Micro-architectural Attacks 2

Things we thought
gave us security!

* Cryptography

* Passwords

* Information Flow Policies

* Privileged Rings

* ASLR

* Virtual Machines and confinement

* Javascript and HTML5
(due to restricted access to system
resouces)

* Enclaves (SGX and Trustzone)

@ Micro-Architectural Attacks

(can break all of this)

Cryptography

Passwords

Information Flow Policies
Privileged Rings

ASLR

Virtual Machines and confinement

Javascript and HTML5
(due to restricted access to system
resouces)

Enclaves (SGX and Trustzone)

Cache timing attack

Branch prediction attack

Speculation Attacks

Row hammer

Fault Injection Attacks

cold boot attacks

DRAM Row buffer (DRAMA)

..... and many more

causes

Most micro-architectural attacks caused by
performance optimizations

Others due to inherent device properties :
security

Third, due to stronger attackers performance

Instruction Level Parallelism

Out-of-order execution

How instructions are How they may be How the results are
fetched executed committed

load r0, addrl \ sub r4, rb5, r6\ r0

mov r2, rl — store rl, add2s] r2

add r2, r2, r3 mov r2, rl - r2

store rl, add2 add r2, r2, r3= addr?

sub r4, r5, ro6 load rO, addrl/ r4

inorder out-of-order order restored

Out the processor core, execution looks in-order
Insider the processor core, execution is done out-of-order

Speculative Execution

cmp rO0, rl
jnz label
load r0, addrl
mov r2, rl
add r2, r2, r3
store rl, add?2
sub r4, r5, ro

label:
more instructions

How instructions are
fetched

Speculative execution

cmp r0, ril
Jnz label

label:
more instructions

How instructions are How results are
executed committed when
speculation is correct

transient instructions 7

Speculative Execution

cmp rO0, rl
jnz label
load r0, addrl
mov r2, rl
add r2, r2, r3
store rl, add?2
sub r4, r5, ro

label:
more instructions

How instructions are
fetched

cmp r0, ril
Jnz label

label:
more instructions

How instructions are
executed

Speculative execution

Stransient instructionsz 8

Speculated result

discarded

How results are
committed when

speculation is incorrect

Speculative Execution

cmp r0, ril
cmp r0, rl div rO, rl

div r0, rl
load r0, addrl

nov r2, rl Speculated result

add r2, r2, r3

store rl, add2 discarded

sub r4, r5, ro

leleels label:
more instr ion]]
ore SEiateiEoms more 1nstructions

How instructions are

How instructions are How results are
fetched

executed committed when
speculation is incorrect

Speculative execution (eg. If r1=0)

9

Speculative Execution
and Micro-architectural State

data=84

| raise_exception();
2 // the line below is never reached
1 access(probe_array[data * 4096]);

Access time
[cycles]

200 | | |
0 50 100 150 200 250
<instr.> Page
<instr.> a
E
SECEETen . - Even though line 3 is not reached, the
e [Exception | micro-architectural state is modified due
<instr.> <instr.> | g to Line 3.
[Terminate | <instr.> | Z:&
<instr.> &g ° a
10

ILP Paradigms in Modern Processors

Issue Hazard Distinguishing
Common name structure detection Scheduling characteristic Examples
Superscalar Dynamic Hardware Static In-order execution Mostly in the
(static) embedded space:
MIPS and ARM,
including the ARM
Cortex-A8
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic Hardware Dynamic with Out-of-order execution Intel Core 13, 15,17;
(speculative) speculation with speculation AMD Phenom: IBM
Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in
software and indicated by compiler signal processing,
(often implicitly) such as the TI Céx
EPIC Primarily Primarily Mostly static All hazards determined Itanium
static software and indicated explicitly

by the compiler

Speculation Attacks

Meltdown and Spectre

12

Meltdown

Slides motivated from Yuval Yarom'’s talk on Meltdown and Spectre at the
Cyber security research bootcamp 2018

13

Virtual address M e Itd oOwn

space of process)
P P Normal Circumstances

|_|.
I

*pointer
array[i * 256]

Kernel space
h
I

*pointer

|._

User space

array

14

Virtual address M e Itd oOwn

space of process)
Not normal Circumstances

|_|.
I

*pointer
array[i * 256]

