
CSS: Introduction
PV219, spring 2021

Agenda

1. What is CSS?
2. CSS Syntax
3. Location of Styles
4. Selectors
5. The Cascade: How Styles Interact
6. The Box Model
7. CSS Selectors Level 3/4 – teaser
8. CSS Text Styling

7

What is CSS?

What is CSS?

CSS is a W3C standard for describing the presentation
(or appearance) of HTML elements.

With CSS, we can assign

• font properties,

• colors,

• sizes,

• borders,

• background images,

• even the position of elements.

What is CSS?

CSS is a language in that it has its own syntax rules.

CSS can be added directly to any HTML element (via
the style attribute), within the <head> element, or,
most commonly, in a separate text file that contains
only CSS.

Benefits of CSS

• The degree of formatting control in CSS is
significantly better than that provided in HTML.

• Web sites become significantly more maintainable
because all formatting can be centralized into one,
or a small handful, of CSS files.

• CSS-driven sites are more accessible.

• A site built using a centralized set of CSS files for all
presentation will also be quicker to download
because each individual HTML file will contain less
markup.

• CSS can be used to adopt a page for different
output mediums.

Why using CSS is a better way of describing presentation than HTML

CSS Versions

• W3C published the CSS Level 1 Recommendation in
1996.

• A year later, the CSS Level 2 Recommendation (also
more succinctly labeled simply as CSS2) was published.

• Even though work began over a decade ago, an updated
version of the Level 2 Recommendation, CSS2.1, did not
become an official W3C Recommendation until June
2011.

• And to complicate matters even more, all through the
last decade (and to the present day as well), during the
same time the CSS2.1 standard was being worked on, a
different group at the W3C was working on a CSS3 draft.

Let’s just say there’s more than 1

Browser Adoption

While Microsoft’s Internet Explorer was an early
champion of CSS, its later versions (especially IE5, IE6,
and IE7) for Windows had uneven support for certain
parts of CSS2.

In fact, all browsers have left certain parts of the CSS2
Recommendation unimplemented.

CSS has a reputation for being a somewhat frustrating
language.

• this reputation is well deserved!

CSS Syntax

CSS Syntax

A CSS document consists of one or more style rules.

A rule consists of a selector that identifies the HTML
element or elements that will be affected, followed by
a series of property and value pairs (each pair is also
called a declaration).

Rules, properties, values, declarations

selector { property: value; property2: value2; }

declaration block

declaration

em { color: red; }

p {
 margin: 5px 0 10px 0;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

property value

selector

rule
syntax

examples

selector { property: value; property2: value2; }

declaration block

declaration

em { color: red; }

p {
 margin: 5px 0 10px 0;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

property value

selector

rule
syntax

examples

Declaration Blocks

The series of declarations is also called the
declaration block.

• A declaration block can be together on a
single line, or spread across multiple lines.

• The browser
ignores white space

• Each declaration is
terminated with a
semicolon.

Selectors

Every CSS rule begins with a selector.

The selector identifies which element or elements in
the HTML document will be affected by the
declarations in the rule.

Which elements

selector { property: value; property2: value2; }

declaration block

declaration

em { color: red; }

p {
 margin: 5px 0 10px 0;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

property value

selector

rule
syntax

examples

Another way of
thinking of selectors is
that they are a
pattern which is used
by the browser to
select the HTML
elements that will
receive the style.

Properties

Each individual CSS declaration must contain a
property.

These property names are predefined by the CSS
standard.

The CSS2.1 Recommendation
defines over a hundred
different property names.

Which style properties of the selected elements

selector { property: value; property2: value2; }

declaration block

declaration

em { color: red; }

p {
 margin: 5px 0 10px 0;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

property value

selector

rule
syntax

examples

Properties

Property Type Property
Fonts font

font-family

font-size
font-style

font-weight
@font-face

Text letter-spacing
line-height

text-align
text-decoration

text-indent

Color and background background
background-color

background-image
background-position

background-repeat
color

Borders border
border-color

border-width
border-style

border-top
border-top-color

border-top-width
etc

Common CSS properties

Properties

Property Type Property
Spacing padding

padding-bottom, padding-left, padding-right, padding-top

margin
margin-bottom, margin-left, margin-right, margin-top

Sizing height
max-height

max-width
min-height

min-width
width

Layout bottom, left, right, top
clear

display
float

overflow
position

visibility
z-index

Lists list-style
list-style-image

list-style-type

Common CSS properties continued.

