =  the

policy must be proper, see Bertsekas and Tsitsiklis

().) �e randomness in Dµ(z), for any given z, is
due both to ξ(z) being a random process and to the
randomness, or noise, in the rewards R(z),R(z), . . .,
etc., both of which jointly constitute the intrin-

sic randomness of the MDP. Equation () together

with the stationarity of the MDP yield the recursive

formula

Dµ(z) = R(z) + γDµ(z′) where z′ ∼ pµz (⋅∣z). ()

Let us de�ne the expectation operator Eξ as the

expectation over all possible trajectories and all possi-

ble rewards collected in them. �is allows us to de�ne

the value function V µ(z) as the result of applying this
expectation operator to the discounted return Dµ(z),
i.e.,

V µ(z) = EξD
µ
(z). ()

Applying the law of total expectation to this equation

results in theMRP (�xed policy) version of the Bellman

equation:

V µ(z) = R(z) + γEz′∣z[V µ(z′)]. ()

A policy thatmaximizes the expected discounted return

from each state is called an optimal policy, and is

denoted by µ∗. In the case of stationary MDPs, there

exists a deterministic optimal policy (�is is no longer

the case for POMDPs andMarkov games, see Kaelbling,

Littman, and Cassandra () and Littman ()).

�e value function corresponding to an optimal pol-

icy is called the optimal value, and is denoted by V∗ =

V µ
∗

. While there may exist more than one optimal pol-

icy, the optimal value function is unique (Bertsekas,

).

Gaussian Process Reinforcement Learning G 

G

Reinforcement Learning

Many of the algorithms developed for solving RL prob-

lems may be traced back to the 7dynamic program-
ming Value Iteration and Policy Iteration algorithms

(Bellman, ; Bertsekas, ; Bertsekas & Tsitsiklis,

; Howard, ). However, there are two major fea-

tures distinguishing RL from the traditional planning

framework. First, while in planning it is assumed that

the environment is fully known, in RL no such assump-

tion is made. Second, the learning process in RL is usu-

ally assumed to take place online, namely, concurrently

with the acquirement of data by the learning agent as it

interacts with its environment.�ese two features make

solving RL problems a signi�cantly more challenging

undertaking.

An important algorithmic component of policy-

iteration-based RL algorithms is the estimation of either

state or state-action values of a �xed policy control-

ling a MDP, a task known as policy evaluation. Sutton’s

TD(λ) algorithm (Sutton, ) is an early RL algorithm

that performs policy evaluation based on observed sam-

ple trajectories from the MDP, while it is being con-

trolled by the policy being evaluated (see 7Temporal
Di�erence Learning). In its original formulation, TD(λ)

as well as many other algorithms (e.g., Watkins’

7Q-learning ()), employs a lookup table to store
values corresponding to theMDP’s states or state-action

pairs. �is approach clearly becomes infeasible when

the size of theMDPs joint state-action space exceeds the

memory capacity ofmodernworkstations.One solution

to this problem is to represent the value function using

a parametric function approximation architecture, and

allow these algorithms to estimate the parameters of

approximate value functions. Unfortunately, with few

exceptions, this seemingly benign modi�cation turns

out to have ruinous consequences to the convergence

properties of these algorithms. One notable exception

is TD(λ), when it is used in conjunction with a func-

tion approximator V̂(z)= ∑Ni= wiϕi(z), which is linear
in its tunable parametersw= (w, . . . ,wN)

⊺
. Under cer-

tain technical conditions, it has been shown that in this

case, TD(λ) converges almost surely, and the limit of

convergence is “close” (in a well de�ned manner) to a

projection ΠV µ of the true value function V µ onto the

�nite-dimensional space Hϕ of functions spanned by

{ϕi∣i = , . . . ,N} (Tsitsiklis & Van Roy, ). Note that

this projection is the best one may hope for, as long

as one is restricted to a �xed function approximation

architecture. In fact, when λ = , the bound of Tsitsik-

lis and Van Roy () implies that TD() converges to

ΠV µ (assuming it is unique). However, as λ is reduced

toward , the quality of TD(λ)’s solution may deterio-

rate signi�cantly. If V µ happens to belong to Hϕ , then

V µ = ΠV µ and TD(λ) converges almost surely to V µ ,

for any λ ∈ [, ].

As noted in Bertsekas and Tsitsiklis (), TD(λ) is

a stochastic approximation algorithm (Kushner & Yin,

). As such, to ensure convergence to a meaning-

ful result, it relies on making small and diminishing

updates to its value-function estimates.Moreover, in the

typical on-line mode of operation of TD(λ), a sample is

observed, acted upon (by updating the parameters of V̂)

and is then discarded, never to be seen again. A nega-

tive consequence of these two properties is that on-line

TD(λ) is inherently wasteful in its use of the observed

data. �e least-squares TD(λ), or LSTD(λ) algorithm

(Boyan, ; Bradtke & Barto, ), was put forward

as an alternative to TD(λ) that makes better use of data,

by directly solving a set of equations characterizing the

�xed point of the TD(λ) updates. LSTD(λ) is amenable

to a recursive implementation, at a time and memory

cost of O(N) per sample. A more fundamental short-

coming, shared by both TD(λ) and LSTD(λ) is that they

do not supply the user with a measure of the accuracy

of their value predictions.

�e discussion above motivates the search for:

. Nonparametric estimators for V µ , since these are

not generally restricted to searching in any �nite

dimensional hypothesis space, such asHϕ .

. Estimators that make e�cient use of the data.

. Estimators that, in addition to value predictions,

deliver a measure of the uncertainty in their

predictions.

Structure of Learning System
We�rst describe the structure and operation of the basic

GP temporal di�erences (GPTD) algorithm for policy

evaluation. We then build on this algorithm to describe

policy improving algorithms, in the spirit of Howard’s

Policy Iteration (Howard, ).

In the preceding section we showed that the value

V is the result of taking the expectation of the dis-

counted return D with respect to the randomness in

 G Gaussian Process Reinforcement Learning

the trajectories and in the rewards collected therein.

In the classic, or frequentist approach V is no longer

random, since it is the true, albeit unknown value func-

tion induced by the policy µ. Adopting the Bayesian

approach, we may still view the value V as a random

entity by assigning it additional randomness, that is

due to our subjective uncertainty regarding the MDP’s

transition model (p, q). We do not know what the true

distributions p and q are, which means that we are

also uncertain about the true value function. Previous

attempts to apply Bayesian reasoning to RL modeled

this uncertainty by placing priors over the MDP’s tran-

sition and reward model (p, q) and applying Bayes’

rule to update a posterior based on observed transi-

tions. �is line of work may be traced back to the

pioneering works of Bellman and Howard (Bellman,

; Howard, ) followed by more recent contri-

butions in the machine learning literature (Dearden,

Friedman, & Andre, ; Dearden, Friedman, & Rus-

sell, ; Du�, ; Mannor, Simester, Sun, & Tsitsik-

lis, ; Poupart, Vlassis, Hoey, & Regan, ; Strens,

; Wang, Lizotte, Bowling, & Schuurmans, ).

A fundamental shortcoming of this approach is that

the resulting algorithms are limited to solving MDPs

with �nite (and typically rather small) state and action

spaces, due to the need to maintain a probability distri-

bution over the MDP’s transition model. In this work,

we pursue a di�erent path – we choose to model our

uncertainty about the MDP by placing a prior (and

updating a posterior) directly on V . We achieve this by

modelingV as a randomprocess, ormore speci�cally, as

a Gaussian Process.�is mirrors the traditional classi�-

cation of classical RL algorithms to either model-based

or model-free (direct) methods, see Chapter  in Sut-

ton and Barto (). Figure  illustrates these di�erent

approaches.

xt+1xt

xt

rt

ut ut

lag(1)

Bayesian−RL
Prior

learning data

le
ar

ni
ng

 d
at

a

MDP

Policy: µ(u|x)

GPTD Prior

MRP

Frequentist RL:
No Prior

Value Estimator: Vµ(x) or Qµ(x,u)^ ^

Gaussian Process Reinforcement Learning. Figure . An illustration of the frequentist as well as the two different

Bayesian approaches to value-function based reinforcement learning. In the traditional Bayesian RL approach a prior

is placed on the MDP’s model, whereas in our GPTD approach the prior is placed directly on the value function. x, u,

and r denote state, action, and reward, respectively. The data required to learn value estimators typically consists of a

temporal stream of state-action-reward triplets. Another stream of data is used to update the policy based on the cur-

rent estimate of the value function. A MDP and a stationary policy controlling it, jointly constitute a MRP. lag() denotes

the -step time-lag operator

Gaussian Process Reinforcement Learning G 

G

Gaussian Process Temporal Difference Learning

GPTD should be viewed as a family of statistical gen-

erative models (see 7Generative Learning) for value
functions, rather than as a family of algorithms. As such,

GPTD models specify the statistical relation between

the unobserved value function and the observable

quantities, namely the observed trajectories and the

rewards collected in them. �e set of equations pre-

scribing the GPTD model for a path ξ = (z, z, . . . , zt)
is (Here and in the sequel, to simplify notation, we

omit the superscript µ, with the understanding that

quantities such as D, V , or ξ generally depend on the
policy µ being evaluated.)

R(zi) = V(zi) − γV(zi+) +N(zi, zi+)

for i = , , . . . , t − .

N(zi, zi+) is a zero-mean noise term that must account
for the statistics of R(zi) + γV(zi+) − V(zi). If V is a
priori distributed according to a GP prior, and the noise

term N(zi, zi+) is also normally distributed then R(zi)
is also normally distributed, and so is the posterior dis-

tribution ofV conditioned on the observed rewards. To

fully specify the GPTD model, we need to specify the

GP prior over V in terms of prior mean and covariance

aswell as the covariance of the noise processN. In Engel,

Mannor, and Meir () it was shown that modeling

N as a white noise process is a suitable choice for MRPs

with deterministic transition dynamics. In Engel, Man-

nor, andMeir () a di�erent, correlated noise model

was shown to be useful for general MRPs. Let us de�ne

Rt = (R(z), . . . ,R(zt)), Vt = (V(z), . . . ,V(zt)), and
Nt = (N(z, z), . . . ,N(zt−, zt)), also de�ne the t×(t+

)matrix

Ht =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 −γ  . . . 

  −γ ⋮

⋮ ⋱ ⋱ 

 . . .   −γ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In the white-noise and correlated-noise GPTD models

the noise covariance matrices Σt = Cov[Nt] are given,
respectively, by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ R(z)  . . . 

 σ R(z) ⋮

⋮ ⋱ 

 . . .  σ R(zt−)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Ht

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ   . . . 

 σ  ⋮

⋮ ⋱ 

 . . .  σ t

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

H⊺t .

�e �nal component of the GPTD model remaining to

be speci�ed is the prior distribution of the GP V . �is

distribution is speci�ed by prior mean and covariance

functions v(z) and k(z, z′), respectively.
Let us de�ne vt = (v(z), . . . , v(zt))

⊺
. Employing

7Bayes’ rule, the posterior distribution of V(z) – the
value function at some arbitrary query point z – is now
given by

(V(z)∣Rt− = rt−) ∼ N{V̂t(z),Pt(z, z),

where

V̂t(z) = v(z) + kt(z)⊺αt , Pt(z, z′)

= k(z, z′) − kt(z)⊺Ctkt(z′),

αt = H⊺t (HtKtH
⊺
t + Σt)

−
(rt− −Htvt),

Ct = H⊺t (HtKtH
⊺
t + Σt)

−Ht .

It is seen here that in order to compute the posterior dis-

tribution ofV for arbitrary sets of query points, one only

needs the vector αt and the matrix Ct . Consequently,
αt and Ct are su�cient statistics for the posterior
of V .

Algorithms  and  provide pseudocode for recur-

sive computations of these su�cient statistics, in the

deterministic-transitions and general MDP models,

respectively.

It can be seen that a�er observing t sample transi-

tions, both the algorithms require storage quadratic in

t (due to the matrix Ct). �e updates also require time
quadratic in t due to matrix-vector products involving

 G Gaussian Process Reinforcement Learning

Ct . �ese properties are unsatisfying from a practi-
cal point of view, since realistic RL problems typically

require large amounts of data to learn. �ere are two

general approaches for reducing the memory and time

footprints of GPTD. One approach is to de�ne para-

metric counterparts of the twoGPTDmodels described

earlier, and derive the corresponding recursive algo-

rithms. If the number of independent parameters (i.e.,

the dimensionality of the hypothesis spaceHϕ) used to

represent the value function ism, the memory and time

costs of the algorithms become quadratic in m, rather

than t. Another approach, which is based on an e�-

cient sequential kernel sparsi�cation method, allows us

to selectively exclude terms from Dt , while controlling

the error incurred as a result. Here again (Bounds on

m in this case may be derived using arguments based

on the �niteness of packing numbers of the hypothe-

sis space, see Engel () for details.), if the size of

Dt saturates at m, the memory and time costs of the

resulting algorithms are quadratic in m. For the com-

plete derivations, as well as detailed pseudocode of the

corresponding algorithms we refer the reader to Engel

().

Theory
In this section we derive the two GPTD models men-

tioned above, explicitly stating the assumptions under-

lying each model.

MRPs with Deterministic Transitions

In the deterministic case, the Bellman equation ()

degenerates into

R̄(z) = V(z) − γV(z′), ()

where z′ is the state or state-action pair succeeding z,
under the deterministic policy µ. We also assume that

the noise in the rewards is independent and Gaussian,

but not necessarily identically distributed. We denote

the reward variance by σ R(z) = Var [R(z)]. Formally,
this means that the reward R(z), at some z, satis�es
R(z) = R̄(z) +N(z) where R̄(z) is the mean reward for
that state. Assume we have a sequence of rewards sam-

pled along a sampled path ξ. �en, at the ith time step
we have R(zi) = R̄(zi) +N(zi). Using the random vec-
tors Rt , Vt , and Nt de�ned earlier, we have N (,Σt),

Algorithm  Recursive nonparametric GPTD for deter-
ministic MDPs

Initialize α = , C = ,D = {z}
for t = , , . . .
observe zt− , rt− , zt
ht = (, . . . , ,−γ)⊺

∆kt = kt−(zt−) − γkt−(zt)
∆ktt = k(zt− , zt−) − γk(zt− , zt) + γk(zt , zt)

ct = ht −
⎛
⎜⎜⎜
⎝

Ct−∆kt



⎞
⎟⎟⎟
⎠

dt = rt− − ∆kt⊺αt−
st = σ t− + ∆ktt − ∆kt⊺Ct−∆kt

αt =
⎛
⎜⎜⎜
⎝

αt−



⎞
⎟⎟⎟
⎠
+ ct
st
dt

Ct =

⎡⎢⎢⎢⎢⎢⎢⎣

Ct− 

⊺ 

⎤⎥⎥⎥⎥⎥⎥⎦

+ 

st
ctc⊺t

Dt = Dt− ∪ {zt}
end for
return αt , Ct , Dt

where

Σt = diag(σ R(z), . . . , σ

R(zt−)), ()

and diag(⋅) denotes a diagonal matrix whose diagonal

elements are the components of the argument vector.

Writing theBellman equations () for the points belong-

ing to the sample path, and substituting R(zi) = R̄(zi)+
N(zi), we obtain the following set of t equations

R(zi) = V(zi) − γV(zi+) +N(zi), i = , , . . . , t − .

�is set of linear equations may be concisely written as

Rt− = HtVt +Nt . ()

General MRPs

Let us consider a decomposition of the discounted

returnD into its mean V and a zero-mean residual ∆V :

D(z) = EξD(z) + (D(z) − EξD(z))
def

=V(z) + ∆V(z).
()

�is decomposition is useful, since it separates the two

sources of uncertainty inherent in the discounted return

Gaussian Process Reinforcement Learning G 

G

Algorithm  Recursive nonparametric GPTD for gen-
eral MDPs

Initialize α = , C = ,D = {z}, c = , d = , /s = 
for t = , , . . .
observe zt− , rt− , zt
ht = (, . . . , ,−γ)⊺

∆kt = kt−(zt−) − γkt−(zt)
∆ktt = k(zt− , zt−) − γk(zt− , zt) + γk(zt , zt)

ct = γσt−
st−

⎛
⎜⎜⎜
⎝

ct−



⎞
⎟⎟⎟
⎠
+ ht −

⎛
⎜⎜⎜
⎝

Ct−∆kt



⎞
⎟⎟⎟
⎠

dt = γσt−
st−
dt− + rt− − ∆kt⊺αt−

st = σ t−+γσ t −
γσt−
st−

+∆ktt−∆kt⊺Ct−∆kt+ γσt−
st−
c⊺t−∆kt

αt =
⎛
⎜⎜⎜
⎝

αt−



⎞
⎟⎟⎟
⎠
+ ct
st
dt

Ct =

⎡⎢⎢⎢⎢⎢⎢⎣

Ct− 

⊺ 

⎤⎥⎥⎥⎥⎥⎥⎦

+ 

st
ctc⊺t

Dt = Dt− ∪ {zt}
end for
return αt , Ct , Dt

processD: For a knownMDPmodel,V is a (determinis-

tic) function and the randomness inD is fully attributed

to the intrinsic randomness in the trajectories gener-

ated by the MDP and policy pair, modeled by ∆V . On

the other hand, in aMDP in which both transitions and

rewards are deterministic but otherwise unknown, ∆V

is deterministic (identically zero), and the randomness

in D is due solely to the extrinsic Bayesian uncertainty,

modeled by the random process V .

Substituting () into () and rearranging we get

R(z) = V(z) − γV(z′) +N(z, z′),

where z′ ∼ pµ(⋅∣z), and

N(z, z′)def=∆V(z) − γ∆V(z′). ()

As before, we are provided with a sample path ξ, and
wemaywrite themodel equations () for these samples,

resulting in the following set of t equations

R(zi)=V(zi)−γV(zi+)+N(zi, zi+) for i = , . . . , t − .

Using our standard de�nitions for Rt , Vt , Ht and with
Nt = (N(z, z), . . . ,N(zt−, zt))⊺, we again have

Rt− = HtVt +Nt . ()

In order to fully de�ne a complete probabilistic gen-

erative model, we also need to specify the distribu-

tion of the noise process Nt . We model the residuals

∆V t = (∆V(z), . . . , ∆V(zt))
⊺
as random Gaussian

noise (�is may not be a correct assumption in gen-

eral; however, in the absence of any prior information

concerning the distribution of the residuals, it is the

simplest assumption we can make, since the Gaussian

distribution possesses the highest entropy among all

distributions with the same covariance. It is also pos-

sible to relax the Gaussianity requirement on both the

prior and the noise. �e resulting estimator may then

be shown to be the linear minimummean-squared error

estimator for the value.). In particular, this means that

the distribution of the vector ∆V t is completely spec-

i�ed by its mean and covariance. Another assumption

we make is that each of the residuals ∆V(zi) is inde-
pendently distributed. Denoting σ i = Var[D(zi)], the
distribution of ∆V t is given by:

∆V t ∼ N(, diag(σ t)),

where σ t = (σ  , σ

 , . . . , σ


t
)
⊺
. Since Nt = Ht∆V t , we

have Nt ∼ N(,Σt) with,

Σt = Htdiag(σ t)H⊺t

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ  + γσ  −γσ   . . .  

−γσ  σ  + γσ  −γσ   . . . 

 −γσ  σ  + γσ  ⋱ ⋮

⋮  ⋱ ⋱ ⋱ 

 ⋮ ⋱ ⋱ −γσ t−

  . . .  −γσ t− σ t− + γσ t

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

()

Applications
Any RL algorithm that requires policy evaluation as

an algorithmic component can potentially use a GPTD

algorithm for this task. In particular, this is true of algo-

rithms based on Howard’s Policy Iteration. In Engel

 G Gaussian Process Reinforcement Learning

et al. () and Engel () is shown how GPTDmay

be used to construct a SARSA-type algorithm (Rum-

mery & Niranjan, ; Sutton & Barto, ), called

GPSARSA. In Engel, Szabo, and Volkinshtein (),

GPSARSAwas used to learn control policies for a simu-

lated Octopus arm. In Ghavamzadeh and Engel ()

GPTD was used within a Bayesian actor–critic learning

algorithm.

Future Directions
By virtue of the posterior covariance, GPTD algorithms

compute a con�dence measure (or more precisely,

Bayesian credible intervals) for their value estimates.

So far, little use has been made of this additional

information. Several potential uses of the posterior

covariance may be envisaged:

. It may be used to construct stopping rules for value

estimation.

. It may be used to guide exploration.

. In the context of Bayesian actor–critic algorithms

(Ghavamzadeh & Engel, ), it may used to con-

trol the size and direction of policy updates.

Further Reading
Yaakov Engel’s doctoral thesis (Engel, ) is currently

the most complete reference to GPTD methods. Two

conference papers (Engel et al., , ) provide a

more concise view. �e �rst of these introduces the

GPTD model for deterministic MRPs, while the sec-

ond introduces the general MDP model, as well as the

GPSARSAalgorithm.A forthcoming journal articlewill

subsume these two papers, and include some additional

results, concerning the connection between GPTD and

the popular TD(λ) and LSTD(λ) algorithms.

Recommended Reading
Bellman, R. E. (). A problem in the sequential design of experi-

ments. Sankhya, , –.

Bellman, R. E. (). Dynamic programming. Princeton, NJ: Prince-

ton University Press.

Bertsekas, D. P. (). Dynamic programming and optimal control.

Belmont, MA: Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (). Neuro-dynamic program-

ming. Belmont, MA: Athena Scientific.

Boyan, J. A. (). Least-squares temporal difference learning.

In Proceedings of the th international conference on machine

learning (pp. –). San Francisco: Morgan Kaufmann.

Bradtke, S. J., & Barto, A. G. (). Linear least-squares algo-

rithms for temporal difference learning. Machine Learning, ,

–.

Dearden, R., Friedman, N., & Andre, D. (). Model based

Bayesian exploration. In Proceedings of the fifteenth confer-

ence on uncertainty in artificial intelligence (pp. –). San

Francisco: Morgan Kaufmann.

Dearden, R., Friedman, N., & Russell, S. (). Bayesian Q-

learning. In Proceedings of the fifteenth national conference on

artificial intelligence (pp. –). Menlo Park, CA: AAAI

Press.

Duff, M. (). Optimal learning: Computational procedures for

Bayes-adaptive Markov decision processes. PhD thesis, Univer-

sity of Massachusetts, Amherst.

Engel, Y. (). Algorithms and representations for reinforcement

learning. PhD thesis, The Hebrew University of Jerusalem.

Engel, Y., Mannor, S., & Meir, R. (). Bayes meets Bellman:

The Gaussian process approach to temporal difference learning.

In Proceedings of the th international conference on machine

learning. San Francisco: Morgan Kaufmann.

Engel, Y., Mannor, S., & Meir, R. (). Reinforcement learning

with Gaussian processes. In Proceedings of the nd interna-

tional conference on machine learning.

Engel, Y., Szabo, P., & Volkinshtein, D. (). Learning to con-

trol an Octopus arm with Gaussian process temporal difference

methods. Technical report, Technion Institute of Technology.

www.cs.ualberta.ca/~yaki/reports/octopus.pdf.

Ghavamzadeh, M., & Engel, Y. (). Bayesian actor-critic algo-

rithms. In Z. Ghahramani (Ed.), th international conference

on machine learning. Corvallis, OR: Omnipress.

Howard, R. (). Dynamic programming and Markov processes.

Cambridge, MA: MIT Press.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (). Planning

and acting in partially observable stochastic domains. Artificial

Intelligence, , –.

Kushner, H. J., & Yin, C. J. (). Stochastic approximation algo-

rithms and applications. Berlin: Springer.

Littman, M. L. (). Markov games as a framework for multi-agent

reinforcement learning. In Proceedings of the th international

conference on machine learning (ICML-) (pp. –). New

Brunswick, NJ: Morgan Kaufmann.

Mannor, S., Simester, D., Sun, P., & Tsitsiklis, J. N. (). Bias and

variance in value function estimation. In Proceedings of the st

international conference on machine learning.

Poupart, P., Vlassis, N. A., Hoey, J., & Regan, K. (). An analytic

solution to discrete Bayesian reinforcement learning. In Pro-

ceedings of the twenty-third international conference on machine

learning (pp. –). Pittsburgh, PA.

Puterman, M. L. (). Markov decision processes: Discrete stochas-

tic dynamic programming. New York: Wiley.

