PV160 HCI Lab + Visit Lab

List of topics, spring 2021

Spectatorship Experience

Spectating other people playing games has become a mass phenomenon over the last years

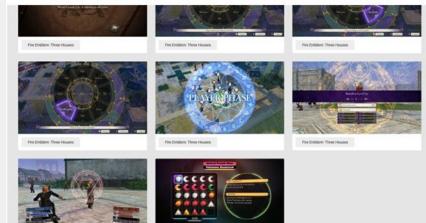
This can range from small gatherings around the family table following a card or board game to large e-sport events attracting up to millions of viewers

This raises new design challenges for HCI:

- How can spectator experiences be facilitated in order to pro-actively involve spectators instead of being passive observers?
- How can an approach look like to make games more accessible for the audience, to spark interest, and to stimulate a feeling of togetherness?
 - <u>https://seegamesws.wordpress.com/</u>
 - <u>https://esportshci.wordpress.com/</u>

In-Game Visualization

Visualizations in games become more and more important in order to give feedback and as UI element


The <u>Game UI Database</u> was developed as a free resource for UI/UX designers in the games industry with the goal

- to discovery new inspiration
- to provide reference materials

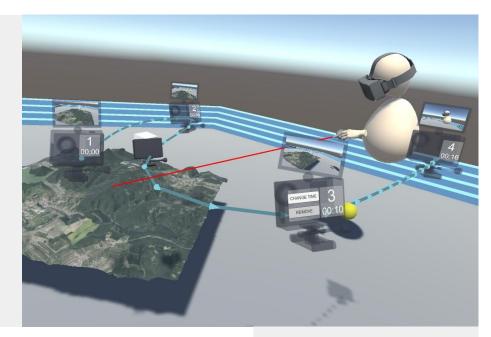
Goal:

- To analyze the Game UI database regarding visualizations which are used as part of game interfaces
- The different games and screenshots in the database should be categorized according to the used visualizations
- The visualizations should be analyzed with respect to different criteria such as purpose, genre, tasks, year, and others
- This is part of an open master topic "<u>In-Game Visualization</u> <u>Browser</u>"

Contact - Simone

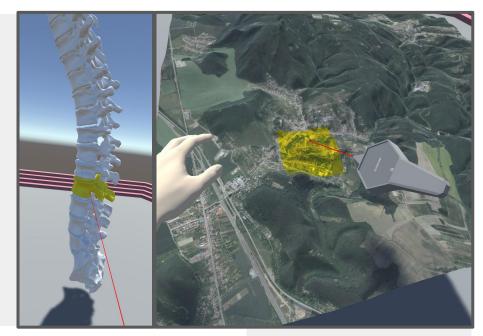
User Interface for Virtual Reality

- Universal UI for VR Apps
- Interactive:
 - "Physically" & via pointer
- Unity



Interactable Trajectory Visualization in Virtual Reality

- Be able to **create** and **edit** at runtime
- Unity



Objects Grouping and Highlighting in VRdeo

- Group and ungroup objects
- Highlight in 3D
- Unity

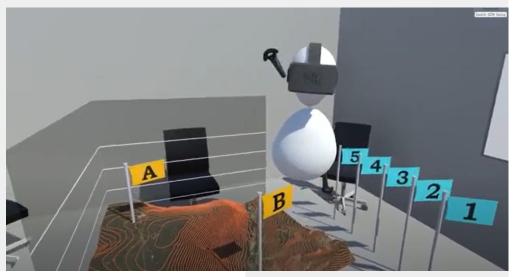
Custom Interactive Models of Virtual Reality Controllers

- Highlight individual buttons
- Labels ("Tutorial")
- Unity

7
Y

VR Paraglide

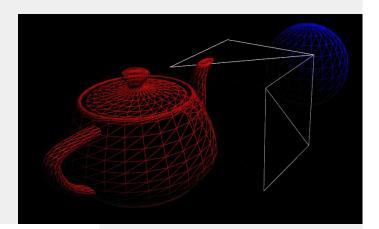
- a) simple "physics" of paraglide
- b) "flythrough" log, analysis, ...
- + Basic controls in VR
- Suitable for bachelor thesis