Values

Each CSS declaration also contains a value for a
property.

• The unit of any given value is dependent upon
the property.

• Some property values are from a predefined
list of keywords.

• Others are values such as length
measurements, percentages, numbers without
units, color values, and URLs.

What style value for the properties

Color Values

CSS supports a variety of different ways of describing color

Method Description Example
Name Use one of 17 standard color names. CSS3

has 140 standard names.
color: red;

color: hotpink; /* CSS3 only */

RGB Uses three different numbers between 0
and 255 to describe the Red, Green, and

Blue values for the color.

color: rgb(255,0,0);

color: rgb(255,105,180);

Hexadecimal Uses a six-digit hexadecimal number to
describe the red, green, and blue value of

the color; each of the three RGB values is
between 0 and FF (which is 255 in

decimal). Notice that the hexadecimal
number is preceded by a hash or pound

symbol (#).

color: #FF0000;

color: #FF69B4;

RGBa Allows you to add an alpha, or
transparency, value. This allows a

background color or image to “show
through” the color. Transparency is a value

between 0.0 (fully transparent) and 1.0
(fully opaque).

color: rgb(255,0,0, 0.5);

HSL Allows you to specify a color using Hue
Saturation and Light values. This is

available only in CSS3. HSLA is also
available as well.

color: hsl(0,100%,100%);

color: hsl(330,59%,100%);

Units of Measurement

Some of these are relative units, in that they are
based on the value of something else, such as the size
of a parent element.

Others are absolute units, in that they have a real-
world size.

Unless you are defining a style sheet for printing, it is
recommended to avoid using absolute units.

Pixels are perhaps the one popular exception (though
as we shall see later there are also good reasons for
avoiding the pixel unit).

There are multiple ways of specifying a unit of measurement in CSS

Relative Units

Unit Description Type
px Pixel. In CSS2 this is a relative measure, while in CSS3 it is

absolute (1/96 of an inch).
Relative (CSS2)

Absolute (CSS3)

em Equal to the computed value of the font-size property of
the element on which it is used. When used for font sizes,
the em unit is in relation to the font size of the parent.

Relative

% A measure that is always relative to another value. The
precise meaning of % varies depending upon which
property it is being used.

Relative

ex A rarely used relative measure that expresses size in
relation to the x-height of an element’s font.

Relative

ch Another rarely used relative measure; this one expresses
size in relation to the width of the zero ("0") character of
an element’s font.

Relative

(CSS3 only)

rem Stands for root em, which is the font size of the root
element. Unlike em, which may be different for each
element, the rem is constant throughout the document.

Relative

(CSS3 only)

vw, vh Stands for viewport width and viewport height. Both are
percentage values (between 0 and 100) of the viewport
(browser window). This allows an item to change size
when the viewport is resized.

Relative

(CSS3 only)

Absolute Units

Unit Description Type

in Inches Absolute

cm Centimeters Absolute

mm Millimeters Absolute

pt Points (equal to 1/72 of an inch) Absolute

pc Pica (equal to 1/6 of an inch) Absolute

Comments in CSS

It is often helpful to add comments to your style
sheets. Comments take the form:

/* comment goes here */

Location of Styles

Actually there are three …

Author-created style sheets (what we are learning in
this presentation).

User style sheets allow the individual user to tell the
browser to display pages using that individual’s own
custom style sheet. This option is available in a
browser usually in its accessibility options area.

The browser style sheet defines the default styles the
browser uses for each HTML element.

Different types of style sheet

Style Locations

CSS style rules can be located in three different
locations.

• Inline

• Embedded

• External

You can combine all 3.

Author Created CSS style rules can be located in three different locations

Inline Styles

An inline style only affects the element it is defined
within and will override any other style definitions for
the properties used in the inline style.

Using inline styles is generally discouraged since they
increase bandwidth and decrease maintainability.

Inline styles can however be handy for quickly testing
out a style change.

Style rules placed within an HTML element via the style attribute

Embedded Style Sheet

While better than inline styles, using embedded styles
is also by and large discouraged.

Since each HTML document has its own <style>
element, it is more difficult to consistently style
multiple documents when using embedded styles.

