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Tree Learning 
A story on uncertainty in machine learning 

Based also on the book by Peter Flach, University of Bristol and 
Ray Mooney, University of Texas, Lecture 
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Machine learning settings 
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Machine learning settings 

•  Logical approach - Decision and regression trees, rules 

•  Probabilistic methods – Bayesian methods 

•  Linear methods – Linear discriminant, SVM, perceptron, 
 logistic regression 

•  Distance-based methods – Lazy Learning (kNN), clustering 
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Learning Trees 

•  Supervised method – data classified into classes, i.e. data 
contains a target attribute 

•  Classifier is a tree that represents a hypotheses in a 
disjunctive normal form 

•  Finite number of classes  >= 2 (for a decision tree), 
continuous (for regression trees) 

•  Finding a minimal decision tree (nodes, leaves, or depth) is 
an NP-hard optimization problem. Heuristic algorithm can 
be used to build a tree 

•  Want to pick a feature that creates subsets of examples that 
are relatively “pure” in a single class so they are “closer” to 
being leaf nodes. 
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Tree Induction Pseudocode 

DTree(examples, features) returns a tree 
  If all examples are in one category, return a leaf node with that category label. 
  Else if the set of features is empty, return a leaf node with the category label that 
         is the most common in examples. 
  Else pick a feature F and create a node R for it 
        For each possible value vi of F: 
               Let examplesi be the subset of examples that have value vi for F 

 Add an out-going edge E to node R labeled with the value vi. 

                       If examplesi is empty 
                      then attach a leaf node to edge E labeled with the category that 
                               is the most common in examples. 
                      else call DTree(examplesi , features – {F}) and attach the resulting 
                              tree as the subtree under edge E. 
        Return the subtree rooted at R.        
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Tree Induction Pseudocode 

DTree(examples, features) returns a tree 
  If all examples are in one category, return a leaf node with that category label. 
  Else if the set of features is empty, return a leaf node with the category label that 
         is the most common in examples. Else  

            pick/construct a feature F and create a node R for it 
        For each possible value vi of F: 
               Let examplesi be the subset of examples that have value vi for F 

 Add an out-going edge E to node R labeled with the value vi. 
 OR add a label vi. to an existing edge 

                       If examplesi is empty 
                      then attach a leaf node to edge E labeled with the category that 
                               is the most common in examples (mode or mean). 
                      else call DTree(examplesi , features – {F}) and attach the resulting 
                              tree as the subtree under edge E. 
        Return the subtree rooted at R.        
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Decision Tree Induction 
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Impurity. Picking a Good Split Feature 
Impurity for classes D1, …, Dl 
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Entropy 
•  Entropy (disorder, impurity) of a set of examples, S, relative to a binary classification is: 

      where p1 is the fraction of positive examples in S and p0 is the fraction of negatives. 
•  If all examples are in one category, entropy is zero (we define 0⋅log(0)=0) 
•  If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1. 
•  Entropy can be viewed as the number of bits required on average to encode the class of an 

example in S where data compression (e.g. Huffman coding) is used to give shorter codes 
to more likely cases. 

•  For multi-class problems with c categories, entropy generalizes to: 

•  Information Gain 
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Hypothesis Space Search 

•  Performs batch learning that processes all training 
instances at once rather than incremental learning 
that updates a hypothesis after each example. 

•  Performs hill-climbing (greedy search) that may 
only find a locally-optimal solution. Guaranteed to 
find a tree consistent with any conflict-free 
training set (i.e. identical feature vectors always 
assigned the same class), but not necessarily the 
simplest tree. 

•  Finds a single discrete hypothesis, so there is no 
way to provide confidences or create useful 
queries. 
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Continuous features 

Use binary split of the current interval using the same impurity measure  
 as for discrete attributes  
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Missing feature values 

•  Remove the instance 
•  Replace with the most common (mode, 

mean) value 
•  Replace with the most common (mode, 

mean) value w.r.t. a class 
•  Decision trees: use weighted Impurity 

measure (add relative increment to each 
atribute value 
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Bias in Decision-Tree Induction 

•  Information-gain gives a bias for trees with 
minimal depth. 

•  Implements a search (preference) bias 
instead of a language (restriction) bias. 
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History of Decision-Tree Research 

•  Hunt and colleagues use exhaustive search decision-tree 
methods (CLS) to model human concept learning in the 
1960’s. 

•  In the late 70’s, Quinlan developed ID3 with the 
information gain heuristic to learn expert systems from 
examples. 