*pointer Y

Kernel space

User space

array

15

Virtual address M e Itd oOwn

space of process)
Not normal Circumstances

)
O
a8 i = *pointer
(V2] .
2 *pointer y = arrayl[i * 256]
-
Q
X
)
O
©
Q
(V2]
P -
8#
D)
array

cache miss

16

Virtual address M e Itd oOwn

space of process)
Not normal Circumstances

)
O
a8 i = *pointer
m [}
2 *pointer y = arrayl[i * 256]
-
Q
X
)
O
©
Q
(V2]
P -
8;
D)
array
|

cache miss

17

Virtual address M e Itd oOwn

space of process)
Not normal Circumstances

()
O
a8 i = *pointer
m L]
2 *pointer y = arrayl[i * 256]
-
()
X
()
]
T
Q
(7]
} -
8#
o
“array

cache miss

18

Virtual address M e Itd oOwn

space of process)
Not normal Circumstances

)
O
a8 i = *pointer
m [}
2 *pointer y = arrayl[i * 256]
-
Q
X
)
O
©
Q
(V2]
P -
8#
D) [
array

cache hit

19

Speculative Execution
and Micro-architectural State

data=84
| raise_exception(); W0 T I
2 // the line below is never reached E = 500
3 access (probe_array[data * 4096]); o ld 400
7]
5.5 300
< 200 | | |
0 50 100 150 200 250
<instr. > Page
<instr.> =
E
i
EXCEPTION o
HANDLER <instr.>
<instr.> " | Exception |
<instr.> <instr.> B .
=
[Terminate | <instr.> Gt ; 5
Ba0o
<instr.> & °
20

Spectre

Slides motivated from Yuval Yarom'’s talk on Meltdown and Spectre at the
Cyber security research bootcamp 2018

21

user space of
a process

array_le

secret

array

array2

Spectre (variant 1)

Cache memory

i array|[x];

if (x < array len) {
y = array2[i * 256];

22

user space of

Spectre (variant 1)

array_le ~
~_ Cache memory

secret i array[x];

if (x < array len) {
y = array2[i * 256];

array

array2

23

user space of
a process

array_le .

secret

array

Spectre (variant 1)

Cache memory

array2

Normal Behavior

if (x
—_ i
Yy

}

<

array len) {
array|[x];
array2[i * 256];

24

user space of

a process

array_le

array -

array2

x 256

Spectre (variant 1)

Normal Behavior
Cache memory

if (x
i
} Yy

<

array_len) {
array[x];
array2[i * 256];

25

user space of

a process
array_le
—
array B |
X -
array2 K25

Spectre (variant 1)

Cache memory

Normal Behavior

if (x

<

array_len) {
array[x];
array2[i * 256];

26

user space of
a process

array_le

array -

array?2 K256

Spectre (variant 1)

Cache memory

edicted (01))
ot Take

Normal Behavior

if (x <

[
I

= array2[i * 256];

array_len) {
array[x];

Not taken

Taken
Not taken-. " .~

27

user space of

Spectre (variant 1)

Cache memory Under Attack

if (x < array len) {
i = array|[x];
y = array2[i * 256];

secret

n
]
v
[
I

array
® x>array_len

® array_len not in cache

® secret in cache memory

array2

28

user space of

Spectre (variant 1)

array_le

secret array[x];

if (x < array_ len) {
= array2[i * 256];

array

Misprediction!

array2

29

user space of
a process

Spectre (variant 1)

array_le

if (x < array len) {
secret i = array[x]’;
y = array2[i * 256];
array
X Misprediction!
array2

30

user space of
a process

array_le

secret

array

array2

Spectre (variant 1)

array|[x];

if (x < array len) {
= array2[i * 256];

J(Cache hit found

only here

|

31

Spectre (variant 2)

Victim'’s
address space

Seme J
gadget

§i Jmp *ebx

Spectre (variant 2)

Attacker’s Victim'’s
address space address space

Seme J
gadget

ret

-% s o

§i Jmp *ebx

33

Spectre (variant 2)

Attacker’s
address space

ret

Jmp *eax

Victim'’s
address space

Seme
gadget

% Jmp *ebx

- Taken

Predicted

4 S Not take
@1 ot taken
Taken (11) ~ Taken

Taken

edict;c—l(ﬂ\l)
ot Take

Taken

Not taken
redicted (00

t Tak
Not tukeﬁ‘».u_ s

34

Attacker’s
address space

Spectre (variant 2)

contex
switch

ret

Jmp *eax

Victim'’s
address space

Seme
gadget

.