Style rules placed within the <style> element inside the <head> element

External Style Sheet

This is by far the most common place to locate style
rules because it provides the best maintainability.

• When you make a change to an external style
sheet, all HTML documents that reference that style
sheet will automatically use the updated version.

• The browser is able to cache the external style
sheet which can improve the performance of the site

Style rules placed within a external text file with the .css extension

Selectors

Selectors

When defining CSS rules, you will need to first need to
use a selector to tell the browser which elements will
be affected.

CSS selectors allow you to select

• individual elements

• multiple HTML elements,

• elements that belong together in some way, or

• elements that are positioned in specific ways in the
document hierarchy.

There are a number of different selector types.

Things that make your life easier

Element Selectors

Uses the HTML element name.

You can select all elements by using the universal
element selector, which is the * (asterisk) character.

Selects all instances of a given HTML element

selector { property: value; property2: value2; }

declaration block

declaration

em { color: red; }

p {
 margin: 5px 0 10px 0;
 font-weight: bold;
 font-family: Arial, Helvetica, sans-serif;
}

property value

selector

rule

Grouped Selectors

You can select a group of elements by separating the different
element names with commas.

This is a sensible way to reduce the size and complexity of your
CSS files, by combining multiple identical rules into a single
rule.

Selecting multiple things

Reset

Grouped selectors are often used as a way to quickly
reset or remove browser defaults.

The goal of doing so is to reduce browser
inconsistencies with things such as margins, line
heights, and font sizes.

These reset styles can be placed in their own css file
(perhaps called reset.css) and linked to the page
before any other external styles sheets.

Class Selectors

A class selector allows you to simultaneously target
different HTML elements regardless of their position in
the document tree.

If a series of HTML element have been labeled with
the same class attribute value, then you can target
them for styling by using a class selector, which takes
the form: period (.) followed by the class name.

Simultaneously target different HTML elements

Class Selectors
<head>

<title>Share Your Travels </title>

<style>

.first {

font-style: italic;

color: brown;

}

</style>

</head>

<body>

<h1 class="first">Reviews</h1>

<div>

<p class="first">By Ricardo on <time>September 15, 2012</time></p>

<p>Easy on the HDR buddy.</p>

</div>

<hr/>

<div>

<p class="first">By Susan on <time>October 1, 2012</time></p>

<p>I love Central Park.</p>

</div>

<hr/>

</body>

.first {
 font-style: italic;
 color: brown;
}

Class Selectors

• You can also specify that only specific HTML elements should be
affected by a class. In the example below, only <p> elements with
class="center" will be center-aligned:

• HTML elements can also refer to more than one class. In the
example below, the <p> element will be styled according to
class="center" and to class="large":

p.center {text-align: center;}

<p class="center large">This paragraph refers

to two classes.</p>

Id Selectors

An id selector allows you to target a specific element
by its id attribute regardless of its type or position.

If an HTML element has been labeled with an id
attribute, then you can target it for styling by using an
id selector, which takes the form: pound/hash (#)
followed by the id name.

Note: You should only be using an id once per page.

Target a specific element by its id attribute

Id Selectors
<head lang="en">

<meta charset="utf-8">

<title>Share Your Travels -- New York - Central Park</title>

<style>

#latestComment {

font-style: italic;

color: brown;

}

</style>

</head>

<body>

<h1>Reviews</h1>

<div id="latestComment">

<p>By Ricardo on <time>September 15, 2012</time></p>

<p>Easy on the HDR buddy.</p>

</div>

<hr/>

<div>

<p>By Susan on <time>October 1, 2012</time></p>

<p>I love Central Park.</p>

</div>

<hr/>

</body>
#latestComment {
 font-style: italic;
 color: brown;
}

Id versus Class Selectors

Id selectors should only be used when referencing a
single HTML element since an id attribute can only be
assigned to a single HTML element.

Class selectors should be used when (potentially)
referencing several related elements.

How to decide

Attribute Selectors

An attribute selector provides a way to select HTML
elements by either the presence of an element
attribute or by the value of an attribute.

This can be a very powerful technique, but because of
uneven historical support by some of the browsers,
not all web authors have used them. All modern
browsers have full support.

Attribute selectors can be a very helpful technique in
the styling of hyperlinks and images.