Rummery, G., & Niranjan, M. (). On-line Q-learning using con-

nectionist systems. Technical report CUED/F-INFENG/TR ,

Cambridge University Engineering Department.

Strens, M. (). A Bayesian framework for reinforcement learn-

ing. In Proceedings of the th international conference on

machine learning (pp. –). San Francisco: Morgan Kauf-

mann.

Sutton, R. S. (). Temporal credit assignment in reinforcement

learning. PhD thesis, University of Massachusetts, Amherst.

Sutton, R. S., & Barto, A. G. (). Reinforcement learning: An

introduction. Cambridge, MA: MIT Press.

www.cs.ualberta.ca/~yaki/reports/octopus.pdf

Generalization Bounds G 

G

Tsitsiklis, J. N., & Van Roy, B. (). An analysis of temporal-

difference learning with function approximation. Technical

report LIDS-P-, Cambridge, MA: MIT Press.

Wang, T., Lizotte, D., Bowling, M., & Schuurmans, D. ().

Bayesian sparse sampling for on-line reward optimization. In

Proceedings of the nd international conference on machine

learning (pp. –). New York: ACM Press.

Watkins, C. J. C. H. (). Learning from delayed rewards. PhD

thesis, King’s College, Cambridge, UK.

Generality And Logic

7Logic of Generality

Generalization

Claude Sammut

University of New South Wales, Sydney, Australia

A hypothesis, h, is a predicate that maps an instance to

true or false. �at is, if h(x) is true, then x is hypothe-

sized to belong to the concept being learned, the target.

Hypothesis, h, is more general than or equal to h, if h
covers at least as many examples as h (Mitchell, ).

�at is, h ≥ h if and only if

(∀x)[h(x) → h(x)]

A hypothesis, h, is strictly more general than h, if h ≥

h and h ≰ h.

Note that themore general than ordering is strongly

related to subsumption.

Cross References
7Classi�cation
7Specialization
7Subsumption
7Logic of Generality

Recommended Reading
Mitchell, T. M. (). Machine learning. New York: McGraw-Hill.

Generalization Bounds

Mark Reid

�e Australian National University, Canberra,

Australia

Synonyms
Inequalities; Sample complexity

Definition
In the theory of statistical machine learning, a gener-

alization bound – or, more precisely, a generalization

error bound – is a statement about the predictive per-

formance of a learning algorithm or class of algorithms.

Here, a learning algorithm is viewed as a procedure that

takes some �nite training sample of labeled instances as

input and returns a hypothesis regarding the labels of all

instances, including thosewhichmaynot have appeared

in the training sample. Assuming labeled instances are

drawn from some �xed distribution, the quality of a

hypothesis can be measured in terms of its risk – its

incompatibility with the distribution. �e performance

of a learning algorithm can then be expressed in terms

of the expected risk of its hypotheses given randomly

generated training samples.

Under these assumptions, a generalization bound is

a theorem, which holds for any distribution and states

that, with high probability, applying the learning algo-

rithm to a randomly drawn sample will result in a

hypothesis with risk no greater than some value. �is

bounding value typically depends on the size of the

training sample, an empirical assessment of the risk of

the hypothesis on the training sample as well as the

“richness” or “capacity” of the class of predictors that

can be output by the learning algorithm.

Motivation and Background
Suppose we have built an e-mail classi�er and then col-

lected a random sample of e-mail labeled as “spam” or

“not spam” to test it on. We notice that the classi�er

incorrectly labels % of the sample. What can be said

about the accuracy of this classi�er when it is applied

to new, previously unseen e-mail? If we make the rea-

sonable assumption that the mistakes made on future

 G Generalization Bounds

e-mails are independent of mistakes made on the sam-

ple, basic results from statistics tell us that the classi�er’s

true error rate will also be around %.

Now suppose that instead of building a classi�er by

hand we use a learning algorithm to infer one from the

sample. What can be said about the future error rate

of the inferred classi�er if it also misclassi�es % of

the training sample? In general, the answer is “nothing”

since we can no longer assume futuremistakes are inde-

pendent of those made on the training sample. As an

extreme case, consider a learning algorithm that outputs

a classi�er that just “memorizes” the training sample –

predicts labels for e-mail in the sample according to

what appears in the sample – and predicts randomly

otherwise. Such a classi�er will have a % error rate

on the sample, however, if most future e-mail does not

appear in the training sample the classi�er will have a

true error rate around %.

To avoid the problem of memorizing or over-�tting

the training data it is necessary to restrict the “�exibil-

ity” of the hypotheses a learning algorithm can output.

Doing so forces predictions made o� the training set to

be related to thosemade on the training set so that some

form of generalization takes place. However, doing this

can limit the ability of the learning algorithm to output

a hypothesis with small risk. �us, there is a classic bias

and variance trade-o�: the bias being the limits placed

on how �exible the hypotheses can be versus the vari-

ance between the training and the true error rates (see

7bias variance decomposition).
By quantifying the notion of hypothesis �exibility in

various ways, generalization bounds provide inequali-

ties that show how the �exibility and empirical error

rate can be traded o� to control the true error rate.

Importantly, these statements are typically probabilistic

but distribution-independent—they hold for nearly all

sets of training data drawn from a �xed but unknown

distribution. When such a bound holds for a learning

algorithm it means that, unless the choice of training

sample was very unlucky, we can be con�dent that some

form of generalization will take place.�e �rst results of

this kind were established by Vapnik and Chervonenkis

() about  years ago and the measure of hypoth-

esis �exibility they introduced – the 7VC dimension
(see below) – now bears their initials. A similar style

of results were obtained independently by Valiant in

 in the Probably Approximately Correct, or 7PAC

learning framework (Valiant, ). �ese two lines of

work were drawn together by Blumer et al. () and

now form the basis of what is known today as statistical

learning theory.

Details
For simplicity, we restrict our attention to generaliza-

tion bounds for binary 7classi�cation problems such
as the spam classi�cation example above. In this set-

ting instances (e.g., e-mail) from a set X are associated

with labels from a set Y = {−, } (e.g., indicating not

spam/spam) and an example z = (x, y) is a labeled

instance from Z := X ×Y . �e association of instances

to labels is assumed to be governed by some unknown

distribution P over Z .

A hypothesis h is a function that assigns labels

h(x) ∈ Y to instances. �e quality of a hypothesis

is assessed via a loss function ℓ : Y × Y → [,∞),

which assigns penalty ℓ(y, y′) when h predicts the label

y′ = h(x) for the example (x, y). For convenience,

we will o�en combine the loss and hypothesis evalu-

ation on an example z = (x, y) by de�ning ℓh(z) =

ℓ(y,h(x)). When examples are sampled from P the

expected penalty, or risk

LP(h) := EP [ℓh(z)]

can be interpreted as ameasure of howwell hmodels the

distribution P. A loss that is prevalent in classi�cation is

the – loss ℓ−(y, y′) = Jy ≠ y′Kwhere JpK is the indica-
tor function for the predicate p. �is loss simply assigns

a penalty of  for an incorrect prediction and  other-

wise. �e associated – risk for h is the probability the

prediction h(x) disagrees with a randomly drawn sam-

ple (x, y) from P. Unless stated otherwise, the bounds

discussed below are for the – loss only but, with care,

can usually be made to hold with more general losses

also.

Once a loss is speci�ed, the goal of a learning algo-

rithm is to produce a low-risk hypothesis based on a

�nite number of examples. Formally, a learning algo-

rithm A is a procedure that takes a training sample

z = (z, . . . , zn) ∈ Z
n as input and returns a hypothesis

h = A(z) with an associated empirical risk

L̂z(h) :=


n

n

∑
i=
ℓh(zi).

Generalization Bounds G 

G

In order to relate the empirical and true risks, a com-

mon assumption made in statistical learning theory is

that the examples are drawn independently from P. In

this case, a sample z = (z, . . . , zn) is a random vari-

able from the product distributionPn overZn. Since the

sample can be of arbitrary but �nite size a learning algo-

rithm can be viewed as a function A : ⋃
∞
n=Z

n → H

whereH is the algorithm’s7hypothesis space.
A generalization bound typically comprises several

quantities: an empirical estimate of a hypothesis’s per-

formance L̂z(h); the actual (and unknown) risk of the

hypothesis LP(h); a con�dence term δ ∈ [, ]; and

some measure of the �exibility or complexity C of the

hypotheses that can be output by learning algorithm.

�e majority of the bounds found in the literature �t

the following template.

▸ A generic generalization bound: LetAbe a learning algo-

rithm, P some unknown distribution over X × Y , and

δ > . Then, with probability at least −δ over randomly

drawn samples z from Pn , the hypothesis h = A(z) has

risk LP(h) no greater than L̂z(h) + є(δ,C).

Of course, there are many variations, re�nements, and

improvements of the bounds presented below and not

all �t this template. �e bounds discussed below are

only intended to provide a survey of some of the key

ideas and main results.

Basic bounds: �e penalties ℓh(zi) := ℓ(yi,h(xi))made

by a �xed hypothesis h on a sample z = (z, . . . , zn)

drawn from Pn are independent random variables. �e

law of large numbers guarantees (under somemild con-

ditions) that their mean L̂z(h) = 

n ∑
n
i= ℓh(zi) con-

verges to the true risk LP(h) = EP[ℓh(z)] for h as
the sample size increases and several inequalities from

probability theory can be used to quantify this conver-

gence. A key result is 7McDiarmid’s inequality, which
can be used to bound the deviation of a function of

independent random variables from its mean. Since the

– loss takes values in [, ], applying this result to the

random variables ℓh(Zi) gives

Pn (LP(h) > L̂z(h) + є) ≤ exp (−nє) . ()

We can invert this and obtain an upper bound for the

true risk that will hold on a given proportion of samples.

�at is, if we want LP(h) ≤ L̂z(h) + є to hold on at least

 − δ of the time on randomly drawn samples we can

solve δ = exp(−nє) for є and obtain є =

√
ln 

δ

n
so that

Pn
⎛
⎜
⎝
LP(h) ≤ L̂z(h) +

√
ln 

δ

n

⎞
⎟
⎠
≥  − δ. ()

�is simple bound lays the foundation for many of the

subsequent bounds discussed below and is the reason

for the ubiquity of the

√
ln 

δ

n
-like terms.

A crucial observation to make about the above

bound is that while it holds for any hypothesis h it does

not hold for all h ∈ H simultaneously. �at is, the sam-

ples for which the bounds hold for hmay be completely

di�erent to those which make the bound hold for h.

Since a generalization bound must hold for all possi-

ble hypotheses output by a learning algorithm we need

to extend the above analysis by exploiting additional

properties of the hypothesis spaceH.

In the simple case when there are only �nitely many

hypothesis, we use the union bound. �is states that

for any distribution P and any �nite or countably in�-

nite sequence of events A,A . . . we have P (⋃i Ai) ≤

∑i P(Ai). ForH = {h, . . . ,hm} we consider the events

Zh = {z ∈ Zn : LP(h) > L̂z(h)+ є} when samples of size
n give empirical risks for h that are least є smaller than

its true risk. Using the union bound and () on these

events gives

Pn (⋃
h∈H
Zh(n, є)) ≤

m

∑
i=
Pn (Zh(n, є)) = m ⋅ exp(−nє).

�is is a bound on the probability of drawing a train-

ing sample from Pn such that every hypothesis has a

true risk that is є larger than its empirical risk. Invert-

ing this inequality by setting δ = m exp(−nє) yields

the following bound.

▸ Finite class bound: SupposeA has finite hypothesis class

H = {h , . . . ,hm}. Then with probability at least −δ over

draws of z from Pn the hypothesis h = A(z) satisfies

LP(h) ≤ L̂z(h) +

√
ln ∣H∣ + ln 

δ

n
. ()

It is instructive to compare this to the single hypothesis

bound in () and note the bound is weakened by the

additional term ln ∣H∣.

 G Generalization Bounds

Since the union bound also holds for countable sets

of events this style of bound can be extended from

�nite hypothesis classes to countable ones. To do this

requires a slight modi�cation of the above argument

and the introduction of a distribution π over a count-

able hypothesis space H = {h,h, . . .}, which is cho-

sen before any samples are seen. �is distribution can

be interpreted as a prior belief or preference over the

hypotheses inH. Letting δ(h) = δ ⋅ π(h) in the bound

() implies that for each h ∈ H we have

Pn
⎛
⎜
⎜
⎝

LP(h) > L̂z(h) +

¿
Á
ÁÀ ln 

δ .π(h)

n

⎞
⎟
⎟
⎠

< δ ⋅ π(h).

�us, applying the countable union bound to the union

of these events over all of H, and noting that ∑h∈H δ ⋅

π(h) = δ since π is a distribution overH, gives use the

following bound:

▸ Countable class bound: Suppose µ is a probability dis-

tribution over a finite or countably infinite hypothesis

spaceH. Then with probability at least − δ over draws

of z from Pn the following bound holds for all h ∈ H

LP(h) ≤ L̂z(h) +

¿
Á
ÁÀ ln 

π(h) + ln


δ

n
. ()

Although the �nite and countable class bounds are

proved using very similar techniques (indeed, the for-

mer can be derived from the latter by choosing π(h) =


∣H∣), they di�er in the type of penalty they introduce

for simultaneously bounding all the hypotheses in H.

In (), the penalty ln ∣H∣ is purely a function of the size

of the class whereas in () the penalty ln 

π(h) varies with

h. �ese two di�erent styles of bound can be seen as

templates for the two main classes of bounds discussed

below: the hypothesis-independent bounds of the next

section and the hypothesis-dependent bounds in the

section on PAC-Bayesian bounds.�emain conceptual

leap from here is the extension of the arguments above

to non-countable hypothesis classes.

Class complexity bounds: A key result in extending the

notion of size or complexity in the above bounds to

more general classes of hypotheses is the symmetriza-

tion lemma. Intuitively, it is based on the observation

that if the empirical risks for di�erent samples are fre-

quently near the true risk then they will also be near

each other. Formally, it states that for any є >  such

that nє ≥  we have

Pn (sup
h∈H

∣LP(h) − L̂z(h)∣ > є)

≤ Pn (sup
h∈H

∣L̂z′(h) − L̂z(h)∣ >
є


) . ()

�us, to obtain a bound on the di�erence between

empirical and true risk it su�ces to bound the di�er-

ence in empirical risks on two independent samples z
and z′, both drawn fromPn.�is is useful since themax-
imum di�erence suph∈H ∣L̂z′(h) − L̂z(h)∣ is much easier

to handle than the di�erence involving LP(h) as the

former term only evaluates losses on the points in z and
z′ while the latter takes into account the entire spaceZ .
To study these restricted evaluations, we de�ne the

restriction of a function classF to the sample z byFz =
{(f (z), . . . , f (zn)) : f ∈ F}. Since the empirical risk

L̂z(h) =


n ∑
n
i= ℓh(zi) only depends on the values of the

loss functions ℓh on samples from z we de�ne the loss
class L = ℓH = {ℓh : h ∈ H} and consider its restriction

Lz as well as the restrictionHz of the hypothesis class it
is built upon. As we will see, themeasures of complexity

of these two classes are closely related.

One such complexity measure is arrived at by

examining the size of a restricted function class Fz

as the size of the sample z increases. �e growth
function or 7shattering coe�cient for the function
class F is de�ned as the maximum number of dis-

tinct values the vectors in Fz can take given a sam-

ple of size n: Sn(F) = supz∈Zn ∣Fz∣. In the case of

binary classi�cation with a – loss, it is not hard to

see that the growth functions for both L and H are
equal, that is, Sn(L) = Sn(H), and so they can be

used interchangeably. Applying a union bound argu-

ment to () as in the previous bounds guarantees that

Pn (suph∈H ∣LP(h) − L̂z(h)∣ > є) ≤ Sn(H) exp(−nє/)

and by inversion we obtain the following generalization

bound for arbitrary hypothesis classesH:

▸ Growth function bound: For all δ > , a draw of z from Pn

will, with probability at least  − δ, satisfy for all h ∈ H

LP(h) ≤ L̂z(h) + 

√
 ln Sn(H) +  ln 

δ

n
. ()

One conclusion that can be immediately drawn from

this bound is that the shattering coe�cient must grow

Generalization Bounds G 

G

sub-exponentially for the bound to provide any mean-

ingful guarantee. If the classH is so rich that hypotheses

from it can �t all n possible label combinations – if

Sn(H) = n for all n – then the term
√
 ln Sn(H)/n > 

and so () just states LP(h) ≤ . �erefore, to get non-

trivial bounds from () there needs to exist some value

d for which Sn(H) < n whenever n > d.

VC dimension: �is desired property of the growth

function is exactly what is captured by the7VC dimen-
sion VC(H) of a hypothesis class H. Formally, it is

de�ned as VC(H) = max{n ∈ N : Sn(H) = n}

and is in�nite if no �nite maximum exists. Whether

or not the VC dimension is �nite plays a central role

in the consistency of empirical risk minimization tech-

niques. Indeed, it is possible to show that using ERM

on a hypothesis class H is consistent if and only if

VC(H) < ∞. �is is partly due to Sauer’s lemma, which

shows that when a hypothesis class H has �nite VC

dimension VC(H) = dH < ∞ its growth function

is eventually polynomial in the sample size. Speci�-

cally, for all n ≥ dH the growth function satis�es

Sn(H) ≤ (en
dH

)
dH
. By substituting this result into the

Growth Function Bound () we obtain the following

bound, which shows how the VC dimension plays a role

that is analogous to the size a hypothesis class in the

�nite case.

▸ VC dimension bound: SupposeA has hypothesis classH
with finite VC dimension dH. Then with probability at

least  − δ over draws of z from Pn the hypothesis h =
A(z) satisfies

LP(h) ≤ L̂z(h) + 

¿
Á
ÁÀdH ln (

en
dH

) +  ln 
δ

n
. ()

�ere are many other bounds in the literature that are

based on the VC dimension. See the Recommended

Reading for pointers to these.

Rademacher averages: 7Rademacher averages are
a second kind of measure of complexity for uncount-

able function classes and can be used to derive more

re�ned bounds than those above. �ese averages arise

naturally by treating as a random variable the sample-

dependent quantityMF(z) = supf ∈F [EP[f] −Ez[f]].
�is is just the largest di�erence taken over all f ∈ F

between its true mean EP[f] and its empirical mean

Ez[f] := 

∣z∣ ∑
∣z∣
i= f (zi). For a loss class L = ℓH a bound

on this maximum di�erence – ML(z) ≤ B – immedi-

ately gives a generalization bound of the form LP(h) ≤

L̂z(h) + B. Since MF(z) is a random variable, McDi-
armid’s inequality can be used to bound its value in

terms of its expected value plus the usual

√
ln 

δ

n
term.

Applying symmetrization it can then be shown that this

expected value satis�es

EPn [MF(z)] ≤ E
⎡
⎢
⎢
⎢
⎣
sup
f ∈F



n

n

∑
i=

ρi (f (z
′
i) − f (zi))

⎤
⎥
⎥
⎥
⎦

≤ Rn(F)

where the right-hand expectation is taken over two

independent samples z, z′ ∼ Pn and the Rademacher

variables ρ, . . . , ρn. �ese are independent random

variables, each with equal probability of taking the val-

ues − or , that give their name to the Rademacher

average

Rn(F) = E
⎡
⎢
⎢
⎢
⎣
sup
f ∈F



n

n

∑
i=

ρif (zi)
⎤
⎥
⎥
⎥
⎦
.

Intuitively, this quantity measures how well the func-

tions inF can be chosen to align with randomly chosen

labels ρi. �e Rademacher averages for the loss class L
and the hypothesis class H are closely related. For –

loss, it can be shown they satisfy Rn(L) = 


Rn(H).

Putting all the above steps together gives the follow-

ing bounds.

▸ Rademacher bound: SupposeA has hypothesis classH.

Then with probability at least − δ over draws of z from

Pn the hypothesis h = A(Z) satisfies

LP(h) ≤ L̂z(h) + Rn(H) +

√
ln 

δ

n
. ()

�is bound is qualitatively di�erent to the Growth

Function and VC bounds above as the Rademacher

average term is distribution-dependent whereas the

other complexity terms are purely a function of

the hypothesis space. Indeed, it is possible to bound

the Rademacher average in terms of the VC dimension

and obtain the VC bound () from (). Furthermore,

the Rademacher average is closely related to the mini-

mum empirical risk via Rn(H) = −E[infh∈H L̂x,ρ(h)]

where L̂x,ρ(h) is the empirical risk of h for the randomly

labeled sample z = ((x, ρ), . . . , (xn, ρn)). �us, in

 G Generalization Bounds

principle,Rn(H) could be estimated for a given learning

problem using standard ERMmethods.

�e Rademacher bound can be further re�ned so

that the complexity term is data-dependent rather than

distribution-dependent. �is is done by noting that the

Rademacher averageRn(F) = E [R̂z(F)]where R̂z(F)

is the empirical Rademacher average for F conditioned

on the sample z. Applying McDiarmid’s inequality to
the di�erence between R̂z(F) and its mean gives a

sample-dependent bound:

▸ Empirical Rademacher bound: Under the same condi-

tions as the Rademacher bound, the following holds

with probability  − δ:

LP(h) ≤ L̂z(h) + R̂z(H) + 

√
ln 

δ

n
. ()

PAC-Bayesian bounds: All the bounds in the previous

section provide bounds on deterministic hypotheses,

which include complexity terms that are functions of

the entire hypothesis space. PAC-Bayesian bounds dif-

fer from these in two ways: they provide bounds on

nondeterministic hypotheses – labels may be predicted

for instances stochastically; and their complexity terms

are hypothesis-dependent. �e term “Bayesian” given to

these bounds refers to the use of a distribution over

hypotheses that is used to de�ne the complexity term.

�is distribution can be interpreted as a prior belief over

the e�cacy of each hypothesis before any observations

are made.

Nondeterministic hypotheses aremodeled by assum-

ing that a distribution µ over H is used to randomly

draw a deterministic hypothesis h ∈ H to predict h(x)

each time a new instance x is seen. Such a strategy is

called a Gibbs hypothesis for µ. Since its behavior is

de�ned by the distribution µ, we will abuse our nota-

tion slightly and de�ne its loss on the example z to

be ℓµ(z) := Eh∼µ [ℓh(z)]. Similarly, the true risk and
empirical risk for a Gibbs hypothesis are, respectively,

de�ned to be LP(µ) := Eh∼µ [LP(h)] and L̂z(µ) :=
Eh∼µ [L̂z(h)]. Aswith the earlier generalization bounds,
the aim is to provide guarantees about the di�erence

between LP(µ) and L̂z(µ). In the case of – loss,

p := LP(µ) ∈ [, ] is just the probability of the

Gibbs hypothesis for µ misclassifying an example and

q := L̂z(µ) ∈ [, ] can be thought of as an estimate

of p. However, unlike the earlier bounds on the di�er-

ence between the true and estimated risk, PAC-Bayesian

bounds are expressed in terms the Kullback–Leibler

(KL) divergence. For the values p, q ∈ [, ] this is de�ned

as kl(q∥p) := q ln
q

p
+(−q) ln

−q
−p and for distributions µ

and π over the hypothesis spaceHwewriteKL(µ∥π) :=

∫H ln
dµ

dπ
dµ. Using these de�nitions, the most common

PAC-Bayesian bound states the following.

▸ Theorem (PAC-Bayesian bound): For all choices of the dis-

tribution π overHmade prior to seeing any examples,

the Gibbs hypothesis defined by µ satisfies

kl(LP(µ), L̂z(µ)) ≤
KL(µ∥π) + ln n+

δ

n
()

▸ with probability at least  − δ over draws of z from Pn .

�is says that the di�erence (asmeasured by kl) between

the true and empirical risk for the Gibbs hypothesis

based on µ is controlled by two terms: a complexity term
KL(µ∥π)

n
and a sampling term

ln n+
δ

n
, both of which con-

verge to zero as n increases. To make connections with

the previous boundsmore apparent, we canweaken ()

using the inequality kl(q∥p) ≥ (p − q) to get the fol-

lowing bound that holds under the same assumptions:

LP(µ) ≤ L̂z(µ) +

√
KL(µ∥π) + ln n+

δ

n
.