Contact: Jirka, Vojta

Collaborative VR

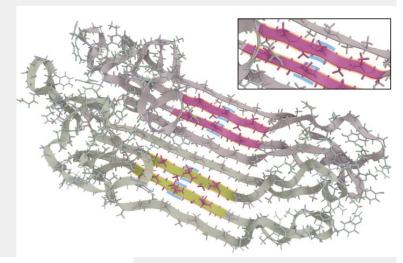
К



Contact: Jirka, Vojta

E-Learning

- System for automatic correction of short PB009 programming assignments
- Suitable for bachelor/master thesis



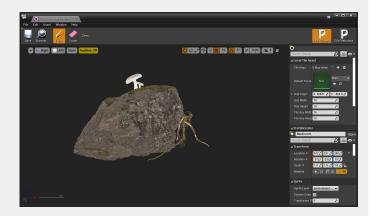
Contact: Jan

Selection Schemes for CAVER Analyst

- Reimplementation of techniques presented in
 - MolFind Integrated Multi-Selection Schemes for Complex Molecular Structures

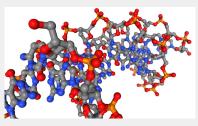
Contact: Jan

Filtering UI


• Implementation of UI for filtering panels in CAVER Analyst

Custom Editor for Prefabricator in UE4

- Edit Prefabricator assets in a separate window
 - \circ $\,$ experience how tools programming in gamedev works $\,$
 - \circ sadly no documentation
 - \circ good understanding of C++ required
 - o <u>https://prefabricator.dev/</u>


Contact: Jan

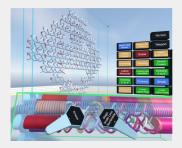
Ball-and-stick billboarding in Unity URP

- Task: Implement billboarded ball-and-stick model for real-time rendering of large molecules
- Technology: Unity, Universal Render Pipeline
- Deliverables:

unity

- Unity project presenting an extensible & well-documented algorithm(s) able to render a large molecule with a ball-and-stick model:
 - using a 3D geometry,
 - Can be unoptimized, primarily for reference.
 - using billboards / imposter rendering.
 - Should have a good performance.

Exploring VR on the web

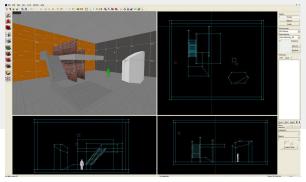

- **Task:** Examine WebXR standard and relevant frameworks for development of web-based VR apps
- Technology: JavaScript
- Deliverables:
 - Document / mind map summarizing existing frameworks, which can provide some kind of VR experience via a web browser
 - Each framework above will be accompanied by a description of its capabilities, links to useful tutorials or documentation
 - A working example of a web-based VR scene allowing the user to move around and interact with some of the things in the scene

Vivern: extending the capabilities

- Task: Extend Vivern (VR application for DNA origami modeling) with new features
 - \circ Exact features to be agreed on with the supervisor
 - Suggestions:
 - Inter-lattice connections
 - Scaffold routing / auto stapling
 - Cadnano export
- Technology: Unity, C# [# sign in this font is really bad :D]
- Deliverables:
 - Vivern application with selected features implemented
 Unity

Modeling a hillclimb road course / race track for Assetto Corsa racing simulator

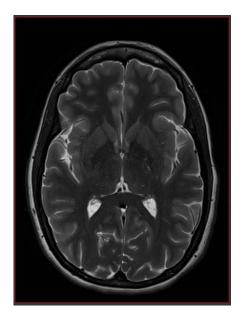
- Task: Create a playable race track for Assetto Corsa game
 - \circ $\,$ Real-world inspired course is preferred $\,$
 - In case of selecting hillclimb road course suggested by supervisor,
 GPS recordings and real photos can be provided
- **Technology:** any 3D graphics editor, official game editor
- Deliverables:
 - \circ $\,$ 3D model of a racetrack and surroundings $\,$
 - \circ $\,$ Racetrack data which can be directly imported into the game and



Creating a fully playable Left 4 Dead 2 level

- Task: Create a playable level/mission for Left 4 Dead 2
 - Covers all tasks from assembling a level (from own or existing assets), through placement of enemies and items up to enriching the level with custom music
- **Technology:** Left 4 Dead Authoring Tools
- Deliverables:
 - Mission (and relevant data) which can be imported into the game and played