Selecting via presence of element attribute or by the value of an attribute

Attribute Selectors

<head lang="en">

<meta charset="utf-8">

<title>Share Your Travels</title>

<style>

[title] {

cursor: help;

padding-bottom: 3px;

border-bottom: 2px dotted blue;

text-decoration: none;

}

</style>

</head>

<body>

<div>

<h2>

Canada

</h2>

<p>Canada is a North American country consisting of … </p>

<div>

</div>

</div>

</body>

[title] {
 cursor: help;
 padding-bottom: 3px;
 border-bottom: 2px dotted blue;
 text-decoration: none;
}

Pseudo Selectors

A pseudo-element selector is a way to select
something that does not exist explicitly as an element
in the HTML document tree but which is still a
recognizable selectable object.

A pseudo-class selector does apply to an HTML
element, but targets either a particular state or, in
CSS3, a variety of family relationships.

The most common use of this type of selectors is for
targeting link states.

Select something that does not exist explicitly as an element

Pseudo Selectors

Contextual Selectors

A contextual selector (in CSS3 also called combinators)
allows you to select elements based on their ancestors,
descendants, or siblings.

That is, it selects elements based on their context or
their relation to other elements in the document tree.

Select elements based on their ancestors, descendants, or siblings

Contextual Selectors

Selector Matches Example

Descendant A specified element that is
contained somewhere within
another specified element

div p

Selects a <p> element that is contained

somewhere within a <div> element. That is,
the <p> can be any descendant, not just a
child.

Child A specified element that is a
direct child of the specified
element

div > h2

Selects an <h2> element that is a child of a

<div> element.

Adjacent Sibling A specified element that is the
next sibling (i.e., comes directly
after) of the specified element.

h3+p

Selects the first <p> after any <h3>.

General Sibling A specified element that shares
the same parent as the
specified element.

h3 ~ p

Selects all the <p> elements that share the

same parent as the <h3>.

Descendant Selector

While some of these contextual selectors are used
relatively infrequently, almost all web authors find
themselves using descendant selectors.

A descendant selector matches all elements that are
contained within another element. The character used to
indicate descendant selection is the space character.

Selects all elements that are contained within another element

div p { … }

context selected element

Selects a <p> element
somewhere
within a <div> element

#main div p:first-child { … }

Selects the first <p> element
somewhere within a <div> element
that is somewhere within an element
with an id="main"

Contextual Selectors in Action
<body>

 <nav>

 Canada

 Germany

 United States

 </nav>

 <div id="main">

 Comments as of <time>November 15, 2012</time>

 <div>

 <p>By Ricardo on <time>September 15, 2012</time></p>

 <p>Easy on the HDR buddy.</p>

 </div>

 <hr/>

 <div>

 <p>By Susan on <time>October 1, 2012</time></p>

 <p>I love Central Park.</p>

 </div>

 <hr/>

 </div>

 <footer>

 Home |

 Browse |

 </footer>

</body>

#main time { color: red; }
ul a:link { color: blue; }

#main div p:first-child {
 color: green;
}

#main>time { color: purple; }

The Cascade: How Styles Interact

Why Conflict Happens

Because

• there are three different types of style sheets (author-
created, user-defined, and the default browser style
sheet),

• author-created stylesheets can define multiple rules for
the same HTML element,

CSS has a system to help the browser determine how to
display elements when different style rules conflict.

In CSS that is

Cascade

The “Cascade” in CSS refers to how conflicting rules are
handled.

The visual metaphor behind the term cascade is that of
a mountain stream progressing downstream over rocks.

The downward movement of water down a cascade is
meant to be analogous to how a given style rule will
continue to take precedence with child elements.

How conflicting rules are handled in CSS

Cascade Principles

CSS uses the following cascade principles to help it
deal with conflicts:

• inheritance,

• specificity,

• location.

Inheritance

Many (but not all) CSS properties affect not only
themselves but their descendants as well.

Font, color, list, and text properties are inheritable.

Layout, sizing, border, background and spacing properties
are not.

Cascade Principle #1

Inheritance

<body>

<h1> <p><h2>

<small>

<time>

<a>

<head>

<html>

<h3> <div>

<p> <p>

<p>

<time>

<div>

<p> <p>

<meta> <title>

body {
 font-family: Arial;
 color: red;
 border: 8pt solid green;
 margin: 100px;
}

inherited

not inherited

inherited

not inherited

Inheritance

It is possible to tell elements to inherit properties that
are normally not inheritable.

