PyMC3 Very Brief Intro to MCMC

Štěpán Skovajsa

Bayes theorem recall

Computational challenge

The application theorem $p(y) = \int_{\Theta} p(y \mid \theta) p(\theta) d\theta$ $=\int_{\Theta} p(y, \theta) d\theta$

Monte Carlo

Invented by **Stanislaw Ulam** Many applications, i.e. Monte Carlo integration

$$\mathbb{E}[f(x)] = \int_X f(x)p(x)dx$$
$$\simeq \frac{1}{n} \sum_{i=1}^n f(\cdot)$$
$$n \to \infty$$
Sampling

Naive approach

Markov chain

Markov state diagram of a child behaviour

 $P(x_{n+1} | x_n, x_{n-1}, ..., x_1) = P(x_{n+1} | x_n)$

Markov Chain Monte Carlo a.k.a. MCMC

https://www.researchgate.net/publication/331494053_Prognostics_102_Efficient_Bayesian-Based_Prognostics_Algorithm_in_MATLAB

https://relguzman.blogspot.com/2018/04/sampling-metropolis-hastings.html

Bibliography

Cameron Davidson-Pilon. *Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference*. 2015. ISBN: 978-0133902839.

Avi Pfeffer. *Practical Probabilistic Programming*. Manning Publications Co. 456 pp. ISBN: 9781617292330.

And also https://docs.pymc.io/