�e sampling term is similar to the ubiquitous estima-

tion penalty in the earlier bounds but with an additional

ln(n + )/n . �e complexity term is a measure of the

complexity of the Gibbs hypothesis for µ relative to the

distribution π. Intuitively, KL(⋅∥π) can be thought of

as a parametrized family of complexity measures where

hypotheses from a region where π is large are “cheap”

and those where π is small are “expensive”. Informa-

tion theoretically, it is the expected number of extra bits

required to code hypotheses drawn from µ using a code

based on π instead of a code based on µ. It is for these

reasons the PAC-Bayes bound is said to demonstrate

the importance of choosing a good prior. If the Gibbs

hypothesis µ, which minimizes L̂z(µ) is also “close” to

π then the bound will be tight.

Unlike the other bounds discussed above, PAC-

Bayesian bounds are in terms of the complexity of single

meta-classi�ers rather than the complexity of classes.

Furthermore, for speci�c base hypothesis classes such

as margin classi�ers used by SVMs it is possible to

get hypothesis-speci�c bounds via the PAC-Bayesian

Generalization Bounds G 

G

bounds. �ese are typically much tighter than the VC

or Rademacher bounds.

Other bounds: While the above bounds are land-

marks in statistical learning theory there is obviously

much more territory that has not been covered here.

For starters, the VC bounds for classi�cation can

be re�ned by using more sophisticated results from

empirical process theory such as the Bernstein and

Variance-based bounds.�ese are discussed in Sect.  of

(Boucheron et al., ). �ere are also other dis-

tribution- and sample-dependent complexity measures

that are motivated di�erently to Rademacher aver-

ages. For example, the VC entropy (see Sect. . of

(Bousquet et al., )) is a distribution-dependent

measure obtained by averaging ∣Fz∣ with respect to the

sample distribution rather than taking supremum in the

de�nition of the shattering coe�cient.

Moving beyond classi�cation, bounds for regression

problems have been studied in depth and have similar

properties to those for classi�cation. �ese bounds are

obtained by essentially discretizing the function spaces.

�e growth function is replaced by what is known

as a covering number but the essence of the bounds

remain the same.�e reader is referred to (Herbrich and

Williamson, ) for a brief discussion and (Anthony

and Bartlett, ) for more detail.

�ere are a variety of bounds that, unlike those

above, are algorithm-speci�c. For example, the reg-

ularized empirical risk minimization performed by

SVMs has been analyzed within an algorithmic stabil-

ity framework. As discussed in Boucheron et al. ()

and Herbrich and Williamson (), hypotheses are

considered stable if their predictions are not varied

too much when a single training example is perturbed.

Two other algorithm-dependent frameworks include

the luckiness and compression frameworks, both sum-

marized in Herbrich and Williamson (). �e for-

mer gives bounds in terms of an a priori measure of

luckiness – howwell a training sample alignswith biases

encoded in an algorithm – while the latter considers

algorithms, like SVMs, which base hypotheses on key

examples within a training sample.

Recently, there has been work on a type of

algorithm-dependent, relative bound called reductions

(see Beygelzimer et al.,  for an overview). By trans-

forming inputs and outputs for one type of problem

(e.g., probability estimation) into a di�erent type of

problem (e.g., classi�cation), bounds for the former

can be given in terms of bounds for the latter while

making very few assumptions. �is opens up a variety

of avenues for applying existing results to new learn-

ing tasks.

Cross References
7Classi�cation
7Empirical Risk Minimization
7Hypothesis Space
7Loss
7PAC Learning
7Regression
7Regularization
7Structural Risk Minimization
7VC Dimension

Recommended Readings
As mentioned above, the uniform convergence bounds by Vapnik

and Chervonenkis () and the PAC framework of Valiant ()

were the first generalization bounds for statistical learning. Ideas

from both were synthesized and extended by Blumer et al. ().

The book by Kearns and Vazirani () provides a good overview

of the early PAC-style bounds while Vapnik’s comprehensive book

(Vapnik, ), and Antony and Bartlett’s book () cover clas-

sification and regression bounds involving the VC dimension.

Rademacher averages were first considered as an alternative to VC

dimension in the context of learning theory by Koltchinskii and

Panchenko () and were refined and extended by Bartlett and

Mendelson () who provide a readable overview. Early PAC-

Bayesian bounds were established by McAllester () based on

an earlier PAC analysis of Bayesian estimators by Shawe-Taylor

and Williamson (). Applications of the PAC-Bayesian bound

to SVMs are discussed in Langford’s tutorial on prediction the-

ory (Langford, ) and recent paper by Banerjee () pro-

vides an information theoretic motivation, a simple proof of the

bound in (), as well as connections with similar bounds in online

learning.

There are several well-written surveys of generalization bounds

and learning theory in general. Herbrich and Williamson ()

present a unified view of VC, compression, luckiness, PAC-Bayesian,

and stability bounds. In a very readable introduction to statisti-

cal learning theory, Bousquet et al. () provide good intuition

and concise proofs for all but the PAC-Bayesian bounds presented

above. That introduction is a good companion for the excellent but

more technical survey by Boucheron et al. () based on tools

from the theory of empirical processes. The latter paper also pro-

vides a wealth of further references and a concise history of the

development of main techniques in statistical learning theory.

Anthony, M., & Bartlett, P. L. (). Neural network learning: The-

oretical foundations. Cambridge: Cambridge University Press.

Banerjee, A. (). On Bayesian bounds. ICML ’: Proceedings of

the rd International Conference on Machine learning, Pitts-

burgh, pp. –.

 G Generalization Performance

Bartlett, P. L., & Mendelson, S. (). Rademacher and Gaus-

sian complexities: risk bounds and structural results. Journal

of Machine Learning Research, , –.

Beygelzimer, A., Langford, J., & Zadrozny, B. (). Machine learn-

ing techniques – reductions between prediction quality metrics.

In Liu, Zhen; Xia, Cathy H. (Eds.) Performance modeling and

engineering (pp. –). Springer.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. ().

Learnability and the Vapnik-Chervonenkis dimension. Journal

of the ACM (JACM), (), –.

Boucheron, S., Bousquet, O., & Lugosi, G. (). Theory of classi-

fication: A survey of some recent advances. ESAIM Probability

and statistics, , –.

Bousquet, O., Boucheron, S., & Lugosi, G. (). Introduction

to statistical learning theory, volume  of lecture notes in

artificial intelligence (pp. –). Berlin: Springer.

Herbrich, R., & Williamson, R. C. (). Learning and generaliza-

tion: Theory and bounds. In M. Arbib (Ed.), Handbook of brain

theory and neural networks (nd ed.). Cambridge: MIT Press.

Kearns, M. J., & Vazirani, U. V. (). An introduction to computa-

tional learning theory. Cambridge: MIT Press.

Koltchinskii, V. (). Rademacher penalties and structural risk

minimization. IEEE Transactions on Information Theory, (),

–.

Langford, J. (). Tutorial on practical prediction theory for clas-

sification. Journal of Machine Learning Research, (), –.

McAllester, D. A. (). Some PAC-Bayesian theorems. Machine

Learning, (), –.

Shawe-Taylor, J., & Williamson, R. C. (). A PAC analysis of a

Bayesian estimator. Proceedings of the Tenth Annual Conference

on Computational Learning Theory, ACM, p. .

Valiant, L. G. (). A theory of the learnable. Communications of

the ACM, (), .

Vapnik, V. N. (). Statistical learning theory. New York: Wiley.

Vapnik, V. N., & Chervonenkis, A. Y., (). On the uniform con-

vergence of relative frequencies of events to their probabilities.

Theory of Probability and Its Applications, (), –.

Generalization Performance

�e generalization performance of a learning algorithm

refers to the performance on7out-of-sample data of the
7models learned by the algorithm.

Cross References
7Algorithm Evaluation

Generalized Delta Rule

7Backpropagation

General-to-Specific Search

When searching a hypothesis space, a general-to-

speci�c search starts from the most general hypoth-

esis and expands the search by specialization. See

7Learning as Search.

Generative and Discriminative
Learning

Bin Liu, Geoffrey I. Webb

Monash University

Definition
Generative learning refers alternatively to any classi-

�cation learning process that classi�es by using an

estimate of the joint probability P(y, x) or to any clas-
si�cation learning process that classi�es by using esti-

mates of the prior probability P(y) and the conditional

probability P(x ∣ y) (Bishop, ; Jaakkola & Haussler,
; Jaakkola, Meila & Jebara, ; Lasserre, Bishop &

Minka, ; Ng & Jordan, ), where y is a class and

x is a description of an object to be classi�ed. Generative
learning contrasts with discriminative learning in which

a model or estimate of P(y ∣ x) is formed without ref-
erence to an explicit estimate of any of P(y, x), P(x) or
P(x ∣ y).
It is also common to categorize as discriminative

approaches based on a decision function that directly

maps from input x onto the output y (such as support
vector machines, neural networks, and decision trees),

where the decision risk isminimizedwithout estimation

of P(y, x), P(x ∣ y) or P(y ∣ x) (Jaakkola &Haussler, ).
�e standard exemplar of generative learning is

naïve Bayes and of discriminative learning, 7logistic
regression. Another important contrasting pair is the

generative hidden Markov model and discriminative

conditional random �eld.

It is widely accepted that generative learning works

well when samples are rare while discriminative learn-

ing has better asymptotic error performance (Ng &

Jordan, ).

Generative Learning G 

G

Motivation and Background
Efron () provides an early examination of the gen-

erative/discriminative distinction. Efron performs an

empirical comparison of the e�ciency of the gen-

erative linear discriminant analysis (LDA) and dis-

criminative logistic regression. His results show that

logistic regression has % less e�ciency than LDA,

whichmeans the discriminative approach is % slower

to reach the asymptotic error than the generative

approach.

Ng et al. () give a theoretical discussion of the

e�ciency of generative naïve Bayes and discrimina-

tive logistic regression. �eir result shows that logis-

tic regression converges toward its asymptotic error in

order n samples while naïve Bayes converges in order

log n samples.While logistic regression convergesmuch

slower than naïve Bayes, it has lower asymptotic error

than naïve Bayes. �ese results suggest that it is desir-

able to use a generative approach when training data is

scarce and to use a discriminative approach when there

is enough training data.

Recent research into the generative/discriminative

learning distinction has concentrated on the area of

hybrids of generative and discriminative learning, as

well as generative learning and discriminative learning

in structured data learning or semi-supervised learning

context.

In hybrid approaches, researchers seek to obtain

the merits of both generative learning and discrimina-

tive learning. Some examples include the Fisher ker-

nel for discriminative learning (Jaakkola & Haussler,

), max-ent discriminative learning (Jaakkola, Meila

& Jebara, ), and principled hybrids of generative

and discriminative models (Lasserre, Bishop & Minka,

).

In structured data learning, the output data have

dependent relationships. As an example of genera-

tive learning, the hidden Markov models are used

in structured data problems which need sequential

decisions. �e discriminative analog is the conditional

random �eld models. Another example of discrimina-

tively structured learning is Max-margin Markov net-

works (Taskar, Guestrin & Koller, ).

In semi-supervised learning, co-training and mul-

tiview learning are usually applied to generative learn-

ing (Blum & Mitchell, ). It is less straightfor-

ward to apply semi-supervised learning in traditional

discriminative learning, since P(y∣ x) is estimated by
ignoring P(x). Examples of semi-supervised learning
methods in discriminative learning include transduc-

tive SVM, Gaussian processes, information regulariza-

tion, and graph-based methods (Chapelle, Schölkopf &

Zien, ).

Cross References
7Evolutionary Feature Selection and Construction

Recommended Reading
Bishop, C. M. (). Pattern recognition and machine learning.

Springer.

Blum, A., & Mitchell, T. (). Combining labeled and unlabeled

data with co-training. Proceedings of the eleventh annual con-

ference on Computational learning theory, Madison, Wisconsin,

USA. New York: ACM.

Chapelle, O., Schölkopf, B., & Zien, A. (). Semi-supervised

learning. Cambridge: The MIT Press.

Efron, B. (). The efficiency of logistic regression compared to

normal discriminant analysis. Journal of the American Statisti-

cal Association, (), –.

Jaakkola, T. S., & Haussler, D. (). Exploiting generative mod-

els in discriminative classifiers. Advances in neural information

processing systems, .

Jaakkola, T., Meila, M., & Jebara, T. (). Maximum entropy

discrimination. Advances in neural information processing sys-

tems, .

Lasserre, J. A., Bishop, C. M., & Minka, T. P. (). Princi-

pled hybrids of generative and discriminative models. IEEE

Conference on Computer Vision and Pattern Recognition,

New York.

Ng, A. Y., & Jordan, M. I. (). On discriminative vs. Generative

classifiers: A comparison of logistic regression and naive Bayes.

Advances in neural information processing systems, .

Taskar, B., Guestrin, C., & Koller, D. (). Max-margin

Markov networks. Advances in neural information processing

systems, .

Generative Learning

Definition
Generative learning refers alternatively to any classi�ca-

tion learning process that classi�es by using an estimate

of the joint probability P(y, x) or to any classi�cation
learning process that classi�es by using estimates of the

prior probability P(y) and the conditional probability

 G Genetic and Evolutionary Algorithms

P(x ∣ y), where y is a class and x is a description of an
object to be classi�ed. Given such models or estimates

it is possible to generate synthetic objects from the joint

distribution. Generative learning contrasts to discrimi-

native learning inwhich amodel or estimate of P(y ∣ x) is
formed without reference to an explicit estimate of any

of P(x), P(y, x), or P(x ∣ y).

Cross References
7Generative and Discriminative Learning

Genetic and Evolutionary
Algorithms

Claude Sammut

�e University of New South Wales

Sydney, Australia

Definitions
�ere are many variations of genetic algorithms (GA).

Here, we describe a simple scheme to introduce some of

the key terms in genetic and evolutionary algorithms.

See the main entry on 7Evolutionary Algorithms for
references to speci�c methods.

In genetic learning, we assume that there is a popu-

lation of individuals, each of which represents a candi-

date problem solver for a given task. GAs can be thought

of as a family of general purpose search methods that

are capable of solving a broad range of problems from

optimization and scheduling to robot control. Like evo-

lution, genetic algorithms test each individual from the

population and only the �ttest survive to reproduce for

the next generation. �e algorithm creates new genera-

tions until at least one individual is found that can solve

the problem adequately.

Each problem solver is a chromosome. A position,

or set of positions in a chromosome is called a gene.

�e possible values (from a �xed set of symbols) of a

gene are known as alleles. For example, a simple genetic

algorithmmay de�ne the set of symbols to be {, }, and

chromosome lengths are �xed. �e most critical prob-

lem in applying a genetic algorithm is in �nding a suit-

able encoding of the examples in the problem domain

to a chromosome. A good choice of representation will

make the search easier by limiting the size of the search

space. A poor choice will result in a large search space.

Choosing the size of the population can be problematic

since a small population size provides an insu�cient

sample over the space of solutions for a problem and

large population requires extensive evaluation and will

be slow.

Each iteration in a genetic algorithm is called a gen-

eration. Each chromosome in a population is used to

solve a problem. Its performance is evaluated and the

chromosome is given a rating of �tness. �e popula-

tion is also given an overall �tness rating based on the

performance of its members. �e �tness value indi-

cates how close a chromosome or population is to the

required solution.

New sets of chromosomes are produced from one

generation to the next. Reproduction takes place when

selected chromosomes from one generation are recom-

bined with others to form chromosomes for the next

generation. �e new ones are called o�spring. Selection

of chromosomes for reproduction is based on their �t-

ness values. �e average �tness of the population may

also be calculated at the end of each generation. �e

strategy must be modi�ed if too few or too many chro-

mosomes survive. For example, at least % and at most

% must survive.

Genetic Operators
Operators that recombine the selected chromosomes

are called genetic operators. Two common operators are

crossover and mutation. Crossover exchanges portions

of a pair of chromosomes at a randomly chosen point

called the crossover point. Some Implementations have

more than one crossover point. For example, if there are

two chromosomes, X and Y :

X =  , Y =  

and the crossover point is a�er position , the resulting

o�spring are:

O = , O =  

O�spring produced by crossover cannot contain infor-

mation that is not already in the population, so an addi-

tional operator, mutation, is required. Mutation gener-

ates an o�spring by randomly changing the values of

Gini Coefficient G 

G

genes at one or more gene positions of a selected chro-

mosome. For example, if the following chromosome,

Z = 

is mutated at positions , , and , then the resulting

o�spring is:

O = 

�e number of o�spring produced for each new gen-

eration depends on how members are introduced so as

to maintain a �xed population size. In a pure replace-

ment strategy, thewhole population is replaced by a new

one. In an elitist strategy, a proportion of the population

survives to the next generation.

Cross References
7Evolutionary Algorithms

Genetic Attribute Construction

7Evolutionary Feature Selection and Construction

Genetic Clustering

7Evolutionary Clustering

Genetic Feature Selection

7Evolutionary Feature Selection and Construction

Genetic Grouping

7Evolutionary Clustering

Genetic Neural Networks

7Neuroevolution

Genetic Programming

Moshe Sipper

Ben-Gurion University, Beer-Sheva, Israel

Genetic Programming is a subclass of 7evolutionary
algorithms, wherein a population of individual pro-

grams is evolved. �e main mechanism behind genetic

programming is that of a 7generic algorithm, namely,
the repeated cycling through four operations applied

to the entire population: evaluate–select–crossover–

mutate. Starting with an initial population of randomly

generated programs, each individual is evaluated in the

domain environment and assigned a �tness value rep-

resenting how well the individual solves the problem

at hand. Being randomly generated, the �rst-generation

individuals usually exhibit poor performance. However,

some individuals are better than others, that is, as in

nature, variability exists, and through the mechanism

of selection, these have a higher probability of being

selected to parent the next generation. �e size of the

population is �nite and usually constant.

See7EvolutionaryGames for amore detailed expla-
nation of genetic programming.

Genetics-Based Machine Learning

7Classi�er Systems

Gibbs Sampling

Gibbs Sampling is a heuristic inference algorithm

for 7Bayesian networks. See 7Graphical Models for
details.

Gini Coefficient

�e Gini coe�cient is an empirical measure of classi-

�cation performance based on the area under an ROC

curve (AUC). Attributed to the Italian statistician Cor-

rado Gini (-), it can be calculated as  ⋅AUC− 

 G Gram Matrix

and thus takes values in the interval [−, ], where  indi-

cates perfect ranking performance and − indicates that

all negatives are ranked before all positives. See 7ROC
Analysis.

Gram Matrix

7Kernel Matrix

Grammar Learning

7Grammatical Inference

Grammatical Inference

Lorenza Saitta, Michele Sebag

Università del Piemonte Orientale, Alessandria, Italy
CNRS − INRIA − Université Paris-Sud, Orsay, France

Synonyms
Grammatical inference, Grammar learning

Definition
Grammatical inference is concerned with inferring

grammars from positive (and possibly negative) exam-

ples (Angluin, ; Kor�atis & Paliouras, ;

Sakakibara, ). A context-free grammar (CFG) G

(equivalent to a push-down �nite-state automaton), is

described by a four-tuple (Q,E , δ, Σ):

● Σ is the alphabet of terminal symbols, upon which

the grammar is de�ned.

● �epair (Q,E) de�nes a graph, whereQ is the set of

nodes (states), and E is the set of edges (production

rules).Q includes one starting node q and a setQf
(Qf ⊂ Q) of �nal or accepting nodes.

● Every edge in E is labelled by one or several letters

in Σ, expressed through mapping δ : E ↦ Σ .

● Let L(G) denote the language associated to the

grammar. Each string s in L(G) is generated along a

randomwalk in the graph, starting in q with an ini-

tially empty s. Upon traversing edge e, one symbol

from δ(e) is concatenated to s. �e walk ends upon

reaching a �nal node (e ∈ Qf).

A CFG is determinist i� all pairs of edges (q, q′)

and (q, q′′) (q′ /= q′′) bear di�erent labels (δ(q, q′)⋂

δ(q, q′′) = ∅).

One generalizes a given CFG by applying one or

several operators, among the following: () introduc-

ing additional nodes and edges; () turning a node into

an accepting one; () merging two nodes q and q′. In

the latter case, some non-determinism can be intro-

duced (if some edges (q, r) and (q′, r′) have label(s) in

common); enforcing a deterministic generalization is

done using the recursive determinisation operator (e.g.,

merging nodes r and r′).

In general, grammatical inference proceeds as fol-

lows (Lang, Pearlmutter, & Price, ; Oncina &

Garcia, ). Let S be the set of positive examples,

strings on alphabet Σ. �e pre�x tree acceptor (PTA),

a most speci�c generalization of S, is constructed by

associating to each character of every string a distinct

node, and applying the determinisation operator. �is

PTA is therea�er iteratively generalized by merging a

pair of nodes. Well known grammar learners are Rpni

(Oncina & Garcia, ) and Blue-Fringe (Lang et

al., ). Rpni uses a depth �rst search strategy, and

merges the pair of nodes which are closest to the start

node, such that their deterministic generalization does

not cover any negative example. Blue-Fringe uses a

beam search from a candidate list, selecting the pair of

nodes to bemerged a�er the evidence-driven statemerg-

ing (EDSM) criterion, i.e., such that their generalization

involves a minimal number of �nal states.

Recommended Reading
Angluin D. (). On the complexity of minimum inference of

regular sets. Information and Control, , –.

Korfiatis, G., & Paliouras, G. (). Modeling web navogation using

grammatical inference. Applied Artificial Intelligence, (–),

–.

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (). Results

of the abbadingo one dfa learning competition and a new

evidence-driven state merging algorithm. In ICGI ’: Proceed-

ings of the th international colloquium on grammatical inference

(pp. –). Berlin: Springer.

Oncina, J., & Garcia, P. (). Inferring regular languages in poly-

nomial update time. In Pattern recognition and image analysis,

(Vol. , pp. –). World Scientific.

Sakakibara, Y. (). Grammatical inference in bioinformatics.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

(), –.

Graph Clustering G 

G

Grammatical Tagging

7POS Tagging

Graph Clustering

Charu C. Aggarwal

IBM T. J. Watson Research Center, Hawthorne,

NY, USA

Synonyms
Minimum cuts; Network clustering; Spectral clustering;

Structured data clustering

Definition
Graph clustering refers to 7clustering of data in the
form of graphs. Two distinct forms of clustering can

be performed on graph data. Vertex clustering seeks to

cluster the nodes of the graph into groups of densely

connected regions based on either edge weights or edge

distances.�e second formof graph clustering treats the

graphs as the objects to be clustered and clusters these

objects on the basis of similarity. �e second approach

is o�en encountered in the context of structured or

XML data.

Motivation and Background
Graph clustering is a form of7graphmining that is use-
ful in a number of practical applications including mar-

keting, customer segmentation, congestion detection,

facility location, and XML data integration (Lee, Hsu,

Yang, & Yang, ).�e graph clustering problems are

typically de�ned into two categories:

● Node clustering algorithms: Node clustering algo-

rithms are generalizations of multidimensional clus-

tering algorithms in which we use functions of the

multidimensional data points in order to de�ne

the distances. In the case of graph clustering algo-

rithms,we associate numerical valueswith the edges.

�ese numerical values need not satisfy traditional

properties of distance functions such as the trian-

gle inequality. We use these distance values in order

to create clusters of nodes. We note that the numer-

ical value associated with a given node may either

be a distance value or a similarity value. Corre-

spondingly, the objective function associated with

the partitioning may either be minimized or maxi-

mized. We note that the problem of minimizing the

intercluster similarity for a �xed number of clusters

essentially reduces to the problem of graph parti-

tioning or the minimum multiway cut problem. �is

is also referred to the problem of mining dense

graphs and pseudo-cliques. Recently, the problem

has also been studied in the database literature as

that of quasi-clique determination. In this problem,

we determine groups of nodes which are “almost

cliques.” In other words, an edge exists between any

pair of nodes in the set with a high probability.

A closely related problem is that of determining shin-

gles (Gibson, Kumar, & Tomkins, ). Shingles

are de�ned as those subgraphs which have a large

number of common links. �is is particularly use-

ful for massive graphs which contain a large num-

ber of nodes. In such cases, a min-hash approach

(Gibson et al., ) can be used in order to sum-

marize the structural behavior of the underlying

graph.

● Graph clustering algorithms: In this case, we have

a (possibly large) number of graphs which need to

be clustered based on their underlying structural

behavior. �is problem is challenging because of

the need to match the structures of the underly-

ing graphs and use these structures for clustering

purposes. Such algorithms are discussed both in

the context of classical graph data sets as well as

semistructured data. In the case of semistructured

data, the problem arises in the context of a large

number of documents which need to be clustered on

the basis of the underlying structure and attributes.