How to force inheritance

div {
 font-weight: bold;
 margin: 50px;
 border: 1pt solid green;
}
p {
 border: inherit;
 margin: inherit;
}

 <h3>Reviews</h3>
 <div>
 <p>By Ricardo on <time>September 15, 2012</time></p>
 <p>Easy on the HDR buddy.</p>
 </div>
 <hr/>

 <div>
 <p>By Susan on <time>October 1, 2012</time></p>
 <p>I love Central Park.</p>
 </div>
 <hr/>

Inheritance

<body>

<h1> <p><h2>

<small>

<time>

<a>

<head>

<html>

<h3> <div>

<p> <p>

<p>

<time>

<div>

<p> <p>

<meta> <title>

div {
 font-weight: bold;
 margin: 50px;
 border: 1pt solid green;
}

inherited

not inherited
not inherited

Specificity

Specificity is how the browser determines which style rule
takes precedence when more than one style rule could be
applied to the same element.

The more specific the selector, the more it takes
precedence (i.e., overrides the previous definition).

Cascade Principle #2

Specificity

The way that specificity works in the browser is that the
browser assigns a weight to each style rule.

When several rules apply, the one with the greatest
weight takes precedence.

How it works

Specificity
 This text is not within a p element.
 <p>Reviews</p>
 <div>
 <p>By Ricardo on <time>September 15, 2012</time></p>
 <p>Easy on the HDR buddy.</p>
 This text is not within a p element.
 </div>
 <hr/>

 <div>
 <p>By Susan on <time>October 1, 2012</time></p>
 <p>I love Central Park.</p>
 </div>
 <hr/>

 <div>
 <p class="last">By Dave on <time>October 15, 2012</time></p>
 <p class="last" id="verylast">Thanks for posting.</p>
 </div>
 <hr/>

body {
 font-weight: bold;
 color: red;
}

div {
 font-weight: normal;
 color: magenta;
}

p {
 color: green;
}

.last {
 color: blue;
}

#verylast {
 color: orange;
 font-size: 16pt;
}

These color and font-weight
properties are inheritable and thus
potentially applicable to all the child
elements contained within the body.

However, because the <div> and <p>
elements also have the same
properties set, they override the value
defined for the <body> element
because their selectors (div and p) are
more specific.

Class selectors are more specific
than element selectors, and thus
take precedence and override
element selectors.

Id selectors are more specific than
class selectors, and thus take
precedence and override class
selectors.

Specificity Algorithm

1. First count 1 if the declaration is from a 'style' attribute
in the HTML, 0 otherwise (let that value = a).

2. Count the number of ID attributes in the selector (let
that value = b).

3. Count the number of other attributes and pseudo-
classes in the selector (let that value = c).

4. Count the number of element names and pseudo-
elements in the selector (let that value = d).

5. Finally, concatenate the four numbers a + b + c + d
together to calculate the selector’s specificity.

The algorithm that is used to determine specificity is :

Specificity Algorithm

div {
 color: green;
 }

element selector

class and attribute
selectors

id selector

descendant selector
(elements only)

div form {
 color: orange;
 }

overrides

overrides
.example {
 color: blue;
 }

#firstExample {
 color: magenta;
 }

overrides

1

2

3

4
id +
additional
selectors

div #firstExample {
 color: grey;
 }

overrides

A higher specificity value
overrides lower specificity
values

inline style
attribute <div style="color: red;">overrides

5

Specificity Value

0001

0002

0010

0100

0101

1000

Specificity Algorithm

* /* a=0 b=0 c=0 -> specificity = 0 */

LI /* a=0 b=0 c=1 -> specificity = 1 */

UL LI /* a=0 b=0 c=2 -> specificity = 2 */

UL OL+LI /* a=0 b=0 c=3 -> specificity = 3 */

H1 + *[REL=up] /* a=0 b=1 c=1 -> specificity = 11 */

UL OL LI.red /* a=0 b=1 c=3 -> specificity = 13 */

LI.red.level /* a=0 b=2 c=1 -> specificity = 21 */

#x34y /* a=1 b=0 c=0 -> specificity = 100 */

#s12:not(FOO) /* a=1 b=0 c=1 -> specificity = 101 */

Tool to visualize it.

https://www.codecaptain.io/tools/css-specificity-calculator

Location

When inheritance and specificity cannot determine style
precedence, the principle of location will be used.