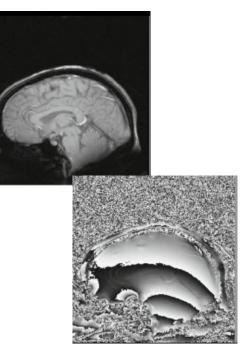
(Alpha)numeric input in VR


- **Task:** Design and implement several approaches for (alpha)numeric input in VR
- Technology: Unity
- Deliverables:
 - Results of research of existing approaches
 - Unity VR project with a simple scene containing a text field for the user input
 - \circ At least 5 different ways how to input purely numeric values
 - Numeric VR keyboard, touchpad-controlled "menu", ???
 - At least 5 different ways how to input alphanumeric values

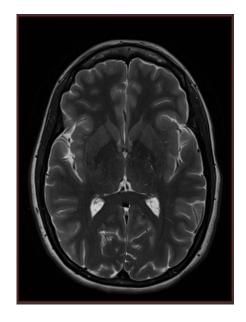
VR keyboard, speech-to-text, ???

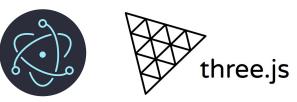
 \circ Physical keyboard of the computer does not count :-)

Components for visualization of MRI data

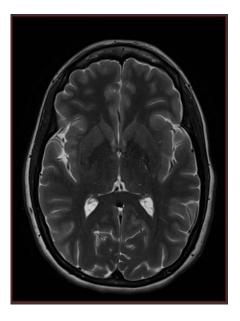

- Implement one of the following:
 - \circ Rulers and orientation tools
 - Selection interface
 - Image enhancement interface
- Technology: Three.js

Visualization of complex-valued images


- Task:
 - Explore possibilities of visualization of complex-valued images
- **Technology:** Three.js

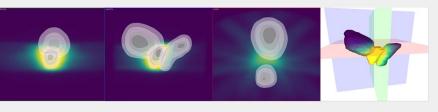


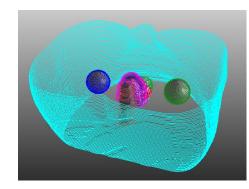
Medical data visualization using Electron

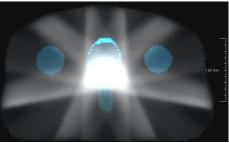

- **Task:** Create desktop apps out of some of Three.js examples and evaluate performance
- Technology: Electron, Three.js
- Deliverables:
 - Compiled applications
 - Performance report

Tracking user interactions in AMI

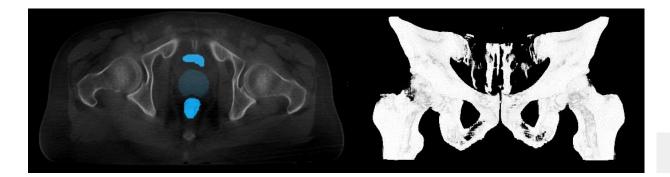
- Task: Implement a system to log information about user interaction in the Three.js library
- Technology: AMI, Three.js


Import radiotherapy data in DICOM


- **Task:** Import of medical data in DICOM format into visual analytics application for radiotherapy:
 - \circ organ segmentations (contours to volumes)
 - \circ radiotherapy plan
 - CTs
- Technology: Java,

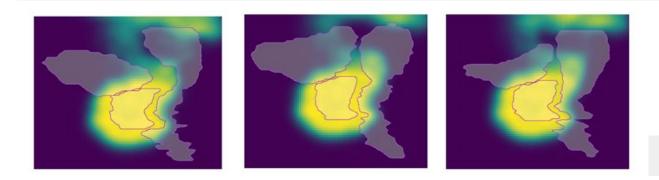

https://medevel.com/dicom-frameworks-libraries/

• **Deliverables:** Import module + GUI



Contact: Katka

Visualization of differences in soft tissue vs. bony registration

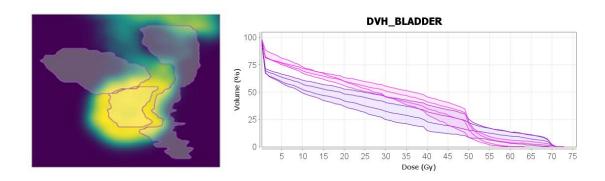

- **Task:** Visualization of differences in detected positional changes when using different rigid registration methods
 - \circ Data preprocessing (bone segmentation, e.g., in MeVisLab)
 - \circ Visualization of registration method impact on treatment planning
- Technology: Java