It has been shown by Aggarwal, Ta, Feng, Wang,

and Zaki () that the use of the underlying doc-

ument structure leads to signi�cantly more e�ective

algorithms.

�is chapter will discuss the di�erent kinds of clustering

algorithms and their applications. Each section will dis-

cuss a particular class of clustering algorithms and the

di�erent approaches which are commonly used for this

class.

 G Graph Clustering

Graph Clustering as Minimum Cut
�e graph clustering problem can be related to the

minimum-cut and graph partitioning problems. In this

case, it is assumed that the underlying graphs have

weights on the edges. It is desired to partition the graphs

in such a way so as to minimize the weights of the

edges across the partitions. In general, we would like to

partition the graphs into k groups of nodes. However,

since the special case k =  is e�ciently solvable, we

would like to �rst provide a special discussion for this

case.�is version is polynomially solvable, since it is the

mathematical dual of the maximum-�ow problem.�is

problem is also referred to as theminimum-cut problem.

�e minimum-cut problem is de�ned as follows.

Consider a graph G = (N,A) with node set N and edge

set A. �e node set N contains the source s and sink t.

Each edge (i, j) ∈ Ahas aweight associatedwith it which

is denoted by uij. We note that the edges may be either

undirected or directed, though the undirected case is

o�enmuchmore relevant for connectivity applications.

We would like to partition the node set N into two

groups S andN−S.�e set of edges such that one end lies

in S and the other lies inN−S is denoted byC(S,N−S).

We would like to partition the node set N into two

sets S and N − S, such that the sum of the weights in

C(S,N−S) is minimized. In other words, we would like

to minimize ∑(i,j)∈C(S,N−S) uij. �is is the unrestricted

version of the minimum-cut problem. We will examine

two variations of the minimum-cut problem:

● We wish to determine the global minimum s-t cut

with no restrictions on the membership of nodes to

di�erent partitions.

● Wewish to determine theminimum s-t cut, inwhich

one partition contains the source node s and the

other partition contains the sink node t.

It is easy to see that the former problem can be solved

by using repeated applications of the latter algorithm.

By �xing s and choosing di�erent values of the sink t,

it can be shown that the global minimum cut may be

e�ectively determined.

It turns out that the maximum-�ow problem is the

mathematical dual of theminimum-cut problem. In the

maximum-�ow problem, we assume that the weight uij
is a capacity of the edge (i, j). Each edge is allowed to

have a �ow xij which is at most equal to the capacity uij.

Each node other than the source s and sink t is assumed

to satisfy the �ow conservation property. In other words,

for each node i ∈ N we have

∑
j:(i,j)∈A

xij = ∑
j:(j,i)∈A

xji.

We would like to maximize the total �ow originat-

ing from the source and reaching the sink t, subject

to the above constraints. �e maximum-�ow problem

is solved with the use of a variety of augmenting path

and pre�ow push algorithms. Details of di�erent kinds of

algorithms may be found in the work by Ahuja, Orlin,

and Magnanti ().

A closely related problem to the minimum s-t

cut problem is that of determining a global mini-

mum cut in an undirected graph. �is particular case

is more e�cient than that of �nding the s-t mini-

mum cut. One way of determining a minimum cut is

by using a contraction-based edge-sampling approach.

While the previous technique is applicable to both

the directed and undirected versions of the prob-

lem, the contraction-based approach is applicable only

to the undirected version of the problem. Further-

more, the contraction-based approach is applicable

only for the case in which the weight of each edge is

uij = . While the method can easily be extended to the

weighted version by varying the edge-sampling proba-

bility, the polynomial running time bounds discussed

by Tsay, Lovejoy, and Karger () do not apply to

this case. �e contraction approach is a probabilistic

technique in which we successively sample the edges

in order to collapse nodes into larger sets of nodes. By

successively sampling di�erent sequences of edges and

picking the optimum value (Tsay et al., ), it is possi-

ble to determine a global minimum cut. �e broad idea

of the contraction-based approach is as follows.We pick

an edge randomly in the graph and contract its two end

points into a single node. We remove all the self-loops

which are created as a result of the contraction. Wemay

also create some parallel edges, which are allowed to

remain, since they in�uence the sampling probability

(Alternatively, we may replace parallel edgesby a single

edge of weight which is equal to the number of parallel

edges. We use this weight in order to bias the sampling

process.) of contractions. �e process of contraction is

repeated until we are le� with two nodes. We note that

Graph Clustering G 

G

each of this pair of “super-nodes” corresponds to a set

of nodes in the original data. �ese two sets of nodes

provide us with the �nal minimum cut. We note that

the minimum cut will survive in this approach, if none

of the edges in the minimum cut are sampled during

the contraction. It has been shown by Tsay et al. that

by using repeated contraction of the graph to a size of
√
n nodes, it is possible to obtain a correct solution with

high probability in O(n) time.

Graph Clustering as Multiway Graph
Partitioning
�emultiway graph partitioning problem is signi�cantly

more di�cult, and is NP-hard (Kernighan & Lin, ).

In this case, we wish to partition a graph into k >  com-

ponents, so that the total weight of the edges whose ends

lie in di�erent partitions is minimized. A well-known

technique for graph partitioning is the Kerninghan-

Lin algorithm (Kernighan & Lin, ). �is classical

algorithm is based on hill climbing (or more generally

neighborhood-search technique) for determining the

optimal graph partitioning. Initially, we start o� with a

random cut of the graph. In each iteration, we exchange

a pair of vertices in two partitions to see if the overall

cut value is reduced. In the event that the cut value is

reduced, then the interchange is performed. Otherwise,

we pick another pair of vertices in order to perform

the interchange. �is process is repeated until we con-

verge to a optimal solution. We note that this optimum

may not be a global optimum, but may only be a local

optimum of the underlying data. �e main variation

in di�erent versions of the Kerninghan-Lin algorithm

is the policy which is used for performing the inter-

changes on the vertices. Some examples of strategies

which may be used in order to perform the interchange

are as follows:

● We randomly pick a pair of vertices and perform the

interchange, if it improves the underlying solution

quality.

● We test all possible vertex-pair interchanges (or a

sample of possible interchanges), and pick the inter-

change which improves the solution by the greatest

amount.

● A k-interchange is one in which a sequence of k

interchanges are performed at one time. We can test

any k-interchange and perform it, if it improves the

underlying solution quality.

● We can pick the optimal k-interchange from a sam-

ple of possibilities.

We note that the use of more sophisticated strategies

allows a better improvement in the objective function

for each interchange, but also requires more time for

each interchange. For example, the determination of an

optimal k-interchange requires much more time than

a straightforward interchange. �is is a natural trade-

o� which may work out di�erently depending upon

the nature of the application at hand. Furthermore, the

choice of the policy also a�ects the likelihood of get-

ting stuck at a local optimum. For example, the use of

k-interchange techniques are far less likely to result in

local optimum for larger values of k. In fact, by choos-

ing the best interchange across all possible values of k

it is possible to ensure that a global optimum is always

reached. On the other hand, it is increasingly di�cult

to implement the algorithm e�ciently with increasing

value of k. �is is because the time complexity of the

interchange increases exponentially with the value of k.

Graph Clustering with k-Means
Two well-known (and related) techniques for cluster-

ing in the context of multidimensional data (Jain &

Dubes, ) are the k-medoid and k-means algorithms.

In the k-medoid algorithm (formultidimensional data),

we sample a small number of points from the original

data as seeds and assign every other data point from

the clusters to the closest of these seeds. �e close-

ness may be de�ned based on a user-de�ned objec-

tive function. �e objective function for the cluster-

ing is de�ned as the sum of the corresponding dis-

tances of data points to the corresponding seeds. In

the next iteration, the algorithm interchanges one of

the seeds for another randomly selected seed from the

data, and checks if the quality of the objective func-

tion improves upon performing the interchange. If this

is indeed the case, then the interchange is accepted.

Otherwise, we do not accept the interchange and try

another sample interchange. �is process is repeated,

until the objective function does not improve over a

prede�ned number of interchanges. A closely related

method is the k-means method. �e main di�erence

 G Graph Clustering

with the k-medoid method is that we do not use rep-

resentative points from the original data a�er the �rst

iteration of picking the original seeds. In subsequent

iterations, we use the centroid of each cluster as the seed

set for the next iteration. �is process is repeated until

the cluster membership stabilizes.

A method has been proposed by Rattigan, Maier,

and Jensen (), which uses the characteristics of

both the k-means and k-medoids algorithms. As in

the case of the conventional partitioning algorithms,

it picks k graph nodes as seeds. �e main di�erences

from the conventional algorithms are in terms of com-

putation of distances (for assignment purposes), and in

determination of subsequent seeds. A natural distance

function for graphs is the geodesic distance, or the small-

est number of hops between a pair of nodes. In order to

determine the seed set for the next iteration, we com-

pute the local closeness centrality for each cluster, and

use the corresponding node as the sample seed. �us,

while this algorithm continues to use seeds from the

original data set (as in the k-medoids algorithm), it uses

intuitive ideas from the k-means algorithms in order to

determine the identity of these seeds.

Graph Clustering with the Spectral Method
Eigenvector techniques are o�en used in multidimen-

sional data in order to determine the underlying cor-

relation structure in the data. It is natural to question

as to whether such techniques can also be used for the

more general case of graph data. It turns out that this is

indeed possible with the use of a method called spectral

clustering.

In the spectral clustering method, we make use of

the node-node adjacency matrix of the graph. For a

graph containing n nodes, let us assume that we have

an n × n adjacency matrix, in which the entry (i, j) cor-

respond to the weight of the edge between the nodes

i and j. �is essentially corresponds to the similarity

between nodes i and j. �is entry is denoted by wij, and

the corresponding matrix is denoted byW. �is matrix

is assumed to be symmetric, since we are working with

undirected graphs. �erefore, we assume that wij = wji
for any pair (i, j). All diagonal entries of the matrixW

are assumed to be . As discussed earlier, the aim of any

node partitioning algorithm is to minimize (a function

of) the weights across the partitions. �e spectral clus-

teringmethod constructs this minimization function in

terms of the matrix structure of the adjacency matrix

and another matrix which is referred to as the degree

matrix.

�e degree matrix D is simply a diagonal matrix in

which all entries are zero except for the diagonal val-

ues. �e diagonal entry dii is equal to the sum of the

weights of the incident edges. In other words, the entry

dij is de�ned as follows:

dij =
n

∑
j=
wij, i = j,

, i /= j.

We formally de�ne the Laplacian matrix as follows:

(Laplacian matrix): �e Laplacian matrix L is de�ned

by subtracting the weighted adjacency matrix from the

degree matrix. In other words, we have

L = D −W.

�is matrix encodes the structural behavior of the

graph e�ectively and its eigenvector behavior can be

used in order to determine the important clusters in

the underlying graph structure. It can be shown that

the Laplacian matrix L is positive semide�nite i.e., for

any n-dimensional row vector f = [f . . . fn] we have

f ⋅ L ⋅ f T ≥ . �is can be easily shown by expressing

L in terms of its constituent entries which are a func-

tion of the corresponding weights wij. Upon expansion,

it can be shown that

f ⋅ L ⋅ f T = (/) ⋅
n

∑
i=

n

∑
j=
wij ⋅ (fi − fj)


.

�e Laplacian matrix L is positive semide�-

nite. Speci�cally, for any n-dimensional row vector

f = [f . . . fn], we have

f ⋅ L ⋅ f T = (/) ⋅
n

∑
i=

n

∑
j=
wij ⋅ (fi − fj)


.

At this point, let us examine some interpretations of

the vector f in terms of the underlying graph partition-

ing. Let us consider the case in which each fi is drawn

from the set {, }, and this determines a two-way par-

tition by labeling each node either  or . �e particular

partition to which the node i belongs is de�ned by

the corresponding label. Note that the expansion of the

Graph Clustering G 

G

expression f ⋅ L ⋅ f T from the above relationship simply

represents the sum of the weights of the edges across

the partition de�ned by f . �us, the determination of

an appropriate value of f for which the function f ⋅L ⋅ f T

is minimized also provides us with a good node parti-

tioning. Unfortunately, it is not easy to determine the

discrete values of f which determine this optimum par-

titioning. Nevertheless, we will see later in this section

that even when we restrict f to real values, this provides

us with the intuition necessary to create an e�ective

partitioning.

An immediate observation is that the indicator vec-

tor f = [ . . . ] is an eigenvector with a correspond-

ing eigenvalue of . We note that f = [ . . . ] must

be an eigenvector, since L is positive semide�nite and

f ⋅ L ⋅ f T can be  only for eigenvectors with  eigen-

values. �is observation can be generalized further in

order to determine the number of connected compo-

nents in the graph. We make the following observation.

�e number of (linearly independent) eigenvectors

with zero eigenvalues for the Laplacian matrix L is equal

to the number of connected components in the underlying

graph.

We observe that connected components are the

most obvious examples of clusters in the graph. �ere-

fore, the determination of eigenvectors correspond-

ing to zero eigenvalues provides us the information

about (relatively rudimentary set of) clusters. Broadly

speaking, it may not be possible to glean such clean

membership behavior from the other eigenvectors. One

of the problems is that other than this particular rudi-

mentary set of eigenvectors (which correspond to the

connected components), the vector components of the

other eigenvectors are drawn from the real domain

rather than the discrete {, } domain. Nevertheless,

because of the nature of the natural interpretation of

f ⋅L ⋅ f T in terms of the weights of the edges across nodes

with very di�ering values of fi, it is natural to cluster

together the nodes for which the values of fi are as sim-

ilar as possible across any particular eigenvector on an

average.�is provides us with the intuition necessary to

de�ne an e�ective spectral clustering algorithm, which

partitions the data set into k clusters for any arbitrary

value of k. �e algorithm is as follows:

● Determine the k eigenvectors with the smallest

eigenvalues. Note that each eigenvector has as many

components as the number of nodes. Let the com-

ponent of the jth eigenvector for the ith node be

denoted by pij.

● Create a new data set with as many records as the

number of nodes. �e ith record in this data set

corresponds to the ith node and has k components.

�e record for this node is simply the eigenvector

components for that node, which are denoted by

pi . . . pik.

● Since we would like to cluster nodes with simi-

lar eigenvector components, we use any conven-

tional clustering algorithm (e.g., k-means) in order

to create k clusters from this data set. Note that

the main focus of the approach was to create a

transformation of a structural clustering algorithm

into a more conventional multidimensional cluster-

ing algorithm, which is easy to solve. �e particular

choice of the multidimensional clustering algorithm

is orthogonal to the broad spectral approach.

�e above algorithm provides a broad framework for

the spectral clustering algorithm. �e input parameter

for the above algorithm is the number of clusters k. In

practice, a number of variations are possible in order to

tune the quality of the clusters which are found. More

details on the di�erent methods which can be used

for e�ective spectral graph clustering may be found in

Chung ().

Graph Clustering as Quasi-Clique
Detection
A di�erent way of determining massive graphs in the

underlying data is that of determining quasi-cliques.

�is technique is di�erent from many other partition-

ing algorithms, in that it focuses on de�nitions which

maximize the edge densities within a partition, rather

than minimizing the edge densities across partitions.

A clique is a graph in which every pair of nodes are

connected by an edge. A quasi-clique is a relaxation on

this concept, and is de�ned by imposing a lower bound

on the degree of each vertex in the given set of nodes.

Speci�cally, we de�ne a γ-quasi-clique is as follows:

A k-graph (k ≥ )G is a γ-quasi-clique if the degree of

each node in the corresponding subgraph of vertices is at

least γ ⋅ k.

�e value of γ always lies in the range (, ]. We note

that by choosing γ = , this de�nition reverts to that

 G Graph Clustering

of standard cliques. Choosing lower values of γ allows

for the relaxations which are more true in the case of

real applications. �is is because we rarely encounter

complete cliques in real applications, and at least some

edges within a dense subgraph would always be miss-

ing. A vertex is said to be critical if its degree in the

corresponding subgraph is the smallest integer which is

at least equal to γ ⋅ k.

�e earliest piece of work on this problem is from

Abello, Resende, and Sudarsky (). �e work of

Abello et al. () uses a greedy randomized adap-

tive search algorithm, GRASP, to �nd a quasi-clique

with the maximum size. A closely related problem is

that of �nding frequently occurring cliques in multiple

data sets. In other words, when multiple graphs are

obtained fromdi�erent data sets, some dense subgraphs

occur frequently together in the di�erent data sets. Such

graphs help in determining important dense patterns of

behavior in di�erent data sources. Such techniques �nd

applicability in mining important patterns in graph-

ical representations of customers. �e techniques are

also helpful inmining cross-graph quasi-cliques in gene

expression data. An e�cient algorithm for determining

cross graph quasi-cliques was proposed by Pei, Jiang,

andZhang ().�emain restriction of thework pro-

posed by Pei et al. () is that the support threshold

for the algorithms is assumed to be %. �is restric-

tion has been relaxed in subsequent work (Zeng,Wang,

Zhou, & Karypis, ). �e work by Zeng et al. ()

examines the problem ofmining frequent, closed quasi-

cliques from a graph database with arbitrary support

thresholds.

Graph Clustering as Dense Subgraph
Determination
A closely related problem is that of dense subgraph

determination in massive graphs. �is problem is fre-

quently encountered in large graph data sets. For exam-

ple, the problem of determining large subgraphs of web

graphs was studied by Gibson et al. (). �e broad

idea in the min-hash approach is to represent the out-

links of a particular node as sets. Two nodes are consid-

ered similar if they share many outlinks.�us, consider

a node A with an outlink set SA, and a node B with out-

link set SB. �en the similarity between the two nodes

is de�ned by the Jaccard coe�cient, which is de�ned

as
SA∩SB
SA∪SB . We note that explicit enumeration of all the

edges in order to compute this can be computationally

ine�cient. Rather, amin-hash approach is used in order

to perform the estimation. �is min-hash approach is

as follows. We sort the universe of nodes in a random

order. For any set of nodes in random sorted order,

we determine the �rst node First(A) for which an out-

link exists from A to First(A). We also determine the

�rst node First(B) for which an outlink exists from B

to First(B). It can be shown that the Jaccard coe�cient

is an unbiased estimate of the probability that First(A)

and First(B) are the same nodes. By repeating this pro-

cess over di�erent permutations over the universe of

nodes, it is possible to accurately estimate the Jaccard

coe�cient. �is is done by using a constant number of

permutations c of the node order. �e actual permuta-

tions are implemented by associated cdi�erent random-

ized hash values with each node. �is creates c sets of

hash values of size n. �e sort-order for any particular

set of hash-values de�nes the corresponding permu-

tation order. For each such permutation, we store the

minimum node index of the outlink set. �us, for each

node, there are c such minimum indices. �is means

that, for each node, a �ngerprint of size c can be con-

structed. By comparing the �ngerprints of two nodes,

the Jaccard coe�cient can be estimated. �is approach

can be further generalized with the use of every s ele-

ment set contained entirely with SA and SB. �us, the

above description is the special case when s is set to . By

using di�erent values of s and c, it is possible to design

an algorithm which distinguishes between two sets that

are above or below a certain threshold of similarity.

�e overall technique by Gibson et al. () �rst

generates a set of c shingles of size s for each node.

�e process of generating the c shingles is extremely

straightforward. Each node is processed independently.

We use the min-wise hash function approach in order

to generate subsets of size s from the outlinks at each

node. �is results in c subsets for each node. �us, for

each node, we have a set of c shingles.�us, if the graph

contains a total of n nodes, the total size of this shingle

�ngerprint is n × c × sp, where sp is the space required

for each shingle. Typically, sp will be O(s), since each

shingle contains s nodes. For each distinct shingle thus

created, we can create a list of nodes which contain it.

In general, we would like to determine groups of shin-

gles which contain a large number of common nodes.

Graph Clustering G 

G

In order to do so, the method by Gibson et al. performs

a second-order shingling in which the meta-shingles

are created from the shingles. �us, this further com-

presses the graph in a data structure of size c× c. �is is

essentially a constant-size data structure. We note that

this group of meta-shingles have the the property that

they contain a large number of common nodes. �e

dense subgraphs can then be extracted from thesemeta-

shingles. More details on this approachmay be found in

the work by Gibson et al.

Clustering Graphs as Objects
In this section, we will discuss the problem of cluster-

ing entire graphs in a multigraph database, rather than

examining the node clustering problem within a sin-

gle graph. Such situations are o�en encountered in the

context of XML data, since each XML document can

be regarded as a structural record, and it may be nec-

essary to create clusters from a large number of such

objects. We note that XML data is quite similar to graph

data in terms of how the data is organized structurally.

�e attribute values can be treated as graph labels and

the corresponding semistructural relationships as the

edges. In has been shown by Aggarwal et al. (),

Dalamagas, Cheng, Winkel, and Sellis (), Lee et al.

(), and Lian, Cheung, Mamoulis, and Yiu ()

that this structural behavior can be leveraged in order

to create e�ective clusters.

Since we are examining entire graphs in this ver-

sion of the clustering problem, the problem simply boils

down to that of clustering arbitrary objects, where the

objects in this case have structural characteristics.Many

of the conventional algorithms discussed by Jain and

Dubes () (such as k-means type partitional algo-

rithms and hierarchical algorithms) can be extended to

the case of graph data. �e main changes required in

order to extend these algorithms are as follows:

● Most of the underlying classical algorithms typi-

cally use some form of distance function in order to

measure similarity. �erefore, we need appropriate

measures in order to de�ne similarity (or distances)

between structural objects.

● Many of the classical algorithms (such as k-means)

use representative objects such as centroids in criti-

cal intermediate steps. While this is straightforward

in the case of multidimensional objects, it is much

more challenging in the case of graph objects.�ere-

fore, appropriate methods need to be designed in

order to create representative objects. Furthermore,

in some cases it may be di�cult to create represen-

tatives in terms of single objects. We will see that it

is o�en more robust to use representative summaries

of the underlying objects.

�ere are two main classes of conventional techniques,

which have been extended to the case of structural

objects. �ese techniques are as follows:

● Structural distance-based approach: �is approach

computes structural distances between documents

and uses them in order to compute clusters of doc-

uments. One of the earliest work on clustering tree

structured data is the XClust algorithm (Lee et al.

), which was designed to cluster XML schemas

in order for e�cient integration of large numbers of

document type de�nitions (DTDs) of XML sources.

It adopts the agglomerative hierarchical clustering

method which starts with clusters of single DTDs

and gradually merges the two most similar clusters

into one larger cluster. �e similarity between two

DTDs is based on their element similarity, which

can be computed according to the semantics, struc-

ture, and context information of the elements in

the corresponding DTDs. One of the shortcomings

of the XClust algorithm is that it does not make

full use of the structure information of the DTDs,

which is quite important in the context of clustering

tree-like structures.�emethod byChawathe ()

computes similarity measures based on the struc-

tural edit-distance between documents. �is edit-

distance is used in order to compute the distances

between clusters of documents.

S-GRACE is hierarchical clustering algorithm

(Lian et al. ). In the work by Lian et al., an

XML document is converted to a structure graph (or

s-graph), and the distance between two XML doc-

uments is de�ned according to the number of the

common element-subelement relationships, which

can capture better structural similarity relationships

than the tree edit-distance in some cases (Lian et al.).

● Structural summary-based approach: In many cases,

it is possible to create summaries from the under-

lying documents. �ese summaries are used for

 G Graph Clustering

creating groups of documents which are simi-

lar to these summaries. �e �rst summary-based

approach for clustering XML documents was pre-

sented by Dalamagas et al. (). In the work by

Dalamagas et al., the XML documents are modeled

as rooted, ordered labeled trees. A framework for

clustering XML documents by using structural sum-

maries of trees is presented. �e aim is to improve

algorithmic e�ciencywithout compromising cluster

quality.

A second approach for clustering XML docu-

ments is presented by Aggarwal et al. (). �is

technique is a partition-based algorithm. �e pri-

mary idea in this approach is to use frequent-pattern

mining algorithms in order to determine the sum-

maries of frequent structures in the data. �e tech-

nique uses a k-means type approach in which each

cluster center comprises a set of frequent patterns

which are local to the partition for that cluster. �e

frequent patterns are mined using the documents

assigned to a cluster center in the last iteration. �e

documents are then further reassigned to a clus-

ter center based on the average similarity between

the document and the newly created cluster cen-

ters from the local frequent patterns. In each itera-

tion the document assignment and the mined fre-

quent patterns are iteratively reassigned until the

cluster centers and document partitions converge to

a �nal state. It has been shown by Aggarwal et al.

that such a structural summary-based approach is

signi�cantly superior to a similarity function-based

approach, as presented by Chawathe (). �e

method is also superior to the structural approach

by Dalamagas et al. () because of its use of more

robust representations of the underlying structural

summaries.