Jmp *ebx

- .Taken
4 L Not take
@1 O/ Predicted
Taken (11) ~ Taken
Taken ot taken
B, Not taken
edicted (01) redicted (00
ot Take Taken t Taken

Not tukeﬁ‘»._+ o

35

Countermeasures

For meltdown: kpti (kernel page table isolation)

Kernel page-table isolation

User space User space User space
User mode Kernel mode User mode

Kernel mode

36

Countermeasures

For Spectre (variant 1): compiler patches
use barriers (LFENCE instruction) to prevent speculation
static analysis to identify locations where attackers can control
speculation

37

Countermeasures

* For Spectre (Variant 2): Separate BTBs for each process
— Prevent BTBs across SMT threads
— Prevent user code does not learn from lower security execution

38

Countermeasures

For all; at hardware

— Every speculative load and store should bypass cache and stored in a
special buffer known as speculative buffer

39

The Rowhammer Attack

DRAM

Address line

1
Transistor
== DRAM
i‘\!*‘ WL vide WS wWLE WLT YE WA

F h.ar..rf T AT

Bit line Ground o
LTI el i Rl ant o VP P P
AR F A A R e
CTHRAALF R R R R
MTRLRLF R ALF R L
IR PR T R
B I P N N O T Lk Sy
MR rE T e
U HRRLF R R R e
N S P P S S P P S P I S S P e S P

DRAM

Address line

(J DRAM stores charge in a capacitor (charge-based memory) =

Transistor

soraee DRAM

Capacilon =

(J Capacitor must be large enough for reliable sensing

N\i wii wié WS 6wl B WAS
HF h.lq'u.r" T st
Bit line Ground
R TR R T Y ERS T ST st
R S PR P S S PSS P S SN P P e SRSy [
CTIRAAF R R N e
MTIRRLF AL R N gt
IR A R e raat
B P r a S PN S SN P e T aa
TR A R ey st
M IRALF AL R N st
B R TR T R e T e g

DRAM Refresh Cycles

time

—

L]
REFRESH Treri REFRESH
Pulse Pulse

O As time passes, the charges in the memory cells (capacitors) leak away, so without being refreshed
the stored data would eventually be lost.

To prevent this, external circuitry periodically reads each cell and rewrites it, restoring the charge on
the capacitor to its original level.

O Refresh cycles are in orders of milliseconds though, consume some memory bandwidth

DRAM Cells arrangement

rowd
row3
row2
row 1
row0
Q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]
sow-buffer
Q With reduction in transistor sizes, DRAM cells became a. Rows of cells
smaller

& As DRAM cells became smaller, the space between two such
cells reduces

O Closer the two charged bodies, higher the electromagnetic
interference

pemmmmemsmsss———===

b. A single cell

Rowhammer

VLD WL Wil oLl e WS WLE w7 e wLe
IR A A A Al
TR R R L D
(L2 F\
O As we keep accessing a particular row repeatedly B i s e Al s el s il i o
during a refresh interval, neighboring cells have been found R R S s R ST S
to leak charge at a faster rate due to electromagnetic MR AL R R D
coupling. AR A A A D
= Toggling a row voltage briefly increases the voltage of =
atliacat fows A LT A A g
= This slightly opens adjacent rows => Charge leakage b G s g SR i s ab LS Bl
® This leads to a decrease in their retention time. M TRRLF A A R D
IR R R R RLF AR
O Thus during refresh, the corrupted data will be read and
written back again to the DRAM cell. D Geeacro o PSS R \
. Memory available for read and write operations_ ..I -
4 time
Ther REFRESH

Pulse

Rowhammer

A

64-bit

| http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/

Rowhammer

=

64-bit

| http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/

Rowhammer

64-bit

| http://apt.cs.manchester.ac.uk/projects/ARMOR/RowHammer/

A Simple program

100p:
mov (), %eax
mov (1), %ebx
T 1 118 B e)

(

CHELjisSE
mfence
Jmp loop

)

To Avoid cache hits => Flush x from cache
To void row hits to x in the row buffer => Read y in another row

Download from: https://github.com/CMU-SAFARI/rowhammer

X

Yi=)>

Security implications

RAMPAGE ATTACK

. 3
N RO namTa; NRALRING ‘-c‘,r..'..'.."_.g
Hacking Android With Rowhammer

Not there yet, but ...

Hammer And RES

One bit can make
a lot of difference

Y OWHAMMERJS

ROQT privileges for web apps! CIND30I1D

Solutions

U Increase the access interval of the aggressor (attacking row). Less frequent accesses => fewer errors
U Decrease the refresh cycles. More frequent refresh => fewer errors
() Pattern of storing data in DRAMs.

O Sophisticated Error Corrections. (As many as 4 errors were found per cache line)

That’s for the Day !!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