•  Simulataneously, Breiman and Friedman and colleagues 
develop CART (Classification and Regression Trees), 
similar to ID3. 

•  In the 1980’s a variety of improvements are introduced to 
handle noise, continuous features, missing features, and 
improved splitting criteria. Various expert-system 
development tools results. 

•  Quinlan’s updated decision-tree package (C4.5) released in 
1993. 

•  Weka includes Java version of C4.5 called J48. 
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Computational Complexity 

•  Worst case builds a complete tree where every path test 
every feature. Assume n examples and m features. 

•  At each level, i, in the tree, must examine the remaining m- 
i features for each instance at the level to calculate info 
gains. 

•  However, learned tree is rarely complete (number of leaves 
is ≤ n). In practice, complexity is linear in both number of 
features (m) and number of training examples (n). 
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Overfitting Noise in Decision Trees 

•  Category or feature noise can easily cause overfitting. 
–  Add noisy instance <medium, blue, circle>: pos (but really neg) 

shape 
circle square triangle 

color 
red blue green 

pos neg pos 

neg neg 
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Overfitting Noise in Decision Trees 

•  Category or feature noise can easily cause overfitting. 
–  Add noisy instance <medium, blue, circle>: pos (but really neg) 

shape 
circle square triangle 

color 
red blue green 

pos neg pos 

neg 
<big, blue, circle>: - 
<medium, blue, circle>: + 

small med big 

pos neg neg 

•  Noise can also cause different instances of the same feature 
vector to have different classes.  Impossible to fit this data 
and must label leaf with the majority class. 
–  <big, red, circle>: neg (but really pos) 

•  Conflicting examples can also arise if the features are 
incomplete and inadequate to determine the class or if the 
target concept is non-deterministic. 
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Overfitting Prevention (Pruning) Methods 

•  Two basic approaches for decision trees 
–  Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make 
reliable decisions. 

–  Postpruning: Grow the full tree, then remove subtrees that do not 
have sufficient evidence. 

•  Label leaf resulting from pruning with the majority class of 
the remaining data, or a class probability distribution.  

•  Method for determining which subtrees to prune: 
–  Cross-validation: Reserve some training data as a hold-out set 

(validation set, tuning set) to evaluate utility of subtrees. 
–  Statistical test: Use a statistical test on the training data to 

determine if any observed regularity can be dismisses as likely due 
to random chance. 

–  Minimum description length (MDL): Determine if the additional 
complexity of the hypothesis is less complex than just explicitly 
remembering any exceptions resulting from pruning. 
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Reduced Error Pruning 

•  A post-pruning, cross-validation approach. 
Partition training data in “grow” and “validation” sets. 
Build a complete tree from the “grow” data. 
Until accuracy on validation set decreases do: 
       For each non-leaf node, n, in the tree do: 
              Temporarily prune the subtree below n and replace it with a 
                  leaf labeled with the current majority class at that node. 
              Measure and record the accuracy of the pruned tree on the validation set. 
       Permanently prune the node that results in the greatest increase in accuracy on 
            the validation set. 
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Issues with Reduced Error Pruning 

•  The problem with this approach is that it 
potentially “wastes” training data on the validation 
set. 

•  Severity of this problem depends where we are on 
the learning curve: 
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Cross-Validating without  
Losing Training Data 

•  If the algorithm is modified to grow trees breadth-
first rather than depth-first, we can stop growing 
after reaching any specified tree complexity. 

•  First, run several trials of reduced error-pruning 
using different random splits of grow and 
validation sets.  

•  Record the complexity of the pruned tree learned 
in each trial.  Let  C be the average pruned-tree 
complexity. 

•  Grow a final tree breadth-first from all the training 
data but stop when the complexity reaches C. 

•  Similar cross-validation approach can be used to 
set arbitrary algorithm parameters in general. 
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Additional Decision Tree Issues 

•  Features with costs 

•  Misclassification costs 

•  Incremental learning 

•  Mining large databases that do not fit in main memory 
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C4.5 

•  Based on ID3 algorithm, author Ross Quinlan 
•  In all (or most of) non-commercial and commercial data mining tools 
•  Weka: C4.5 ver.8 -> j48 

Scheme of C4.5 algorithm: 
 Run several time and choose the best tree 
 Inner:Take L% of learning data randomly 
   Call ID3 (pre-pruning, see –m parameter) 
   Prune the tree (post-pruning, -cf) 
  Take T% of unseen learning data for validation 
  If validation criterion holds, exit 
  Otherwise add L.increment to L and go to Inner 