Conclusions and Future Research
In this chapter, we presented a review of the commonly

known algorithms for clustering graph data. �e prob-

lem of clustering graphs has been widely studied in

the literature, because of its application to a variety of

data mining and data management problems. Graph

clustering algorithms are of two types:

● Node clustering algorithms: In this case, we attempt

to partition the graph into groups of clusters so

that each cluster contains groups of nodes which are

densely connected. �ese densely connected groups

of nodes may o�en provide signi�cant information

about how the entities in the underlying graph are

interconnected with one another.

● Graph clustering algorithms: In this case, we have

complete graphs available, and wewish to determine

the clusters with the use of the structural informa-

tion in the underlying graphs. Such cases are o�en

encountered in the case of XML data, which are

commonly encountered in many real domains.

We provided an overview of the di�erent clustering

algorithms available and the trade-o�s with the use of

di�erent methods. �e major challenges that remain in

the area of graph clustering are as follows:

● Clustering massive data sets: In some cases, the data

sets containing the graphs may be so large that they

may be held only on disk. For example, if we have a

dense graph containing  nodes, then the number

of edges may be as high as . In such cases, it may

not even be possible to store the graph e�ectively on

disk. In the cases in which the graph can be stored

on disk, it is critical that the algorithm should be

designed in order to take the disk-resident behavior

of the underlying data into account.�is is especially

challenging in the case of graph data sets, because

the structural behavior of the graph interferes with

our ability to process the edges sequentially formany

applications. In the cases in which the graph is

too large to store on disk, it is essential to design

summary structures which can e�ectively store the

underlying structural behavior of the graph. �is

stored summary can then be used e�ectively for

graph clustering algorithms.

● Clustering graph streams: In this case, we have large

graphs which are received as edge streams. Such

graphs are more challenging, since a given edge can-

not be processed more than once during the com-

putation process. In such cases, summary structures

need to be designed in order to facilitate an e�ective

clustering process. �ese summary structures may

be utilized in order to determine e�ective clusters in

the underlying data. �is approach is similar to the

case discussed above in which the size of the graph

is too large to store on disk.

Graph Kernels G 

G

In addition, techniques need to be designed for inter-

facing clustering algorithms with traditional database

management techniques. In order to achieve this goal,

e�ective representations and query languages need to

be designed for graph data. �is is a new and emerg-

ing area of research, and can be leveraged upon in

order to further improve the e�ectiveness of graph

algorithms.

Cross References
7Group Detection
7Partitional Clustering

Recommended Reading
Abello, J., Resende, M. G., & Sudarsky, S. (). Massive quasi-

clique detection. In Proceedings of the th Latin American sym-

posium on theoretical informatics (LATIN) (pp. –). Berlin:

Springer.

Aggarwal, C., Ta, N., Feng, J., Wang, J., & Zaki, M. J. ().

XProj: A framework for projected structural clustering of XML

documents. In KDD conference (pp. –). San Jose, CA.

Ahuja, R., Orlin, J., & Magnanti, T. (). Network flows: Theory,

algorithms, and applications. Englewood Cliffs, NJ: Prentice-

Hall.

Chawathe, S. S. (). Comparing hierachical data in external

memory. In Very large data bases conference (pp. –). San

Francisco: Morgan Kaufmann.

Chung, F. (). Spectral graph theory. Washington, DC: Confer-

ence Board of the Mathematical Sciences.

Dalamagas, T., Cheng, T., Winkel, K., & Sellis, T. (). Clustering

XML documents using structural summaries. In Information

systems. Elsevier, January .

Gibson, D., Kumar, R., & Tomkins, A. (). Discovering large dense

subgraphs in massive graphs. In VLDB conference (pp. -).

http://www.vldb.org/program/paper/thu/p-gibson.pdf

Jain, A., & Dubes, R. (). Algorithms for clustering data. Engle-

wood, NJ: Prentice-Hall.

Kernighan, B. W., & Lin, S. (). An efficient heuristic proce-

dure for partitioning graphs, Bell System Technical Journal, ,

–.

Lee, M., Hsu, W., Yang, L., & Yang, X. (). XClust: Clus-

tering XML schemas for effective integration. In ACM

conference on information and knowledge management.

http://doi.acm.org/./.

Lian, W., Cheung, D. W., Mamoulis, N., & Yiu, S. (). An efficient

and scalable algorithm for clustering XML documents by struc-

ture, IEEE Transactions on Knowledge and Data Engineering,

(), –.

Pei, J., Jiang, D., & Zhang, A. (). On mining cross-graph quasi-

cliques. In ACM KDD conference. Chicago, IL.

Rattigan, M., Maier, M., & Jensen, D. (). Graph clustering

with network structure indices. Proceedings of the International

Conference on Machine Learning (-). ACM: New York.

Tsay, A. A., Lovejoy, W. S., & Karger, D. R. (). Random sam-

pling in cut, flow, and network design problems. Mathematics

of Operations Research, (), –.

Zeng, Z., Wang, J., Zhou, L., & Karypis, G. (). Out-of-core

coherent closed quasi-clique mining from large dense graph

databases. ACM Transactions on Database Systems, (), .

Graph Kernels

Thomas Gärtner, Tamás Horváth, StefanWrobel

University of Bonn, Fraunhofer IAIS,

Schloss Birlinghoven, Sankt Augustin, Germany

Definition
�e term graph kernel is used in two related but dis-

tinct contexts: On the one hand, graph kernels can be

de�ned between graphs, that is, as a kernel function

k : G ×G → R where G denotes the set of all graphs un-
der consideration. In the most common setting G is the

set of all labeled undirected graphs. On the other hand,

graph kernels can be de�ned between the vertices of a

single graph, that is, as a kernel function k : V ×V → R
where V is the vertex set of the graph G under consid-

eration. In the most common settingG is an undirected

graph.

Motivation and Background
7Kernel methods are a class of machine learning algo-
rithms that can be applied to any data set on which

a valid, that is, positive de�nite, kernel function has

been de�ned. Many kernel methods are theoretically

well founded in statistical learning theory and have

shown good predictive performance on many real–

world learning problems.

Approaches for Kernels between Graphs
One desireable property of kernels between graphs is

that for non-isomorphic graphs G,G′ ∈ G the functions

k(G, ⋅) and k(G′, ⋅) are not equivalent. If this property

does not hold, the distance is only a pseudometric rather

than a metric, that is, non-isomorphic graphs can be

mapped to the same point in feature space and no kernel

method can ever distinguish between the two graphs.

However, it can be seen that computing graph kernels

http://www.vldb2005.org/program/paper/thu/p721-gibson.pdf
http://doi.acm.org/10.1145/584792.584841

 G Graph Kernels

for which the property does hold is at least as hard as

solving graph isomorphism (Gärtner et al., ).

For various classes of graphs, special purpose ker-

nels have been de�ned such as for paths (7string ker-
nels) and trees (Collins & Du�y, ). �ese kernels

are typically de�ned as the number of patterns that two

objects have in common or as the inner product in a

feature space counting the number of times a particu-

lar pattern occurs. �e problem of computing a graph

kernel where the patterns are all connected graphs, all

cycles, or all paths and occurrence is determined by

subgraph-isomorphism is, however, NP-hard (Gärtner

et al., ).

Techniques that have been used to cope with the

computational intractability of such graph kernels are

() to restrict the considered patterns, for example, to

bound the pattern size by a constant; () to restrict

the class of graphs considered, for example, to trees or

small graphs; () to de�ne occurrence of a pattern dif-

ferently, that is, not by subgraph-isomorphism; and ()

to approximate the graph kernel. Note that these four

techniques can be combined.

While for technique () it is not immediately clear

if the resulting graph kernel is feasible, technique

() allows for �xed parameter tractable graph kernels.

(Notice that even counting paths or cycles of length k

in a graph is #W[]-complete while the corresponding

decision problem is �xed parameter tractable.) �ough

these will o�en still have prohibitive runtime require-

ments, it has been observed that enumerating cycles

in real-world databases of small molecules is feasible

(Horvath et al., ).

With respect to technique () it has been proposed

to use graph kernels where the patterns are paths but

the occurrences are determined by homomorphism

(Gärtner et al., ; Kashima et al., ). Despite the

explosion in the number of pattern occurrences (even

very simple graphs can contain an in�nite number of

walks, that is, images of paths under homomorphism), if

one downweights the in�uence of larger patterns appro-

priately, the kernel takes a �nite value and closed form

polynomial time computations exist. To increase the

practical applicability of these graph kernels, it has been

proposed to increase the number of labels by taking

neighborhoods into account (Gärtner, ) or to avoid

“tottering” walks (Mahé et al., ).

Various approaches to approximate computation of

graph kernels () exist. On the one hand, work on com-

puting graph kernels based on restricting the patterns to

frequent subgraphs (Deshpande et al., ) can be seen

as approximations to the intractable all-subgraphs ker-

nel. Computing such graph kernels is still NP-hard and

no approximation guarantees are known. On the other

hand, a recent graph kernel (Borgwardt et al., )

based on sampling small subgraphs of a graph at ran-

dom is known to have a polynomial time algorithmwith

approximation guarantees.

�e most common application scenario for such

graph kernels is the prediction pharmaceutical activity

of small molecules.

Approaches for Kernels on a Graph
Learning on the vertices of a graph is inherently trans-

ductive. Work on kernels between the vertices of a

graph began with the “di�usion kernel” (Kondor &

La�erty, ) and was later generalized in (Smola and

Kondor, ) to a framework that contains the di�u-

sion kernel as a special case. Intuitively, these kernels

can be understood as comparing the neighborhoods

of two vertices in the sense that the more neighbors

two vertices have in common, the more similar they

are. For classi�cation, this de�nition is related to mak-

ing the “cluster assumption”, that is, assuming that

the decision boundary between classes does not cross

“high density” regions of the input space. To compute

such graph kernels for increasing sizes of the neigh-

borhood, one needs to compute the limit of a matrix

poser series of the (normalized) graph Laplacian or its

adjacency matrix. Di�erent graph kernels arise from

choosing di�erent coe�cients. In general, the limit of

suchmatrix power series can be computed on the eigen-

values. For geometrically decaying parameters, the ker-

nel matrix can also be computed by inverting a sparse

matrix obtained by adding a small value to the diago-

nal of the Laplacian (in which case the kernel is called

the “regularized Laplacian kernel”) or the adjacency

matrix.

In the case of the regularized Laplacian kernel,

rather than �rst computing the kernel matrix and then

applying an o�-the-shelf implementation of a kernel

method, it is o�en more e�ective to reformulate the

Graph Mining G 

G

optimization problem of the kernel method. Several

possibilities for such reformulation have been pro-

posed, including changing the variables as in (Gärtner

et al., ).

�e most common application scenario for such

graph kernels is the classi�cation of entities in a social

network.

Recommended Reading
Borgwardt, K. M., Petri, T., Vishwanathan, S. V. N., & Kriegel,

H.-P. (). An efficient sampling scheme for comparison of

large graphs. In Mining and learning with graphs (MLG ),

Firenze.

Collins, M., & Duffy, N. (). Convolution kernel for natural lan-

guage. In Advances in neural information proccessing systems

(NIPS), , –.

Deshpande, M., Kuramochi, M., & Karypis, G. (). Automated

approaches for classifying structures. In Proceedings of the nd

ACM SIGKDD workshop on data mining in bioinformatics (BIO

KDD ).

Gärtner, T. (). Predictive graph mining with kernel methods. In

S. Bandyopadhyay, U. Maulik, L.B. Holder, and D.J. Cook (Eds.),

Advanced methods for knowledge discovery from complex data.

pp. –, Springer, Heidelberg.

Gärtner, T., Flach, P. A., & Wrobel, S. (). On graph kernels:

Hardness results and efficient alternatives. In Proceedings of

the th annual conference on computational learning theory

and the th kernel workshop (COLT ), vol.  of LNCS,

pp. –, Springer, Heidelberg.

Gärtner, T., Le, Q. V., Burton, S., Smola, A. J., & Vishwanathan,

S. V. N. (). Large-scale multiclass transduction. In

Advances in neural information processing systems, vol. ,

pp. –, MIT Press, Cambride, MA.

Horvath, T., Gärtner, T., & Wrobel, S. (). Cyclic pattern kernels

for predictive graph mining. In Proceedings of the international

conference on knowledge discovery and data mining (KDD ),

pp. –, ACM Press, New York, NY.

Kashima, H., Tsuda, K., & Inokuchi, A. (). Marginalized kernels

between labeled graphs. In Proceedings of the th international

conference on machine learning (ICML ), pp. –, AAAI

Press, Menlo Park, CA.

Kondor, R. I., & Lafferty, J. (). Diffusion kernels on graphs

and other discrete input spaces. In C. Sammut & A. Hoff-

mann (Eds.), Proceedings of the nineteenth international confer-

ence on machine learning (ICML ), pp. –, Morgan

Kaufmann, San Fransisco, CA.

Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., & Vert, J.-P. ().

Extensions of marginalized graph kernels. In Proceedings of the

st international conference on machine learning (ICML ),

pp. , ACM Press, New York, NY.

Smola, A. J., & Kondor, R. (). Kernels and regularization on

graphs. In Proceedings of the th annual conference on computa-

tional learning theory and the th kernel workshop (COLT ),

vol.  of LNCS, pp. –, Springer, Heidelberg.

Graph Mining

Deepayan Chakrabarti

Yahoo! Research, Sunnyvale, USA

Definition
Graph Mining is the set of tools and techniques used to

(a) analyze the properties of real-world graphs, (b) pre-

dict how the structure and properties of a given graph

might a�ect some application, and (c) develop models

that can generate realistic graphs thatmatch the patterns

found in real-world graphs of interest.

Motivation and Background
A graph G = (V ,E) consists of a set of edges, E connec-

ting pairs of nodes from the set V ; extensions allow for

weights and labels on both nodes and edges. Graphs

edges can be used to point from one node to another,

in which case the graph is called directed; in an undi-

rected graph, edges must point both ways: i → j ⇔

j → i. A variant is the bipartite graph G = (V,V,E)

where only edges linking nodes inV to nodes inV are

allowed.

A graph provides a representation of the binary rela-

tionships between individual entities, and thus is an

extremely common data structure. Examples include

the graph of hyperlinks linking HTML documents

on the Web, the social network graph of friendships

between people, the bipartite graphs connecting users

to the movies they like, and so on. As such, mining

the graph can yield useful patterns (e.g., the commu-

nities in a social network) or help in applications (e.g.,

recommend new movies to a user based on movies

liked by other “similar” users). Graph mining can also

yield patterns that are common in many real-world

graphs, which can then be used to design graph “gen-

erators” (e.g., a generator that simulates the Internet

topology, for use in testing next-generation Internet

protocols).

Structure of Learning System
We split up this discussion into three parts: the analy-

sis of real-world graphs, realistic graph generators, and

 G Graph Mining

applications on graphs. Detailed surveys can be found

in Newman () and Chakrabarti and Faloutsos

().

Analysis of Real-World Graphs

Four basic types of large-scale patterns have been

detected in real-world graphs. �e �rst is the existence

of power-laws, for instance in the degree distribution

and eigenvalue distribution. Most nodes have very low

degree while a few have huge degree. �is has implica-

tions for algorithms whose running times are bounded

by the highest degree.�e second set of patterns is called

the “small-world phenomenon,” which state that the

diameter (or e�ective diameter) of such graphs are very

small with respect to their size. Recall that the diam-

eter of a connected graph is the maximum number of

hops needed to travel between any pair of nodes; the

e�ective diameter is a more robust version that speci�es

the number of hops within which a large fraction (say,

%) of all pairs can reach each other. Examples include

a diameter of around  for the Internet Autonomous

System graph, around  for the entire US power grid,

around  for the graph of actors who worked together

in movies, and so on. �ird, many large graphs exhibit

“community e�ects,” where each community consists of

a set of nodes that are more tightly connected to other

nodes in the community compared to nodes outside.

One local manifestation of this e�ect is the relatively

high clustering coe�cientwhich counts, given all pairs of

edges (i, j) and (j, k), the probability of the existence of

the “transitive” edge (i, k). High clustering coe�cients

imply tight connections in neighborhoods, which is the

basis of strong community structure. Finally,many large

graphs were shown to increase in density as they evolve

over time, that is, the number of edges grows accord-

ing to a power-law on the number of nodes. In addition,

even while more nodes and edges are being added, the

diameter of the graph tends to decrease.

Graph Generators

Imagine designing an application that works on the

Internet graph. Collecting the entire Internet graph in

one place is hard, making the testing process for such

an application infeasible. In such cases, a realistic graph

generator can be used to simulate a large “Internet-like”

graph, which can be used in place of the real graph.

�is synthetic graph must match the patterns typi-

cally found in the Internet, including the patterns dis-

cussed in the previous paragraph. Apart from generat-

ing such graphs, the generators can provide insights into

the process by which large graphs came to attain their

structure.

One example of this is the preferential attachment

model. Starting with a small initial graph, this model

adds one new node every step. �e new node is con-

nected to m previous nodes, with the probability of

connecting to node i being proportional to its degree.

�is idea, popularly known as “the rich get richer,” can

be shown to lead to a power-law degree distribution

a�er a large number of nodes and edges have been

added.

Many other models have also been proposed, which

demonstrate graph generation as a random process, an

optimization process, as a process on nodes embedded

in some geographic space, and so on.

Applications
Some graph mining algorithms are meant to solve

some application on any graph(s) provided as input

to the algorithm. Several basic tools are commonly

used in such applications, such as the 7Greedy Search
Approach to Graph Mining the 7Inductive Database
Search Approach to Graph Mining spectral methods,

graph partitioning methods, and models based on ran-

dom walks on graphs. Tree Mining is a special case of

graph mining where the graphs are constrained to be

trees. We will discuss a few such applications here.

Frequent subgraph mining: �e aim is to �nd sub-

graphs that occur very frequently in the particular

graph(s) in question (Kuramochi & Karypis, ).�is

is quite useful in chemical datasets consisting of the

graph structures of many di�erent molecules (say, all

protein molecules that have a certain chemical prop-

erty); the frequent subgraphs in such molecules might

represent basic structural units responsible for giving

the molecules their special property. Unfortunately, the

frequent subgraph problem subsumes the problem of

subgraph isomorphism, and hence is NP-Hard. How-

ever, clever techniques have been devised to represent

subgraphs so that checking for isomorphism can be

done quickly in many cases.

Community detection: �e problem is to detect

tightly knit groups of nodes, where all nodes in the

Graphical Models G 

G

group have “similar” linkage structure. �ere are many

algorithms, each optimizing for a di�erent notion

of similarity. Examples include graph partitioning

methods such as spectral partitioning (Ng, Jordan, &

Weiss , ) andMETIS that try tominimize the num-

ber of edges linking nodes across partitions, and co-

clustering methods that aim for homogeneity in links

across partitions.

Information di�usion and virus propagation: �e

spread of a contagious disease or a computer virus can

bemodeled (somewhat crudely) as a contact process on

a graph, where the nodes are individuals who can get

infected, and the links allow transmission of the conta-

gion from an infected individual to an uninfected one.

Similar models have been proposed to model the dif-

fusion of information in social networks. �e topology

of the graph can be used to infer the most “in�uential”

nodes in the graph, who are most capable of spreading

the information quickly throughout the graph (Kempe,

Kleinberg, & Tardos , ).

Graph kernels: While subgraph isomorphism is a

hard problem, we still need to be able to compare

graphs on the basis of some similarity measure that can

be computed in polynomial time. In the Kernel-Based

Approach to Graph Mining graph kernels perform this

task by computing similarities based on numbers of

walks, paths, cyclic patterns, trees, etc.

Ranking on graphs: Given a graph (say, the Web

hyperlink graph), we o�en need a ranking of the nodes

in the graph. �e ranking could be static (as in Page-

Rank (Brin & Page, )) or it could depend on a user-

speci�ed query node. Such algorithms typically use

some version of randomwalks on graphs (Lovász, ),

with the probability of the walk hitting a node being

correlatedwith the importance of the node; such impor-

tances in turn yield a ranking of the nodes. Both static

and query-dependent rankings can be useful in infor-

mation retrieval settings, where a user desires informa-

tion pertinent (i.e., “similar”) to her query.

Cross References
7Graph�eory
7Greedy Search Approach of Graph Mining
7InductiveDatabase SearchApproach ofGraphMining
7Kernel-Based Approach of Graph Mining
7Link Mining and Link Discovery
7Tree Mining

Recommended Reading
Brin, S., & Page, L. (). The anatomy of a large-scale hypertextual

web search engine. Computer Networks and ISDN Systems, 

(–), –.

Chakrabarti, D., & Faloutsos, C. (). Graph mining: Laws, gen-

erators and algorithms. ACM Computing Surveys, ().

Kempe, D., Kleinberg, J., & Tardos, E. (). Maximizing the spread

of influence through a social network. In KDD.

Kuramochi, M., & Karypis, G. (). Frequent subgraph discovery.

In ICDM (pp. –).

Lovász, L. (). Random walks on graphs: A survey. In Combina-

torics: Paul Erdös is eighty (Vol. , pp. –).

Ng, A., Jordan, M., & Weiss, Y. (). On spectral clustering:

Analysis and an algorithm. In NIPS.

The structure and function of complex networks. (). SIAM

Review, , –.

Graphical Models

Julian McAuley, Tibério Caetano,

Wray Buntine

Statistical Machine Learning Program, NICTA,

Canberra, Australia

Definition
�enotation we shall use is de�ned in Table , and some

core de�nitions are presented in Table . In each of the

examples presented in Fig. , we are simply asserting

that

p(xA, xB∣xC)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

function of three variables

= p(xA∣xC)p(xB∣xC)
´¹¹¸¹¹¹¶
functions of two variables

, ()

which arises by a straightforward application of the

product rule (De�nition ), along with the fact that XA
and XB are conditionally independent, given XC (De�ni-

tion ). �e key observation we make is that while the

le�-hand side of (Eq. ) is a function of three variables,

its conditional independence properties allow it to be

factored into functions of two variables.

In general, we shall have a series of conditional

independence statements about X:

{XAi y XBi ∣ XCi} . ()

It is precisely these statements that de�ne the “structure”

of our multivariate distribution, which we shall express

in the form of a graphical model.

 G Graphical Models

Graphical Models. Table  Notation

Notation Description

X = (X . . . XN) A random variable (we shall also use X =
(A, B, C . . .) in figures to improve readabil-
ity)

x = (x . . . xN) A realization of the random variable X

X The sample space (domain) of X

XA X can be indexed by a set, where we
assume A ⊆ { . . .N}

p(x) The probability that X = x
∼

A The negation of A, i.e., { . . .N}/A

XA y XB XA and XB are independent

XA y XB ∣ XC XA and XB are conditionally independent,
given XC

Graphical Models. Table  Definitions

Definition  (product Rule). p(xA, xB) = p(xA∣xB)p(xB).

Definition  (marginalization). p(xA) = ∑x∼A∈X∼A
p(xA, x ∼A).

Definition  (conditional independence). XA and XB are said
to be conditionally independent (given XC) iff p(xa∣xb, xc) =
p(xa∣xc), for all xa, xb, and xc; the conventional definition of
“independence” is obtained by setting XC = ∅.

Motivation and Background
Graphical models are o�en used to model multivariate

data, since they allow us to represent high-dimensional

distributions compactly; they do so by exploiting the

interdependencies that typically exist in such data. Put

simply, we can take advantage of the fact that high-

dimensional distributions can o�en be decomposed

into low-dimensional factors to develop e�cient algo-

rithms by making use of the distributive law: ab + ac =

a(b + c).

Some motivating examples are presented in Fig. ;

similar examples are ubiquitous in �elds ranging from

computer vision and pattern recognition, to economics

and the social sciences. Although we are dealing with

high-dimensional data, we canmake certain statements

about the structure of the variables involved, allowing

Graphical Models. Figure . Some examples of con-

ditional independence; we say that XA and XB are

conditionally independent, given XC , or more compactly

XA y XB ∣ XC

us to express important properties about the distribu-

tion compactly. Some of the properties we would like

to compute include the probabilities of particular out-

comes, and the outcomes with the highest probability.