Contact: Katka

Deformable organ registration

- **Task:** Implement a registration method for detection of patient organ deformations in time
 - \circ $\,$ Generation of control points on organ surfaces $\,$
 - Registration
 - Motion visualization
- Technology: Java, possibly OpenCV

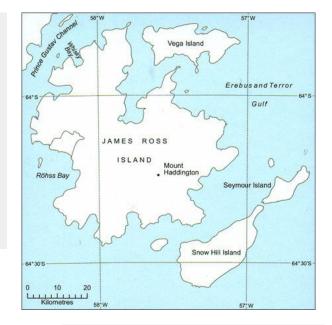
≝ Java[™]


Contact: Katka

Visualization for radiotherapy patient education

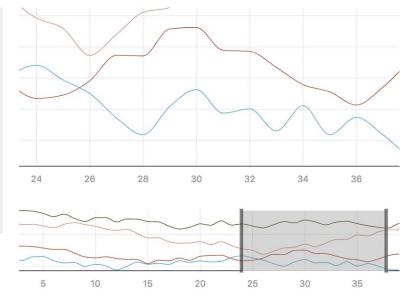
• **Task:** Design and implement methods for communication with and education of radiotherapy patients

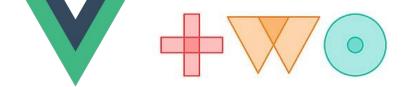
Contact: Katka


• Technology: Up to you

Map visualization of measurement sites in Antarctica

- **Task:** Create map visualization of snow height measurement sites at Mendel Polar Station in Antarctica
- Technology: Vue.js, Two.js, D3.js
- Deliverables:
 - Vue.js component

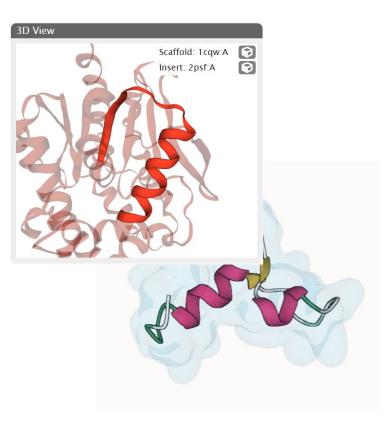




Contact: Matěj

Minimap for long charts

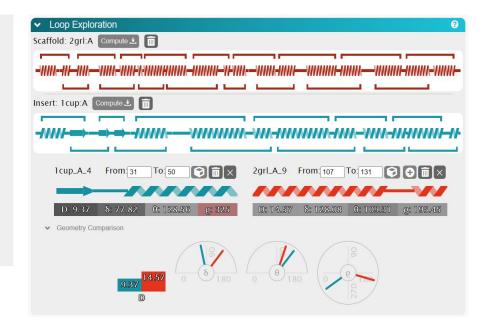
- Task: Create minimap for time series charts, showing current view
- Technology: Vue.js, Two.js
- Deliverables:
 - \circ Vue.js component



Contact: Matěj

3D view in the Loop Grafter

- **Background:** Interactive visual support for novel protein design method
- Task: The current protein 3D visualization is lacking. Refactor current implementation to use the Mol* library and implement basic interactions



Contact: Kiraa

Loop Grafter 2: The Loop Graftest

- **Background:** Interactive visual support for novel protein design method
- **Task:** Adapt the existing Loop Grafter tool for alternative workflow
- Suitable as **Bc/Mgr thesis**

Contact: Kiraa

Contacts:

- David = David Kuťák,
- Jan = Jan Byška,
- Jirka = Jiří Chmelík,
- Palko = Pavol Ulbrich,
- Simone = Simone Kriglstein,
- Tomáš = Tomáš Pšorn,
- Vojta = Vojtěch Brůža,
- Kiraa = Filip Opálený,
- Katka = Katarína Furmanová

kutak@mail.muni.cz byska@mail.muni.cz jchmelik@mail.muni.cz palko@mail.muni.cz kriglstein@mail.muni.cz psorn@mail.muni.cz bruza@mail.muni.cz kiraa@mail.muni.cz furmanova@mail.muni.cz