Theory
Directed Graphical Models

Due to the product rule (De�nition ), it is clear that any

probability distribution can be written as

p(x) =
N

∏
i=
p(xπi ∣x<πi) ()

for an arbitrary permutation π of the labels, where

we de�ne < i:={ . . . i − }. For example any four-

dimensional distribution can be written as

p(xa, xb, xc, xd) = p(xc)p(xb∣xc)p(xd∣xc, xb)

p(xa∣xc, xb, xd). ()

Graphical Models G 

G

With this idea inmind, consider amodel p(x) for which

we have the conditional independence statements

{p(xπi ∣x<πi) = p(xπi ∣xpaπi
)} , ()

where paπi ⊂<πi. We now have

p(x) =
N

∏
i=
p(xπi ∣xpaπi

). ()

We can interpret pai as referring to the “parents” of the

node i. Essentially, we are saying that a variable is con-

ditionally independent on its nondescendants, given its

parents.

We can represent (Eq. ) using a directed acyclic

graph (DAG) by representing each variableXi as a node;

an arrow is formed from Xj to Xi if j ∈ pai. An example

of such a representation is given in Fig. . It can easily

be shown that the resulting graph is always acyclic.

A Bayesian Network (a type of directed graphical

model) is simply a set of probability distributions of the

form p(x) = ∏
N
i= p(xi∣xpai). Every Bayesian Network

can be represented as a DAG, though we o�en simply

say that the Bayesian Network “is” the DAG. Some triv-

ial examples, and the type of independence statements

they imply are shown in Fig. .

We �nish this section with a simple lemma:

Lemma  (topological sort) Every DAG has at least

one permutation π that “sorts” the nodes such that each

node has a larger index than its parents; in other words,

the factorization associated to any DAG can be written in

the form of (Eq. ) for at least one π such that πi > j for

all i, where j ∈ paπi .

Undirected Graphical Models

Although we have shown how conditional indepen-

dence statements in the form of (Eq. ) can be modeled

using a DAG, there exist certain conditional indepen-

dence statements that are not satis�ed by any Bayesian

Network, such as those in Fig. .

Markov random �elds (orMRFs) allow for the speci-

�cation of a di�erent class of conditional independence

statements, which are naturally represented by undi-

rected graphs (UGs for short). �e results associated

with MRFs require a few additional de�nitions:

De�nition  (clique) A set of nodes X in a graph G =

(V ,E) is said to form a clique if (Xi,Xj) ∈ E for every

Xi,Xj ∈ X (i.e., the subgraph X is fully connected).

De�nition  (maximal clique) A clique X is said to be

maximal if there is no clique Y such that X ⊂ Y.

AMarkov random �eld is a probability distribution

of the form p(x) = 

Z ∏c∈C ψc(xc), where C is the set

of maximal cliques of G, ψc is an arbitrary nonnegative

real-valued function and Z is simply a normalization

constant ensuring that∑x p(x) = .

A

C

B D

E

F A

C

B D

E

F

p(a)p(b |a)p(c |a)p(d |b)p(e|b, c)p(f |b, e)
1
Z y (a, b)y (a, c)y (b, d)y (c, e)y (b, e, f)

Graphical Models. Figure . A directed model (left) and an undirected model (right). The joint distributions they

represent are shown

A

C

B
A C B

A

C

B

p(a,b,c) = p(c)p(a|c)p(b|c) p(a)p(c|a)p(b|c) p(a)p(b)p(c|a,b)
A B BC A C A B 

Graphical Models. Figure . Some simple Bayesian Networks, and their implied independence statements. Note in

particular that in the rightmost example, we do not have A y B ∣ C

 G Graphical Models

A

C

B

D

A

C

B

A B {C, D}, A B
C D {A, B}⎥

⎥

Graphical Models. Figure . There is no Bayesian Net-

work that captures precisely the conditional indepen-

dence properties of the Markov random field at left; there

is no Markov random field that captures precisely the con-

ditional independence properties of the Bayesian Net-

work at right

Conversion from Directed to Undirected Graphical

Models

It is possible to convert a directed graphical model to

an undirected graphical model via the following simple

procedure:

● For every node Xi with parents paXi , add undirected

edges between every Xj,Xk ∈ paXi .

● Replace all directed edges with undirected edges.

In other words, we are replacing statements of the form

p(xA∣xB) with ψ(xA, xB), so that the nodes {Xi} ∪ paXi
now form a clique in the undirected model. �is proce-

dure of “marrying the parents” is referred to as Moral-

ization. Naturally, the undirected model formed by this

procedure does not precisely capture the conditional

independence relationships in the directed version. For

example, if it is applied to the graph in Fig.  (right),

then the nodes A, B, and C form a clique in the result-

ing model, which does not capture the fact that A y B.

However, we note that every term of the form p(xi∣xpai)

appears in some clique of the undirected model, mean-

ing that it can include all of the factors implied by the

Bayesian Network.

Characterization of Directed and Undirected Graphical

Models

We can now present some theorems that charac-

terize both Bayesian Networks and Markov random

�elds:

Lemma  (Local Markov Property) A node in a DAG

is conditionally independent of its non-descendants, given

its parents (this is referred to as the “Directed” Local

F

EAB

DC

G F

EB

DC

G

A

Graphical Models. Figure . The Markov Blanket of the

node A consists of its parents, its children, and the par-

ents of its children (left). The corresponding structure

for undirected models simply consists of the neighbors

of A. Note that if we convert the directed model to an

undirected one (using the procedure described in Sec-

tion “Conversion from directed to undirected graphical

models”), then the Markov Blankets of the two graphs are

identical

Markov Property); a node in a UG is conditionally inde-

pendent of its non-neighbors, given its neighbors.

De�nition  (Markov Blanket) Given a node A, its

“Markov Blanket” is the minimal set of nodes C such that

A y B ∣ C for all other nodes B in the model (in other

words, the minimal set of nodes that we must know to

“predict” the behavior of A).

Lemma (MarkovBlankets ofDirected andUndirected
Graphs) In a directed network, the Markov Blanket of

a node A (denotedMB(A)) consists of its parents, its chil-

dren, and its children’s (other) parents. In an undirected

network, it simply consists of the node’s neighbors (see

Fig. ).

De�nition  (d-separation) �e notion of a Markov

Blanket can be generalized to the notion of “d-separation”.

A set of nodes A is said to be d-separated from a set B

by a set C if every (undirected) path between A and B is

“blocked” when C is in the conditioning set (i.e., when C is

observed). A path is said to be blocked if either it contains
(p, p, p) with p → p ← p (where arrows indicate

edge directions) and neither p nor any of its descendants

are observed, or it contains (p, p, p)with p → p → p
and p is observed or it contains (p, p, p) with p ←
p → p and p is observed.

Applying (De�nition ) to the directed graphs

in Fig. , we would say that the aqua regions (XC)

d-separate the red regions (XA) from the white regions

Graphical Models G 

G

A

C

B

E

D

F

Graphical Models. Figure . The nodes {B, E} form a

clique; the nodes {B, E, F} form a maximal clique. The

nodes {B, E} separate the nodes {A,C} from {D, F}

(XB); all conditional independence statements can simply

be interpreted as d-separation in a DAG.

�e analogous notion of graph separation for

Markov random �elds is simpler than that of d-

separation for Bayesian Networks. Given an undirected

graph G and disjoint subsets of nodes A,B,C, if A is

only reachable from B via C, this means that A is sep-

arated from B by C and these semantics encode the

probabilistic fact that A y B ∣ C. �is is illustrated in

Fig. .

In both the directed and undirected case, A Markov

Blanket of a node is simply theminimal set of nodes that

d-separates/graph separates that node from all others.

A complete characterization of the class of proba-

bility distributions represented by Bayesian Networks

can be obtained naturally once conditional indepen-

dence statements are mapped to d-separation state-

ments in a DAG. �e following theorem settles this

characterization.

�eorem  Let p be a probability distribution that sat-

is�es the conditional independence statements implied

by d-separation in a DAG. �en p factors according to

(Eq. ). �e converse also holds.

For Markov random �elds, an analogous character-

ization exists:

�eorem  (Hammersley-Cli�ord) If a strictly pos-

itive probability distribution p satis�es the conditional

independence statements implied by graph-separation in

an undirected graph G, then

p(x) =


Z
∏
c∈C

ψc(xc). ()

�e converse also holds, albeit in a more general sense in

that p need not be strictly positive.

It can be shown that

directed local

Markov

property

local Markov

property

⇕ ⇕

d-separation in

a DAG

and (for positive

p) that

graph

separation in a

UG

⇕ ⇕

factorization of

p by (Eq. )

factorization of

p by (Eq. )

Knowing that directed models can be converted to

undirected models, we shall consider inference algo-

rithms in undirected models only.

Applications
Inference Algorithms in Graphical Models

�e key observation that we shall rely on in order to do

inference e�ciently is the distributive law:

ab + ac
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

three operations

= a(b + c)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

two operations

. ()

By exploiting the factorization in a graphical model,

we can use this law to perform certain queries e�-

ciently (such as computing the marginal with respect to

a certain variable).

As an example, suppose we wish to compute

the marginal p(x) in an MRF with the following

factorization:

p(x) =


Z

N−
∏
i=

ψ(xi, xi+). ()

Note that the graph representing this model is simply

a chain. Computing the sum in the naïve way requires

computing

p(x) =


Z
∑
x{.. .N}

N−
∏
i=

ψ(xi, xi+), ()

 G Graphical Models

whose complexity is Θ(∏
N
i= ∣Xi∣). However, due to the

distributive law, the same result is simply

p(x) =


Z
∑
x

[ψ(x, x)∑
x

[ψ(x, x)⋯

∑
xN−

[ψ(xN−, xN−)∑
xN

ψ(xN−, xN)]]], ()

whose complexity is Θ(∑
N−
i= ∣Xi∣∣Xi+∣). As a more

involved example, consider computing the marginal

with respect toA in the undirectedmodel in Fig. ; here

we wish to compute

p(a) =


Z
∑

b,c,d,e,f

ψ(a, b)ψ(a, c)ψ(b,d)ψ(c, e)

ψ(b, e, f) ()

=


Z
∑
b

ψ(a, b)∑
c

ψ(a, c)∑
d

ψ(b,d)∑
e

ψ(c, e)

∑
f

ψ(b, e, f). ()

Exploiting the distributive law in this way is o�en

referred to as the Elimination Algorithm. It is useful for

computing the marginal with respect to a single vari-

able. However, should we wish to compute the marginal

with respect to each variable (for example), it is not

an e�cient algorithm as several operations shall be

repeated.

Belief-Propagation In tree-structuredmodels, the elim-

ination algorithm can be adapted to avoid repeated

computations, using a message-passing scheme known

as Belief Propagation, or the sum-product algorithm.

�is is presented in Algorithm . Here the “cliques”

in the model are simply edges. �is algorithm was

invented independently by many authors, and is the

most e�cient amongst many variations.

It can be easily demonstrated that the condition in

Algorithm , Line  is always satis�ed by some pair of

edges until all messages have been passed: initially, it is

satis�ed by all of the “leaves” of the model; messages are

then propagated inwards until they reach the “root” of

the tree; they are then propagated outwards.

Maximum A Posteriori (MAP) Estimation Algorithm 

allows us to compute themarginals of the variables in a

graphical model. �ere are other related properties that

we may also wish to compute, such as �nding which

states have the highest probability (the Maximum A

Posteriori, or simply “MAP” states). To do so, we note

that the operations (+,×) used in Algorithm  can be

replaced by (max,×). �is variant is usually referred to

as the max-product (as opposed to sum-product) algo-

rithm. Indeed, di�erent quantities can be computed by

replacing (+,×) by any pair of operations that form a

semiring (Aji & McEliece, ).

The Junction-Tree Algorithm Algorithm  applies only

for tree-structured graphs. We can generalize this algo-

rithm to general graphs. We do so by working with

a di�erent type of tree-structured graph, whose nodes

contain the cliques in our original graph. We begin with

some de�nitions:

De�nition  (chordal graph) A graph G is said to be

chordal if every cycle (c . . . cn) inG contains a chord (i.e.,

an edge (ci, cj) such that j > (i + )).

De�nition  (clique-graph, clique-tree) A clique-

graph H of a graph G is a graph whose nodes consist of

(maximal) cliques in G, and whose edges correspond to

intersecting cliques in G. A clique-tree is a clique-graph

without cycles.

Algorithm �e sum-product algorithm
Input: an undirected, tree-structured graphical model
X with cliques C {the cliques are simply edges in this

case}

: de�ne mA→B(xA∩B) to be the “message” from an

edge A to an adjacent edge B {for example if A =

(a, b) and B = (b, c) then we havem(a,b)→(b,c)(xb)}

: while there exist adjacent edges A,B ∈ C for which
mA→B has not been computed do

: �nd some A ∈ C such that mC→A has been com-

puted for every neighbor C ∈ Γ(A), except B

{Γ(A) returns the edges neighboring A; initially

the condition is satis�ed by all leaf-edges}

: mA→B(xA∩B):=

∑xA∖B {ψA(xA)∏C∈Γ(A)∖BmC→A(xA∩C)}

: end while
: for A ∈ C′ do
: marginalA(xA):=

ψA(xA)∏C∈Γ(A)mC→A(xA∩C)

: end for

Graphical Models G 

G

A

C

B D

E

F A

C

B D

E

F

B,D

A,B,C B,C,EB,C B,E B,E,F

B

Graphical Models. Figure . The graph at left is not chordal, since the cycle (A,B, E,C) does not contain a chord; adding

the edge (B,C) results in a chordal (or triangulated) graph (centre). The graph at right is a Junction-Tree for the graph at

centre; the cliques of the triangulated graph form the nodes (circles); their intersection sets are shown as squares. Note

that this is not the only Junction-Tree that we could form – the node {B,D} could connect to any of the other three

nodes

De�nition  (Junction-Tree) A clique-tree H of G is

said to form a Junction-Tree if for every pair of nodes

A,B (i.e., maximal cliques in G), the path between them

(P . . . Pm) satis�es (A ∩ B) ⊂ Pi for all i ∈ { . . .m}.

�e algorithms we shall de�ne apply only if the

graph in question is chordal, or “triangulated” (Def-

inition ); this can always be achieved by adding

additional edges to the graph, as demonstrated in Fig. ;

adding additional edgesmeans increasing the size of the

maximal cliques in the graph.

Finding the “optimal” triangulation (i.e., the one

that minimizes the size of the maximal cliques) is an

NP-complete problem. In practice, triangulation algo-

rithms vary from simple greedy heuristics (e.g., select

a node that has as few neighbors as possible), to com-

plex approximation algorithms working within a factor

of the optimal solution (Amir, ).

�e problem of actually generating a Junction-

Tree from the triangulated graph is easily solved by

a maximum spanning tree algorithm (where we pre-

fer edges corresponding to pairs of cliques with large

intersections).

�eorem  Let G be a triangulated graph and H a

corresponding clique-tree. If the sum of the cardinalities

of the intersection sets of H is maximum, then H is a

Junction Tree. �e converse also holds.

If the nodes and edges inAlgorithm  are replaced by

the nodes (maximal cliques in G) and edges (intersect-

ing cliques in G) ofH, then we recover the Junction-Tree

Algorithm.

Approximate Inference �e act of triangulating the

graph in the Junction-Tree Algorithm may have the

Graphical Models. Figure . The graph above at left has

maximal cliques of size two; in order to triangulate it, we

must introduce maximal cliques of size four (right)

e�ect of increasing the size of its maximal cliques, as

in Fig. . �is may be a problem, as its running time

is exponential in the size of the maximal cliques in the

triangulated graph (this size minus one is referred to as

the tree-width of the graph, e.g., a chain has a tree-width

of ).

�ere are a variety of approximate algorithms that

allow us to perform inference more e�ciently:

Variational approximation. If doing inference in a

graphical model X is intractable, we might search

for a model Y for which inference is tractable,

and which is “similar” to X in terms of the KL-

divergence between p(x) and p(y). (Wainwright &

Jordan, ).

Loopy belief-propagation. We can build a clique-graph

from a graph that has not been triangulated, sim-

ply by connecting all cliques that intersect (in which

case, the clique-graph will contain loops). If we then

propagate messages in some random order, we can

obtain good approximations under certain condi-

tions (Ihler et al., ).

Gibbs sampling. Given an estimate xA∖B of a set of vari-

ables XA∖B, we can obtain an estimate of xB by sam-

pling from the conditional distribution p(xB∣xA∖B).

If we choose B = {Xi}, and repeat the procedure for

 G Graphical Models

random choices of i ∈ { . . .N}, we obtain the pro-

cedure known asGibbs Sampling (Geman &Geman,

).

�ere are several excellent books and tutorial papers

on graphical models. A selection of tutorial papers

includes Aji and McEliece (), Kschischang, Frey,

and Loeliger (), Murphy (), Wainwright and

Jordan (); review articles include Roweis and

Ghahramani () and Smyth (), to name but

a few.

A selection of works includes Koller and Friedman

(), Jensen () (introductory books), Edwards

() (undirectedmodels), Pearl (, ) (directed

models), Cowell, Dawid, Lauritzen, and Spiegelhalter

() (exact inference), Jordan () (learning and

approximate inference) and Lauritzen (, Lauritzen

and Spiegelhalter () (a comprehensive mathemati-

cal theory).

�ere is also a variety of closely related models and

extensions:

Gaussian graphical models. We have assumed through-

out that our probability distributions are discrete;

however, the only condition we require is that they

are closed under multiplication and marginalization.

�is property is also satis�ed for Gaussian random

variables.

Hidden Markov models. In many applications, the vari-

ables in our model may be hidden. �e above

algorithms can be adapted to infer properties

about our hidden states, given a sequence of

observations.

Kalman �lters. Kalman �lters employ both of the above

ideas, in that they include hidden state variables tak-

ing values from a continuous space using a Gaussian

noise model. �ey are used to estimate the states of

linear dynamic systems under noise.

Factor graphs. Factor graphs employ an alternate

message-passing scheme, which may be prefer-

able for computational reasons. Inference remains

approximate in graphs with loops, though approx-

imate solutions may be obtained more e�ciently

than by Loopy Belief-Propagation (Kschischang et

al., ).

Relational models. Relational models allow us to explore

the relationships between objects in order to predict

the behavior and properties of each. Graphical mod-

els are used to predict the properties of an object

based on others that relate to it (Getoor & Taskar,

).

Learning. O�en, we would like to learn either the

parameters or the structure of the model from (pos-

sibly incomplete) data. �ere is an extensive vari-

ety of approaches; a collection of papers appears in

Jordan ().

Cross References
7Bayesian Network
7Expectation Propogation
7Hidden Markov Models
7Markov Random Field

Recommended Reading
Aji, S. M., & McEliece, R. J. (). The generalized distribu-

tive law. IEEE transactions on information theory, ():

-.

Amir, E. (). Efficient approximation for triangulation of mini-

mum treewidth. In Proceedings of the th conference on uncer-

tainty in artificial intelligence (pp. –). San Francisco: Morgan

Kaufmann.

Cowell, R. G., Dawid, P. A., Lauritzen, S. L., & Spiegelhalter, D. J.

(). Probabilistic networks and expert systems. Berlin:

Springer.

Edwards, D. (). Introduction to graphical modelling. New York:

Springer.

Geman, S., & Geman, D. (). Stochastic relaxation, Gibbs dis-

tributions and the bayesian restoration of images. In IEEE

transactions on pattern analysis and machine intelligence, ,

–.

Getoor, L., & Taskar, B. (Eds.). (). An introduction to statistical

relational learning. Cambridge, MA: MIT Press.

Ihler, A. T., Fischer III, J. W., & Willsky, A. S. (). Loopy

belief propagation: Convergence and effects of message errors.

Journal of Machine Learning Research, , –.

Jensen, F. V. (). Bayesian networks and decision graphs. Berlin:

Springer.

Jordan, M. (Ed.). (). Learning in graphical models. Cambridge,

MA: MIT Press.

Koller, D., & Friedman, N. (). Probabilistic graphical models:

Principles and techniques. Cambridge, MA: MIT Press.

Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (). Factor

graphs and the sum-product algorithm. IEEE transactions on

information theory, (), –.

Lauritzen, S. L. (). Graphical models. Oxford: Oxford University

Press.

Lauritzen, S. L., & Spiegelhalter, D. J. (). Local computations

with probabilities on graphical structures and their application

Graphs G 

G

to expert systems. Journal of the Royal Statistical Society, Series

B, , –.

Murphy, K. (). A brief introduction to graphical models and

Bayesian networks. San Francisco: Morgan Kaufmann.

Pearl, J. (). Probabilistic reasoning in intelligent systems: Net-

works of plausible inference. San Francisco: Morgan Kaufmann.

Pearl, J. (). Causality. Cambridge: Cambridge University Press.

Roweis, S., & Ghahramani, Z. (). A unifying review of linear

Gaussian models. Neural Computation, , –.

Smyth, P. (). Belief networks, hidden Markov models, and

Markov random fields: A unifying view. Pattern Recognition

Letters, , –.

Wainwright, M. J., & Jordan, M. I. (). Graphical models, expo-

nential families, and variational inference. Foundations and

Trends in Machine Learning, , –.

Graphs

Tommy R. Jensen

Alpen-Adria-Universität Klagenfurt,

Klagenfurt, Austria

Definition
Graph �eory is (dyadic) relations on collections spec-

i�ed objects. In its most common, a graph is a pair

G = (V ,E) of a (�nite) set of vertices V and a set of edges

E (or links). Each edge e is a -element subset {u, v} of

V , usually abbreviated as e = uv; u and v are called the

endvertices of e, they are mutually adjacent and each is

incident to e in G. �is explains the typical model of a

simple graph.

A directed graph or 7digraph is a more general
structure, in which the edges are replaced by ordered

pairs of distinct elements of the vertex set V , each such

pair being referred to as an arc. Another generalization

of a graph is a hypergraph or “set-system” onV , in which

the hyperedges may have any size. Various concepts in

graph theory extend naturally to multigraphs, in which

each pair of (possibly identical) vertices may be adja-

cent via several edges (respectively loops). Also studied

are in�nite graphs, for which the vertex and edge sets are

not restricted to be �nite.

A graph is conveniently depicted graphically by rep-

resenting each vertex as a small circle, and representing

each edge by a curve that joins its two endvertices. A

digraph is similarly depicted by adding an arrow on the

curve representing an arc showing the direction from its

tail to its (possibly identical) head.

Motivation and Background
One of the very �rst results in graph theory appeared in

Leonhard Euler’s paper on SevenBridges of Königsberg,

published in . �e paper contained the complete

solution to the problem whether, when given a graph,

it is possible to locate an Euler tour, that is, a sequence

of adjacent edges (each edge imagined to be traversed

from one end to the other) that uses every edge exactly

once. Figure  illustrates the four main parts of the city

of Königsberg with the seven bridges connecting them;

since this graph contains four vertices of odd degree, it

does not allow an Euler tour.

Applications of graphs are numerous andwidespread.

Much of the success of graph theory is due to the ease at

which ideas and proofs may be communicated pictori-

ally in place of, or in conjunction with, the use of purely

formal symbolism.

Theory
Isomorphism

A graph drawing should not be confused with the graph

itself (the underlying abstract structure) as there are

several ways to structure the graph drawing. It onlymat-

ters which vertices are connected to which others by

how many edges, the exact layout may be suited for the

particular purpose at hand. It is o�en a problem of inde-

pendent interest to optimize a drawing of a given graph

in terms of aesthetic features.

In practice it is o�en di�cult to decide if two

drawings represent the same graph (as in Fig. ). �is

Graphs. Figure . A graph of the city of Königsberg

 G Graphs

1

Graphs. Figure . Two drawings of the same graph

decision problem has gained increasing status in com-

plexity theory, with growing suspicion that this prob-

lem may fall in a new class of problems, which lies

between the familar classes of polynomially solvable

and NP-complete7(NP-completeness) problems (sup-
posing that these classes are indeed distinct; for issues

related to the complexities of decision and optimiza-

tion problems see Garey & Johnson, ()). Nonethe-

less it is customary in the treatment of abstract graphs

to consider two graphs identical if they are isomor-

phic. A closely related problem, the subgraph isomor-

phism problem, an NP-complete problem, consists in

�nding a given graph as a subgraph of another given

graph.

Whereas there seems common agreement in the

graph theoretic community on what constitutes a draw-

ing of a graph, it may be considered a weakness, and

sometimes a source of confusion, that even the most

central general sources on the fundamentals of graph

theory, such as the monographs (Berge, ; Bondy &

Murty, ; Diestel, ), do not agree on a common

formalization of the theory.

Classes of Graphs

Important special classes of graphs are bipartite graphs,

for which the vertex set is partitionable into two classes

A,B with every edge having one end in A and one in

B; in particular the complete bipartite graph Km,n has

∣A∣ = m, ∣B∣ = n, and every vertex in A is joined to

every vertex in B. �e complete graph Kn consists of n

vertices that are all pairwise adjacent. A path of length

n consists of vertices v, v, . . . , vn with edges vi−vi for

i = , , . . . ,n; such a path joins its two endvertices v
and vn. A circuit of length n consists of a path of length

n −  together with an additional edge between the two

endvertices of the path. A graph is connected if each pair

of its vertices is joined by at least one path within the

graph. Of central importance to the study of e�cient

search procedures in computer science is the class of

trees, those connected graphs that contain no circuits.

Most de�nitions have various natural counterparts for

directed graphs, in particular a tournament is a directed

graph in which each pair of vertices is joined by exactly

one arc.

Properties of Graphs

Finding a complete subgraph of a given order in

an input graph is called the clique problem. �e

complementary problem of �nding an independent set

is called the independent set problem. �e longest path

problem and the longest circuit problem have as spe-

cial cases the Hamilton path problem and the Hamilton

circuit problem, the latter two problems asking to �nd

a path, respectively a circuit, that uses all vertices of

the given graph. Each of these problems (or a suit-

able modi�cation of it) belongs to the complexity class

of NP-complete problems, hence is generally believed

to be very di�cult to solve e�ciently. �e weighted

version of the Hamilton circuit problem, the so-called

travelling salesman problem is of central importance in

combinatorial optimization.

A graph is called planar if it may be drawn in the

Euclidian plane without any two of its edges cross-

ing except where they meet at a common endver-

tex. �is is o�en a convenient way of representing a

graph, whenever it is doable. A theorem of Kuratowski

states that a graph is planar if and only if it contains

Graphs G 

G

homeomorphic copies of neither the complete bipartite

graph K, (the three-houses-three-utilities-graph) nor

the complete graph K. A main branch of graph theory

is concerned with investigating relationships between

the topological and combinatorial properties of graphs

Mohar &�omassen, ().

In , Francis Guthrie posed the four color prob-

lem, asking if it is possible to color the countries of

any map, using only four colors, in such a way that

all pairs of bordering countries receive di�erent colors.

Equivalently, by representing dually every country as a

vertex of a graph, with two vertices joined by an edge

if their countries share a stretch of common border, the

question is whether it is possible to color the vertices

of a planar graph using four colors, so that any two

adjacent vertices receive distinct colors. �is problem,

was solved a century later in  by Kenneth Appel,

Wolfgang Haken, and John Koch, who invested mas-

sive amounts of computing time to complete a graph

theoretic approach developed by various mathemati-

cians over a period of most of the preceding part of the

twentieth century.

�e problem of coloring a possibly nonplanar graph

with a minimal number of colors, that is, to partition

its vertex set into as few independent sets as possible, is

a well-studied problem (e.g., see Jensen & To�, ()),

though NP-hard in general. In fact it is already an NP-

complete problem to ask whether a given planar graph

allows a coloring using at most three colors (see Garey,

Johnson & Stockmeyer ). �e recent strong perfect

graph theorem provides one of quite few known exam-

ples of a fairly rich class of graphs, the Berge graphs,

for which the coloring problem has a satisfactory solu-

tion (see Chudnovsky, Robertson, Seymour & �omas

).

Other well-solved problems include �nding a largest

matching in a given graph; a largest set of edges no

two of which share a common endvertex (see Lovász &

Plummer () for a thorough treatment of matching

theory). �e most interesting special case asks to �nd a

perfect matching, having the property that every vertex

is paired up with a unique vertex of the graph adjacent

to it. For the special case of bipartite graphs (the mar-

riage problem), the problem was solved by Dénes König

in . Even when given for every pair of vertices a

measure of the desirability of pairing up these particular

vertices (theweightedmatching problem), there exists an

x1

x2 x3

x4 x5

x6 x7

1

Graphs. Figure . Reproduced from Bishop (, p. )

e�cient solution to the problem of �nding an optimum

matching of maximal total weight, discovered by Jack

Edmonds in .

Applications
As an example of a visualization application, Fig. 

shows a digraph to symbolize for a collection of seven

stochastic variables x, . . . , x that their joint distribu-

tion is given by the product

p(x)p(x)p(x)p(x∣x, x, x)p(x∣x, x)

× p(x∣x)p(x∣x, x)

In addition to visualization of a network, a pro-

cess, a search procedure, or any hierarchical structure,

there are many applications using implementations of

known graph algorithms on computers, so that the

graph in question will only exist as an abstract datas-

tructure within a program and thus remains invisible to

the user.

�ere are di�erent ways to store graphs in a com-

puter. O�en a combination of list and matrix structures

will be preferred for storage and dynamic manipula-

tion of a graph by an algorithm. List structures are o�en

preferred for sparse graphs as they have smaller mem-

ory requirements. Matrix structures on the other hand

provide faster access but can consume a large amount

of memory if a graph contains many vertices. In most

cases it is convenient to represent a graph or digraph

by an array containing, for each edge or arc, the pair

of vertices that it joins, together with additional infor-

mation, such as the weight of the edge, as appropriate.

 G Greedy Search

It may be an advantage in addition to store for each

vertex a list of the vertices adjacent to it, or alterna-

tively, a list of the edges incident to it, depending on the

application.

�e adjacency matrix of a graph, multigraph, or

digraph on n vertices is an n × n matrix in which the

ij-entry is the number of edges or arcs that join vertex

i to vertex j (or more generally, the weight of a single

such edge or arc). As a storage device this is inferior for

sparse graphs, those with relatively few edges, but gains

in importance when an application naturally deals with

very dense graphs or multigraphs.

Future Directions
In recent years the theory of graph minors has been an

important focus of graph theoretic research. A graph

H is said to be a minor of a graph G if there exists a

subgraph of G from which H can be obtained through

a sequence of edge contractions, each consisting of the

identi�cation of the two ends of an edge e followed by

the removal of e. A monumental e�ort by Neil Robert-

son and Paul Seymour has resulted in a proof of the

Robertson–Seymour theorem (Robertson & Seymour,

; see also Diestel, ), with the important con-

sequence that for any set G of graphs that is closed

under taking minors, there exists a �nite set of obstruc-

tion graphs, such that G is an element of G precisely

if G does not contain any minor that belongs to the

obstruction set. �is theorem has several important

algorithmic consequences, many still waiting to be fully

explored.

A particularly challenging unsolved problem is the

Hadwiger conjecture (see Jensen & To�, ), stating

that any graph G that does not allow a vertex coloring

with as few as k colors will have to contain the complete

graph Kk+ as a minor. �e special cases of k ≤  colors

have been shown to be consequences of the four color

theorem. But the problem remains open for all larger

values of k.

Other central areas of research relate to the notori-

ously hard problems of vertex- and edge-coloring, and

of Hamilton paths and circuits. �ese have important

applications, but it is not expected that any satisfactory

necessary and su�cient conditions will be found for

their existence. Hence the study of su�cient conditions

of practical value is lively pursued.

A list of open problems in graph theory can be found

in Bondy & Murty ().

Recommended Reading
Bang-Jensen, J., & Gutin, G. (). Digraphs: theory, algorithms

and applications. Springer monographs in mathematics, London:

Springer. http://www.imada.sdu.dk/Research/Digraphs/

Berge, C. (). Graphs and hypergraphs. North-Holland mathemat-

ical library (Vol. ).

Bishop, C. M. (). Pattern recognition and machine learning.

Springer.

Bondy, J. A., & Murty, U. S. R. () Graph theory, Springer.

Chudnovsky, M., Robertson, N., Seymour, P., & Thomas, R. ().

The strong perfect graph theorem. Annals of Mathematics, ,

–.

Diestel, R. (). Graph theory (rd ed.). Springer. http://www.

math . uni - hamburg . de / home / diestel / books / graph . theory /

GraphTheoryIII.pdf

Emden-Weinert, T. Graphs: theory–algorithms–complexity.

http://people.freenet.de/Emden-Weinert/graphs.html.

Garey, M. R., & Johnson, D. S. (). Computers and Intractability:

A guide to the theory of NP-completeness. New York: Freeman.

Garey, M. R., Johnson, D. S., & Stockmeyer, L. J. (). Some

simplified NP-complete graph problems. Theoretical Computer

Science, , –.

Gimbel, J., Kennedy, J. W., & Quintas, L. V. (Eds.). (). Quo Vadis,

graph theory? North-Holland.

Harary, F. (). Graph theory. Reading: Addison-Wesley.

Jensen, T. R., & Toft, B. (). Graph coloring problems. Wiley.

Locke, S. C. Graph theory.http://www.math.fau.edu/locke/graphthe.

htm.

Lovász, L., & Plummer, M. D. (). Matching theory. Annals of

discrete math (Vol. ). North Holland.

Mohar, B., & Thomassen, C. (). Graphs on surfaces. John Hop-

kins University Press.

Robertson, N., & Seymour, P. D. (). Graph minors. XX.Wagner’s

conjecture. Journal of Combinatorial Theory, Series B, (),

–.

Weisstein, E. W. Books about graph theory. http : // www .

ericweisstein.com/encyclopedias/books/GraphTheory.html.

Greedy Search

Claude Sammut

University of New South Wales, Sydney, Australia

At each step in its search, a greedy algorithmmakes the

best decision it can at the time and continues without

backtracking. For example, an algorithm may perform

a7general-to-speci�c search and at each step, commits
itself to the specialization that best �ts that training data,

so far. It continues without backtracking to change any

http://www.imada.sdu.dk/Research/Digraphs/
http://people.freenet.de/Emden-Weinert/graphs.html
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.pdf
http://www.math.fau.edu/locke/graphthe.htm.
http://www.math.fau.edu/locke/graphthe.htm.
http://www.ericweisstein.com/encyclopedias/books/GraphTheory.html.
http://www.ericweisstein.com/encyclopedias/books/GraphTheory.html.

Greedy Search Approach of Graph Mining G 

G

of its decisions. Greedy algorithms are used in many

machine-learning algorithms, including decision tree

learning (Breiman, Friedman, Olshen, & Stone, ;

Quinlan, ) and 7rule learning algorithms, such as
7sequential covering.

Cross References
7Learning as Search
7Rule Learning

Recommended Reading
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. ().

Classification and regression trees. Belmont, CA: Wadsworth

International Group.

Quinlan, J. R. (). C.: Programs for machine learning. San

Mateo, CA: Morgan Kaufmann.

Greedy Search Approach of Graph
Mining

Lawrence Holder

Washington State University, Pullman, USA

Definition
7Greedy search is an e�cient and e�ective strategy for
searching an intractably large space when su�ciently

informed heuristics are available to guide the search.

�e space of all subgraphs of a graph is such a space.

�erefore, the greedy search approach of 7graph min-
ing uses heuristics to focus the search toward subgraphs

of interest while avoiding search in less interesting por-

tions of the space. One such heuristic is based on the

compression a�orded by a subgraph; that is, how much

is the graph compressed if each instance of the subgraph

is replaced by a single vertex. Not only does compres-

sion focus the search, but it has also been found to prefer

subgraphs of interest in a variety of domains.

Motivation and Background
Many datamining andmachine learningmethods focus

on the attributes of entities in the domain, but the rela-

tionships between these entities also represents a signif-

icant source of information, and ultimately, knowledge.

Mining this relational information is an important chal-

lenge both in terms of representing the information and

facing the additional computational obstacles of ana-

lyzing both entity attributes and relations. One e�cient

way to represent relational information is as a graph,

where vertices in the graph represent entities in the

domain, and edges in the graph represent attributes and

relations among the entities. �us, mining graphs is

an important approach to extracting relational infor-

mation. �e main alternative to a graph-based rep-

resentation is �rst-order logic, and the methods for

mining this representation fall under the area of induc-

tive logic programming. Here, the focus is on the graph

representation.

Several methods have been developed for mining

graphs (Washio & Motoda, ), but most of these

methods focus on �nding the most frequent subgraphs

in a set of graph transactions (e.g., FSG (Kuramochi

& Karypis, ), gSpan (Yan & Han, ), Gaston

(Nijssen & Kok, )) and use e�cient exhaustive,

rather than heuristic search. However, there are other

properties besides frequency of a subgraph pattern that

are relevant to many domains. One such property is the

amount of compression a�orded by the subgraph pat-

tern, when each instance of the pattern is replaced by a

single vertex. Searching for themost frequent subgraphs

can bemade e�cientmainly through the exploitation of

the downward closure property, which essentially says

one can prune any extension of a subgraph that does

not meet the minimum support frequency threshold.

Unfortunately, the compression of a subgraph does not

satisfy the downward closure property; namely, while a

small extension of a subgraph may have less compres-

sion, a larger extension may have greater compression.

�erefore, one cannot easily prune extensions andmust

search a larger portion of the space of subgraphs. �us,

onemust resort to a greedy searchmethod to search this

space e�ciently.

As with any greedy search approach, the result-

ing solution may sometimes be suboptimal, that is, the

resulting subgraph pattern is not the pattern with max-

imum compression. �e extent to which optimal solu-

tions are missed depends on the type of greedy search

and the strength of the heuristics used to guide the

search. One approach is embodied in the graph-based

induction (GBI) method (Matsuda, Motoda, Yoshida,

&Washio, ; Yoshida, Motoda, & Indurkhya, ).

GBI continually compresses the input graph by identi-

fying frequent triples of vertices, some of which may

 G Greedy Search Approach of Graph Mining

represent previously compressed portions of the input

graph. Candidate triples are evaluated using a measure

similar to information gain.

A similar approach recommended here is the use

of a beam search strategy coupled with a compression

heuristic based on the 7minimum description length
(MDL) principle (Rissanen, ). �e goal is to per-

form unsupervised discovery of a subgraph pattern that

maximizes compression, which is essentially a trade-

o� between frequency and size. Once the capability to

�nd such a pattern exists, it can be used in an iterative

discovery-and-compress fashion to perform hierarchi-

cal conceptual clustering, and it can be used to perform

supervised learning, that is, �nd patterns that com-

press the positive graphs, but not the negative graphs.

�is approach has been well studied (Cook & Holder,

, ; Gonzalez, Holder, & Cook, ; Holder

& Cook, ; Jonyer, Cook, & Holder, ; Kukluk,

Holder, &Cook, ) and has proven successful in sev-

eral domains (Cook, Holder, Su, Maglothin, & Jonyer,

; Eberle & Holder, ; Holder, Cook, Coble, &

Mukherjee, ; You, Holder, & Cook, ).

Structure of Learning System
Figure  depicts the structure of the greedy search

approach of graph mining. �e input data is a labeled,

directed graph G. �e search begins by identifying the

set of small common patterns in G, that is, all vertices

with unique labels having a frequency greater than one.

�e algorithm then iterates by evaluating the patterns

according to the search heuristic, retaining the best pat-

terns, and extending the best patterns by one edge until

the stopping condition is met.

�e search is guided by the minimum description

length (MDL) principle, which seeks to minimize the

description length of the entire data set. �e evaluation

heuristic based on the 7MDL principle assumes that
the best pattern is the one that minimizes the descrip-

tion length of the input graph when compressed by the

pattern. �e description length of the pattern S given

the input graph G is calculated as DL(G, S) = DL(S) +

DL(G∣S), where DL(S) is the description length of the

pattern, and DL(G∣S) is the description length of the

input graph compressed by the pattern.�e search seeks

a pattern S that minimizes DL(G,S).

While several greedy search strategies apply here

(e.g., hill climbing, stochastic), the strategy that has

been found to work best is the 7beam search. Of

the patterns currently under consideration, the sys-

tem retains only the best Beam patterns, where Beam

is a user-de�ned parameter. �ese patterns are then

extended by one edge in all possible ways according

to the input graph, the extended patterns are evalu-

ated, and then again, all but the best Beam patterns

are discarded. �is process continues until the stop-

ping condition is met. Several stopping conditions are

applicable here, including a user-de�ned limit on the

number of patterns considered, the exhaustion of the

search space, or the case in which all extensions of

a pattern evaluate to a lesser value than their parent

pattern. Once meeting the stopping condition, the sys-

tem returns the best patterns. Note that while the naïve

Identify small,
common

patterns in G

Input
Graph G

Stopping
condition?

no

yes

Best patterns

Evaluate
patterns in G
using MDL

Retain best
Beam patterns

Extend
patterns by
one edge

Greedy Search Approach of Graph Mining. Figure . Structure of the greedy search approach of graph mining

Greedy Search Approach of Graph Mining G 

G

S1

S1

S1

S1

S1

S2

S2 S2

Greedy Search Approach of Graph Mining. Figure . Exa-

mple of the greedy search approach of graph

mining

approach to implementing this algorithmwould require

an NP-complete subgraph isomorphism procedure to

collect the instances of each pattern, a more e�cient

approach takes advantage of the fact that new patterns

are always one-edge extensions of existing patterns, and,

therefore, the instances of the extended patterns can

be identi�ed by searching the extensions of the par-

ent’s instances. �is process does require several iso-

morphism tests, which is the computational bottleneck

of the approach, but avoids the subgraph isomorphism

problem.

Once the search terminates, the input graph can be

compressed using the best pattern. �e compression

procedure replaces all instances of the pattern in the

input graph by single vertices, which represent the pat-

tern’s instances. Incoming and outgoing edges to and

from the replaced instances will point to, or originate

from the new vertex that represents the instance. �e

algorithmcan then be invoked again on this compressed

graph.

Figure  illustrates the process on a simple example.

�e system discovers pattern S, which is used to com-

press the data. A second iteration on the compressed

graph discovers pattern S. Because instances of a pat-

tern can appear in slightly di�erent forms throughout

the data, an inexact graph match, based on graph edit

distance, can be used to address noise by identifying

similar pattern instances.

Graph-Based Hierarchical Conceptual Clustering

Given the ability to �nd a prevalent subgraph pattern

in a larger graph and then compress the graph with this

pattern, iterating over this process until the graph can

no longer be compressed will produce a hierarchical,

conceptual clustering of the input data (Jonyer, Cook,

& Holder, ). On the ith iteration, the best subgraph

Si is used to compress the input graph, introducing new

vertices labeled Si in the graph input to the next itera-

tion. �erefore, any subsequently discovered subgraph

Sj can be de�ned in terms of one or more of Sis, where

i < j. �e result is a lattice, where each cluster can be

de�ned in terms of more than one parent subgraph. For

example, Fig.  shows such a clustering done on a DNA

molecule.

Graph-Based Supervised Learning

Extending a graph-based data mining approach to per-

form7supervised learning involves the need to handle
negative examples (focusing on the two-class scenario).

In the case of a graph the negative information can

come in three forms. First, the data may be in the

form of numerous smaller graphs, or graph transac-

tions, each labeled either positive or negative. Second,

data may be composed of two large graphs: one posi-

tive and one negative. �ird, the data may be one large

graph inwhich the positive and negative labeling occurs

throughout. �e �rst scenario is closest to the standard

supervised learning problem in that one has a set of

clearly de�ned examples (Gonzalez et al., ). Let G+

represent the set of positive graphs, and G− represent

the set of negative graphs.�en, one approach to super-

vised learning is to �nd a subgraph that appears o�en in

the positive graphs, but not in the negative graphs. �is

amounts to replacing the information-theoretic mea-

sure with simply an error-basedmeasure.�is approach

will lead the search toward a small subgraph that dis-

criminates well. However, such a subgraph does not

necessarily compress well, nor represent a characteristic

description of the target concept.

One can bias the search toward amore characteristic

description by using the information-theoretic measure

to look for a subgraph that compresses the positive

examples, but not the negative examples. If I(G) rep-

resents the description length (in bits) of the graph G,

and I(G∣S) represents the description length of graph G

compressed by subgraph S, then one can look for an

S that minimizes I(G+∣S) + I(S) + I(G−) − I(G−∣S),

where the last two terms represent the portion of the

negative graph incorrectly compressed by the subgraph.

�is approach will lead the search toward a larger sub-

graph that characterizes the positive examples, but not

the negative examples.

 G Greedy Search Approach of Graph Mining

Greedy Search Approach of Graph Mining. Figure . Iterative application of the greedy search approach of graph min-

ing yields the hierarchical, conceptual clustering on the right given an input graph representing the portion of DNA

structure depicted on the left

Finally, this process can be iterated in a set-covering

approach to learn a disjunctive hypothesis. If using the

error measure, then any positive example containing

the learned subgraph would be removed from sub-

sequent iterations. If using the information-theoretic

measure, then instances of the learned subgraph in

both the positive and negative examples (even multi-

ple instances per example) are compressed to a single

vertex. Note that the compression is a lossy one, that

is, one does not keep enough information in the com-

pressed graph to know how the instance was connected

to the rest of the graph.�is approach is consistent with

the goal of learning general patterns, rather than mere

compression.

Graph Grammar Inference

In the above algorithms the patterns are limited to

non-recursive structures. In order to learn subgraph

motifs, or patterns that can be used as the building

blocks to generate arbitrarily large graphs, one needs

the ability to learn graph grammars. �e key to the

inference of a graph grammar is the identi�cation of

overlapping structure. One can detect the possibility of

a recursive graph-grammar production by checking if

the instances of a pattern overlap. If a set of instances

overlap by a single vertex, then one can propose a

recursive node-replacement graph grammar produc-

tion. Figure  shows an example of a node-replacement

graph grammar (right) learned from a simple, repetitive

input graph (le�).�e input graph in Fig.  is composed

of three overlapping substructures. Based on how the

instances overlap, one can also infer connection instruc-

tions that describe how the pattern can connect to itself.

For example, the connection instructions in Fig.  indi-

cate that the graph can grow by connecting vertex  of

one pattern instance to either vertex  or vertex  of

another pattern instance.

If a set of pattern instances overlap by an edge, then

one can propose a recursive edge-replacement graph

grammar production. Figure  shows an example of an

edge-replacement graph grammar (right) learned from

the input graph (le�). Connection instructions describe

how the motifs can connect via the edge labeled “a” or

the edge labeled “b.”

Apart from the inclusion of recursive patterns, the

greedy search approach of graph mining is unchanged.

Both recursive and non-recursive patterns are evalu-

ated according to their ability to compress the input

graph using the 7MDL heuristic. A�er several iter-
ations of the approach, the result is a graph gram-

mar consisting of recursive and non-recursive pro-

ductions that both describe the input graph and pro-

vide a mechanism for generating graphs with similar

properties.

Programs and Data
Most of the aforementioned functionality has been

implemented in the SUBDUE graph-based pattern

learning system.�e SUBDUE source code and numer-

ous sample graph data �les are available at http://www.

subdue.org.

http://www.subdue.org.
http://www.subdue.org.

Greedy Search Approach of Graph Mining G 

G

a

b

a a

bb

a a a a

1
x

2
y

3
x

5
y

6 7

z

z

4
x

8
y

9 10

z

(S)

(S)

(S)

S

1

x
2
zy

3 4a a a a

aa

bb

1
x

2
z

43

y

Connection
instructions

1–3
1–4

Greedy Search Approach of Graph Mining. Figure . The node-replacement graph grammar (right) inferred from the

input graph (left). The connection instructions indicate how the pattern can connect to itself

S3a

S3 S3b

S3a S3

S3b S3

Greedy Search Approach of Graph Mining. Figure . The edge-replacement graph grammar (right) inferred from the

input graph (left). The connection instructions indicate how the pattern can connect to itself

Applications
Many relational domains, from chemical molecules to

social networks, are naturally represented as a graph,

and a graph mining approach is a natural choice for

extracting knowledge from such data.�ree such appli-

cations are described below.

A huge amount of biological data that has been

generated by long-term research encourages one to

move one’s focus to a systems-level understanding of

bio-systems. A biological network, containing various

biomolecules and their relationships, is a fundamen-

tal way to describe bio-systems. Multi-relational data

mining �nds the relational patterns in both the entity

attributes and relations in the data. A graph consist-

ing of vertices and edges between these vertices is a

natural data structure to represent biological networks.

�e greedy search approach of graph mining has been

applied to �nd patterns in metabolic pathways (You

et al., ). Graph-based supervised learning �nds

the unique substructures in a speci�c type of pathway,

which help one understand better how pathways di�er.

Unsupervised learning shows hierarchical clusters that

describe the common substructures in a speci�c type

of pathway, which allow one to better understand the

common features in pathways.

Social network analysis is the mapping and mea-

suring of relationships and �ows between people, orga-

nizations, computers, or other information processing

entities. Such analysis is naturally done using a graphical

representation of the domain. �e greedy approach of

graph mining has been applied to distinguish between

criminal and legitimate groups based on their mode

of communication (Holder et al., ). For exam-

ple, terrorist groups tend to exhibit communications

chains; whereas, legitimate groups (e.g., families) tend

to exhibit more hub-and-spoke communications.

Anomaly detection is an important problem for

detecting fraud or unlawful intrusions. However,

anomalies are typically rare and, therefore, present

a challenge to most mining algorithms that rely on

 G Greedy Search Approach of Graph Mining

regularity and frequency to detect patterns. With the

graph mining approach’s ability to iteratively compress

away regularity in the graph, what is le� can be con-

strued as anomalous. To distinguish this residual struc-

ture from noise, one can compare its regularity with

the probability that such structure would appear ran-

domly. �e presence of rare structure that is unlikely

to appear by chance suggests an anomaly of inter-

est. Furthermore, most fraudulent activity attempts to

disguise itself by mimicking legitimate activity. �ere-

fore, another method for �nding such anomalies in

graphs is to �rst �nd the normative pattern using the

greedy search approach of graph mining and then �nd

unexpected deviations to this normative pattern. �is

approach has been applied to detect anomalies in cargo

data (Eberle & Holder, ).

Future Directions
One of the main challenges in approaches to graph

mining is scalability. Since most relevant graph opera-

tions (e.g., graph and subgraph isomorphism) are com-

putationally expensive, they can be applied to only

modest-sized graphs that can �t in the main memory.

Clearly, there will always be graphs larger than can �t

in main memory, so e�cient techniques for mining in

such graphs are needed. One approach is to keep the

graph in a database and translate graph mining oper-

ations into database queries. Another approach is to

create abstraction hierarchies of large graphs so that

mining can occur at higher-level, smaller graphs to

identify interesting regions of the graph before descend-

ing down into more speci�c graphs. Traditional high-

performance computing techniques of partitioning a

problem into subproblems, solving the subproblems,

and then recomposing a solution do not always work

for graph mining problems, because partitioning the

problem means breaking links which may later turn

out to be important. New techniques and architectures

are needed to improve the scalability of graph mining

operations.

Another challenge for graph mining techniques is

dynamic graphs. Most graphs represent data that can

change over time. For example, a social network can

change as people enter and leave the network, new links

are established and old links are discarded. First, one

would like to be able to mine for static patterns in

the presence of the changing data, which will require

incremental approaches to graph mining. Second, one

would like to mine patterns that describe the evolution

of the graph over time, which requires mining of time

slice graphs or the stream of graph transaction events.

�ird, the dynamics can reside in the attributes of enti-

ties (e.g., changing concentrations of an enzyme in a

metabolic pathway), in the relation structure between

entities (e.g., new relationships in a social network),

or both. Research is needed on e�cient and e�ective

techniques for mining dynamic graphs.

Cross References
7Grammatical Inferences

Recommended Reading
Cook, D., & Holder, L. (March/April ). Graph-based data min-

ing. IEEE Intelligent Systems, (), –.

Cook, D., & Holder, L. (Eds.). ().Mining graph data. New Jersey:

Wiley.

Cook, D., Holder, L., Su, S., Maglothin, R., & Jonyer, I. (July/August

). Structural mining of molecular biology data. IEEE

Engineering in Medicine and Biology, Special Issue on Genomics

and Bioinformatics, (), –.

Eberle, W., & Holder, L. (). Detecting anomalies in cargo ship-

ments using graph properties. In Proceedings of the IEEE intel-

ligence and security informatics conference, San Diego, CA, May

.

Gonzalez, J., Holder, L., & Cook D. (). Graph-based relational

concept learning. In: Proceedings of the nineteenth interna-

tional conference on machine learning, Sydney, Australia, July

.

Holder, L., & Cook, D. (July ). Graph-based relational learning:

Current and future directions. ACM SIGKDD Explorations, (),

–.

Holder, L., Cook, D., Coble, J., & Mukherjee, M. (March ).

Graph-based relational learning with application to security.

Fundamenta Informaticae, Special Issue on Mining Graphs, Trees

and Sequences, (–), –.

Jonyer, I., Cook, D., & Holder, L. (October ). Graph-based

hierarchical conceptual clustering. Journal of Machine Learning

Research, , –.

Kukluk, J., Holder, L., & Cook, D. (). Inference of node

replacement graph grammars. Intelligent Data Analysis, (),

–.

Kuramochi, M., & Karypis, G. (). Frequent subgraph discov-

ery. In Proceedings of the IEEE international conference on data

mining (ICDM) (pp. –), San Jose, CA.

Matsuda, T., Motoda, H., Yoshida, T., & Washio, T. (). Min-

ing patterns from structured data by beam-wise graph-based

induction. In Proceedings of the fifth international conference on

discovery science (pp. –), Lubeck, Germany.

Nijssen, S., & Kok, J. N. (). A quickstart in frequent structure

mining can make a difference. In Proceedings of the tenth ACM

Group Detection G 

G

SIGKDD international conference on knowledge discovery and

data mining (KDD) (pp. –), Seattle, WA.

Rissanen, J. (). Stochastic complexity in statistical inquiry. New

Jersey: World Scientific.

Washio, T., & Motoda H. (July ). State of the art of graph-based

data mining. ACM SIGKDD Explorations, (), –.

Yan, X., & Han, J. (). gSpan: Graph-based substructure pat-

tern mining. In Proceedings of the IEEE international confer-

ence on data mining (ICDM) (pp. –), Maebashi City,

Japan.

Yoshida, K., Motoda, H., & Indurkhya, N. (). Graph-based

induction as a unified learning framework. Journal of Applied

Intelligence, , –.

You, C., Holder, L., & Cook, D. (). Application of graph-based

data mining to metabolic pathways. InWorkshop on data mining

in bioinformatics, IEEE international conference on data mining,

Hong Kong, China, December .

Group Detection

Hossam Sharara, Lise Getoor

University of Maryland, Maryland, USA

Synonyms
Community detection; Graph clustering; Modularity

detection

Definition
Group detection can de�ned as the clustering of nodes

in a graph into groups or communities. �is may be a

hard partitioning of the nodes, ormay allow for overlap-

ping group memberships. A community can be de�ned

as a group of nodes that share dense connections among

each other, while being less tightly connected to nodes

in di�erent communities in the network. �e impor-

tance of communities lies in the fact that they can

o�en be closely related to modular units in the system

that have a common function, e.g., groups of individu-

als interacting with each other in a society (Girvan &

Newman, ), WWW pages related to similar top-

ics (Flake, Lawrence, Giles, & Coetzee, ), or pro-

teins having the same biological function within the cell

(Chen & Yuan, ).

Motivation and Background
�e work done in group detection goes back as early

as the s when Stuart Rice clustered data by hand

to investigate political blocks (Rice, ). Another

early example is the work of George (Homans, )

who illustrated how simple rearrangement of the rows

and columns of data matrices helped to reveal their

underlying structure. Since then, group detection has

attracted researchers from di�erent areas such as soci-

ology, mathematics, physics, marketing, statistics, and

computer science.

Group detection techniques vary from simple

similarity-based7clustering algorithms that follow the
classical assumption that the data points are inde-

pendent and identically distributed, to more advanced

techniques that take into consideration the existing rela-

tionships between nodes in addition to their attributes,

and try to characterize the di�erent distributions

present in the data.

Theory Solution
A network is de�ned as a graph G = (V ,E) consisting

of a set of nodes v ∈ V , and a set of edges e ∈ E. In the

case of weighted networks, w(vi, vj) denotes the weight

of the edge connection nodes vi and vj. A community,

or a group, C is a subgraph C(V ′,E′) of the original

graph G(V ,E) whose nodes and edges are subsets of

the original graph’s nodes and edges; i.e., V ′ ⊂ V and

E′ ⊂ E.

Following the de�nition of the community, we can

expect that all the vertices in any community must be

connected by a path within the same community. �is

property is referred to in literature as connectedness,

which implies that in the case of disconnected graphs,

we can analyze each connected component separately,

as communities cannot span di�erent components.

Another important property that follows from the

de�nition of a community is that the group of vertices

within a community should share denser connections

among each other, and fewer connectionswith the other

vertices in the network. To quantify this measure, the

link density of a group δ(C) is de�ned as the ratio

between the number of internal edges in that group and

the maximum number of possible internal edges:

δ(C) =
∣E′∣

∣V ′∣ × (∣V ′∣ − )/
()

�us, for any community C, we require that δ(C) >

δ(G); where δ(G) is the average link density of the

whole network. Similarly, the average link density

between di�erent communities, calculated using the

 G Group Detection

ratio between the number of edges emanating from a

group and terminating in another, and the maximum

number possible of such edges, should generally be low.

Approaches
Beyond the intuitive discussion above, the precise

de�nition of what constitutes a community involves

multiple aspects. One important aspect is whether com-

munities form hard partitions of the graph or nodes can

belong to several communities. Overlapping communi-

ties do commonly occur in natural settings, especially

in social networks. Currently, only a few methods are

able to handle overlapping communities (Palla, Dernyi,

Farkas, & Vicsek, ).

Other aspects should also be taken into consid-

eration when de�ning community structure, such as

whether link weights and/or directionalities are uti-

lized, and whether the de�nition allows for hierarchical

community structure, which means that communities

may be parts of larger ones. However, one of the most

important aspect that comes into consideration in com-

munity detection is whether the de�nition depends on

global or local network properties. �e main di�erence

between the two approaches is whether the commu-

nities are de�ned in the scope of the whole network

structure, such as methods based on centrality mea-

sures (Girvan & Newman, ), global optimization

methods (Newman & Girvan, ), spectral meth-

ods (Arenas, Daz-Guilera, & Prez-Vicente, ), or

information-theoretic methods (Rosvall & Bergstrom,

). Local methods, on the other hand, de�ne com-

munities based on purely local network structure, such

as detecting cliques of di�erent sizes, clique percolation

method (Palla et al., ), and subgraph �tnessmethod

(Lancichinetti, Fortunato, & Kertesz, ).

Local Techniques

Local methods for community detection basically rely

on de�ning a set of properties that should exist in a

community, then �nding maximal subgraphs for which

these set of properties hold. �is formulation corre-

sponds to �nding maximal cliques in the network,

where a clique is a subgraph in which all its vertices are

directly connected.

However, there are some issues that rises from the

previous formulation. First, �nding cliques in a graph is

an NP-Complete problem, thus most solutions will be

approximate based onheuristicmethods.Anothermore

semantic issue is the interpretation of communities,

especially in the context of social networks, where dif-

ferent individuals have di�erent centralities within their

corresponding groups, contradicting with the degree

symmetry of the nodes in cliques. To overcome these

drawbacks, the notion of a clique is relaxed to n-clique,

which is amaximal subgraphwhere each pair of vertices

are at most n-steps apart from each other.

Clustering Techniques

7Data clustering is considered one of the earliest tech-
niques for revealing group structure, where data points

are grouped based on the similarity between their cor-

responding features according to a given similarity

measure. �e main objective of traditional clustering

methods is to obtain clusters or groups of data points

possessing high intra-cluster similarity and low inter-

cluster similarity. Classical data clustering techniques

can be divided into partition-based methods such as

k-means clustering (MacQueen, ), spectral clus-

tering algorithms (Alpert, Kahng, & Yao, ), and

hierarchical clusteringmethods (Hartigan, ), which

are the most popular and the most commonly used in

many �elds.

One of the main advantages of the hierarchical clus-

tering techniques is their ability to provide multiple

resolutions at which the data can be grouped. In general,

hierarchical clustering can be divided into agglomer-

ative and divisive algorithms. �e agglomerative algo-

rithm is a greedy bottom-up one that starts with clusters

including single data points then successively merge

the pairs of clusters with the highest similarity. Divi-

sive algorithms work in an opposite direction, where

initially all the data points are regarded as one clus-

ter, which is successively divided into smaller ones by

splitting groups of nodes having the lowest similarity.

In both algorithms, clusters are represented as a den-

drogram, whose depths indicate the steps at which two

clusters are joined. �is representation clari�es which

communities are built up from smaller modules, and

how these smaller communities are organized, which

can be particularly useful in the case of the presence of

a normal hierarchy of community structure in the data.

Hierarchical clustering techniques can easily be used

in network domains, where data points are replaced by

Group Detection G 

G

individual nodes in the network, and the similarity is

based on edges between them.

Centrality-Based Techniques

One of the methods for community detection that

is based on the global network structure is the one

proposed by Girvan and Newman (), where they

proposed an algorithm based on the betweenness

centrality of edges to be able to recover the group struc-

ture within the network. Betweenness centrality is a

measure of centrality of nodes in networks, de�ned for

each node as the number of shortest paths between

pairs of nodes in the network that run through it. �e

Girvan–Newman algorithm extended this de�nition for

edges in the network as well, where the betweenness

centrality of an edge is de�ned as the number of shortest

paths between pairs of nodes that run along it.

�e basic idea behind the algorithm is exploiting the

fact that the number of edges connecting nodes from

di�erent communities is sparse. Following from that,

all shortest paths between nodes fromdi�erent commu-

nities should pass along one of these edges, increasing

their edge betweenness centrality measure. �erefore,

by following a greedy approach and removing edges

with highest betweenness centrality from the network

successively, the underlying community structure will

be revealed. One of the major drawbacks of the algo-

rithm is the time complexity, which is O(∣E∣∣V ∣) gen-

erally, andO(∣V ∣) for sparse networks.�e fact that the

edge betweenness needs only to be recalculated only for

the edges a�ected by the edge removal can be factored

in, which makes the algorithm e�cient in sparse net-

works with strong community structure, but not very

e�cient on dense networks.

Modularity-Based Techniques

�e concept of modularity was introduced by Newman

and Girvan () as a measure to evaluate the qual-

ity of a set of extracted communities in a network, and

has become one of the most popular quality functions

used for community detection. �e basic idea is uti-

lizing a null model: a network having the same set of

nodes as the original one, but with random edges placed

between them taking into account preserving the orig-

inal node degrees. �e basic idea is that the created

random network is expected to contain no commu-

nity structure, thus by comparing the number of edges

within the extracted communities against the expected

number of edges in the same communities from the ran-

dom network, we can judge the quality of the extracted

community structure. More speci�cally, the modularity

Q is de�ned as follows

Q =


∣E∣
∑
ij

[Aij −
deg(i) × deg(j)

∣E∣
] δk(ci, cj) ()

where Aij is the element of the adjacency matrix of the

network denoting the number of edges between nodes i

and j, deg(i) and deg(j) are the degrees of nodes i and j

respectively, ci and cj are the communities to which

nodes i and j belong respectively, and δk refers to the

kronecker delta. �e summation runs over all pairs of

nodes within the same community.

Clearly, a higher modularity value indicates that the

average link density within the extracted community

is larger than that of the random network where no

community structure is present.�us, modularity max-

imization can be used as the objective for producing

high-quality community structure. However, modular-

ity maximization is an NP-hard problem. Nevertheless,

there have been several algorithms for �nding fairly

good approximations of the modularity maximum in

reasonable amount of time.

One of the �rst modularity maximization algo-

rithms was introduced by Newman in  (Newman,

). It is a greedy hierarchical agglomerative clus-

tering algorithm, which starts with individual nodes

and merges them in the order of increasing the over-

all modularity of the resulting con�guration. �e time

complexity of this greedy algorithm isO(∣V ∣(∣E∣ + ∣V ∣))

or O(∣V ∣) for sparse networks, which enables the user

to run community detection on large networks in a

reasonable amount of time.

Issues
One of themain issueswith themethods of group detec-

tion in network setting is the focus on the network

structure, without taking into consideration other prop-

erties of nodes and edges in the network. �is issue

o�en results in a lack of correspondence between the

extracted communities and the functional groups in the

network (Shalizi, Camperi, & Klinkner, ).�is also

 G Grouping

leads to another common problem which is how to val-

idate the resulting communities produced by any of the

proposed techniques.

Although in network settings there are o�en di�er-

ent types of interactions between entities of di�erent

natures, most group detection methods work on single-

mode networks, which have just a single node and edge

type. Fewer works focus on �nding groups in more

complex,multimodal settings, where nodes fromdi�er-

ent types have multiple types of interactions with each

other. One of themost common approaches to deal with

these types of networks is projecting them into a series

of individual graphs for each node type. However, this

approach results in losing some of the information that

could have been retained by operating collectively on

the original multi-relational network.

Another issue also gaining interest is developing

methods for group detection in dynamic network set-

tings (Tantipathananandh & Berger-Wolf, ), where

the underlying network structure changes over time.

Most of the previous work on group detection focused

on static networks, and handles the dynamic case by

either analyzing a snapshot of the network at a single

point in time, or aggregating all interactions over the

whole time period. Both approaches do not capture the

dynamics of change in the network structure, which

can be an important factor in revealing the underlying

communities.

Cross References
7Graph Clustering
7Graph Mining

Recommended Reading
Alpert, C., Kahng, A., & Yao, S. (). Spectral partitioning: The

more eigenvectors, the better. Discrete Applied Mathematics, ,

–.

Arenas, A., Daz-Guilera, A., & Prez-Vicente, C. J. (). Syn-

chronization reveals topological scales in complex networks.

Physical Review Letters, (), .

Chen, J., & Yuan, B. (). Detecting functional modules in

the yeast protein–protein interaction network. Bioinformatics,

(), –.

Flake, G. W., Lawrence, S., Giles, C. L., & Coetzee, F. ().

Self-organization and identification of web communities. IEEE

Computer, , –.

Girvan, M., & Newman, M. E. J. (). Community structure

in social and biological networks. Proceedings of National

Academy of Science, , –.

Hartigan, J. A. (). Clustering algorithms. New York: Wiley.

Homans, G. C. (). The human group. New York: Harcourt, Brace.

Lancichinetti, A., Fortunato, S., & Kertesz, J. (). Detecting the

overlapping and hierarchical community structure in complex

networks. New Journal of Physics, , .

MacQueen, J. B. (). Some methods for classification and

analysis of multivariate observations. In Proceedings of fifth

Berkeley symposium on mathematical statistics and probability

(Vol. , pp. –). Berkeley, CA: University of California

Press.

Newman, M. E. J. (). Fast algorithm for detecting community

structure in networks. Physical Review E, (), .

Newman, M. E. J., & Girvan, M. (). Finding and evaluat-

ing community structure in networks. Physical Review E, ,

.

Palla, G., Dernyi, I., Farkas, I., & Vicsek, T. (). Uncovering

the overlapping community structure of complex networks in

nature and society. Nature, (), –.

Rice, S. A. (). The identification of blocs in small political

bodies. American Political Science Review, , –.

Rosvall, M., & Bergstrom, C. T. (). Maps of random walks on

complex networks reveal community structure. Proceedings of

National Academy of Science, , –.

Shalizi, C. R., Camperi, M. F., & Klinkner, K. L. (). Discovering

functional communities in dynamical networks. Statistical net-

work analysis: Models, issues, and new directions (pp. –).

Berlin: Springer-Verlag.

Tantipathananandh, C., & Berger-Wolf, T. Y. (). Algorithms for

identifying dynamic communities. In Proceedings of the th

ACM SIGKDD international conference on knowledge discovery

and data mining, Paris. New York: ACM.

Grouping

7Categorical Data Clustering

Growing Set

Definition
A growing set is a subset of a 7training set contain-
ing data that are used by a7learning system to develop
models that are then evaluated against a7pruning set.

Cross References
7Data Set

Growth Function

7Shattering Coe�cient

	G
	Gaussian Distribution
	Synonyms
	Definition
	Motivation and Background
	Theory/Solution
	Canonical Form
	Cumulative Distribution Function
	Moments
	Entropy and Kullback–Leibler Divergence
	Properties Under Affine Transform
	Conjugate Priors
	Parameter Estimation
	Distributions Induced by the Gaussian

	Applications
	Central Limit Theorem
	Approximate Gaussian Posterior
	3-bold0mu mumu Rule
	Combination of Random Variables
	Correlations and Independence
	Marginalization, Conditioning, and Agglomeration

	Cross References
	Recommended Reading

	Gaussian Process
	Synonyms
	Definition
	Motivation and Background
	Theory
	Gaussian Process
	Covariance Functions

	Applications
	Regression
	Likelihood Function and Posterior Distribution:
	Predictive Distribution:
	Point Prediction:

	Classification
	Likelihood Function and Posterior Distribution:
	Predictive Distribution:
	Point Prediction:

	Practical Issues
	Model Selection
	Marginal Likelihood for Regression:
	Marginal Likelihood for Classification:

	Sparse Approximation

	Current and Future Directions
	Cross References
	Recommended Reading

	Gaussian Process Reinforcement Learning
	Definition
	Motivation and Background
	Markov Decision Processes
	Reinforcement Learning

	Structure of Learning System
	Gaussian Process Temporal Difference Learning

	Theory
	MRPs with Deterministic Transitions
	General MRPs

	Applications
	Future Directions
	Further Reading
	Recommended Reading

	Generality And Logic
	Generalization
	Cross References
	Recommended Reading

	Generalization Bounds
	Synonyms
	Definition
	Motivation and Background
	Details
	Cross References
	Recommended Readings

	Generalization Performance
	Cross References

	Generalized Delta Rule
	General-to-Specific Search
	Generative and Discriminative Learning
	Definition
	Motivation and Background
	Cross References
	Recommended Reading

	Generative Learning
	Definition
	Cross References

	Genetic and Evolutionary Algorithms
	Definitions
	Genetic Operators
	Cross References

	Genetic Attribute Construction
	Genetic Clustering
	Genetic Feature Selection
	Genetic Grouping
	Genetic Neural Networks
	Genetic Programming
	Genetics-Based Machine Learning
	Gibbs Sampling
	Gini Coefficient
	Gram Matrix
	Grammar Learning
	Grammatical Inference
	Synonyms
	Definition
	Recommended Reading

	Grammatical Tagging
	Graph Clustering
	Synonyms
	Definition
	Motivation and Background
	Graph Clustering as Minimum Cut
	Graph Clustering as Multiway Graph Partitioning
	Graph Clustering with k-Means
	Graph Clustering with the Spectral Method
	Graph Clustering as Quasi-Clique Detection
	Graph Clustering as Dense Subgraph Determination
	Clustering Graphs as Objects
	Conclusions and Future Research
	Cross References
	Recommended Reading

	Graph Kernels
	Definition
	Motivation and Background
	Approaches for Kernels between Graphs
	Approaches for Kernels on a Graph
	Recommended Reading

	Graph Mining
	Definition
	Motivation and Background
	Structure of Learning System
	Analysis of Real-World Graphs
	Graph Generators

	Applications
	Cross References
	Recommended Reading

	Graphical Models
	Definition
	Motivation and Background
	Theory
	Directed Graphical Models
	Undirected Graphical Models
	Conversion from Directed to Undirected GraphicalModels

	Characterization of Directed and Undirected Graphical Models

	Applications
	Inference Algorithms in Graphical Models
	Belief-Propagation
	Maximum A Posteriori (MAP) Estimation
	The Junction-Tree Algorithm
	Approximate Inference

	Cross References
	Recommended Reading

	Graphs
	Definition
	Motivation and Background
	Theory
	Isomorphism
	Classes of Graphs
	Properties of Graphs

	Applications
	Future Directions
	Recommended Reading

	Greedy Search
	Cross References
	Recommended Reading

	Greedy Search Approach of Graph Mining
	Definition
	Motivation and Background
	Structure of Learning System
	Graph-Based Hierarchical Conceptual Clustering
	Graph-Based Supervised Learning
	Graph Grammar Inference

	Programs and Data
	Applications
	Future Directions
	Cross References
	Recommended Reading

	Group Detection
	Synonyms
	Definition
	Motivation and Background
	Theory Solution
	Approaches
	Local Techniques
	Clustering Techniques
	Centrality-Based Techniques
	Modularity-Based Techniques

	Issues
	Cross References
	Recommended Reading

	Grouping
	Growing Set
	Definition
	Cross References

	Growth Function