The principle of location is that when rules have the
same specificity, then the latest are given more weight.

Cascade Principle #3

Location

<head>

 <link rel="stylesheet" href="stylesA.css" />

 <link rel="stylesheet" href="stylesWW.css" />

 <style>

 #example {

 color: orange;

 color: magenta;

 }

 </style>

</head>

<body>

 <p id="example" style="color: red;">

 sample text

 </p>

</body>

overrides

overrides

overrides

1

2
3overrides

 #example {
 color: green;
 }

 #example {
 color: blue;
 }

user-styles.css

Browser’s
default style

settings

overrides

4

5

6

overrides

Can you guess what will be the color of the sample text?

Location
What color would the sample text be if there wasn’t an inline style definition?

<head>

 <link rel="stylesheet" href="stylesA.css" />

 <link rel="stylesheet" href="stylesWW.css" />

 <style>

 #example {

 color: orange;

 color: magenta;

 }

 </style>

</head>

<body>

 <p id="example" style="color: red;">

 sample text

 </p>

</body>

overrides

overrides

overrides

1

2
3overrides

 #example {
 color: green;
 }

 #example {
 color: blue;
 }

user-styles.css

Browser’s
default style

settings

overrides

4

5

6

overrides

Location

There is one exception to the principle of location.

If a property is marked with !important in an author-created
style rule, then it will override any other author-created
style regardless of its location.

The only exception is a style marked with !important in an
user style sheet; such a rule will override all others.

There’s always an exception

The Box Model

The Box Model

In CSS, all HTML elements exist within an element box.

It is absolutely essential that you familiarize yourself with
the terminology and relationship of the CSS properties
within the element box.

Time to think inside the box

The Box Model

Every CSS rule begins with a selector. The selector identifies

which element or elements in the HTML document will be

affected by the declarations in the rule. Another way of

thinking of selectors is that they are a pattern which is used

by the browser to select the HTML elements that will receive

Every CSS rule begins with a selector. The selector identifies

which element or elements in the HTML document will be

affected by the declarations in the rule. Another way of

thinking of selectors is that they are a pattern which is used

by the browser to select the HTML elements that will receive

padding

margin

element content area

border

background-color/background-image of element

width

height

background-color/background-image of element’s parent

Background

The background color or image of an element fills an
element out to its border (if it has one that is).

In contemporary web design, it has become extremely
common too use CSS to display purely presentational
images (such as background gradients and patterns,
decorative images, etc) rather than using the
element.

Box Model Property #1

Background Properties

Property Description
background A combined short-hand property that allows you to set the background values

in one property. While you can omit properties with the short-hand, do

remember that any omitted properties will be set to their default value.

background-attachment Specifies whether the background image scrolls with the document (default) or

remains fixed. Possible values are: fixed, scroll.

background-color Sets the background color of the element.

background-image Specifies the background image (which is generally a jpeg, gif, or png file) for

the element. Note that the URL is relative to the CSS file and not the HTML.

CSS3 introduced the ability to specify multiple background images.

background-position Specifies where on the element the background image will be placed. Some

possible values include: bottom, center, left, and right. You can also supply a

pixel or percentage numeric position value as well. When supplying a numeric

value, you must supply a horizontal/vertical pair; this value indicates its

distance from the top left corner of the element.

background-repeat Determines whether the background image will be repeated. This is a common

technique for creating a tiled background (it is in fact the default behavior).

Possible values are: repeat, repeat-x, repeat-y, and no-repeat.

background-size New to CSS3, this property lets you modify the size of the background image.

Background Repeat

background-image: url(../images/backgrounds/body-background-tile.gif);
background-repeat: repeat;

background-repeat: no-repeat; background-repeat: repeat-y; background-repeat: repeat-x;

Background Position

body {
background: white url(../images/backgrounds/body-background-tile.gif) no-repeat;
background-position: 300px 50px;

}

300px

50px

Borders

Borders provide a way to visually separate elements.

You can put borders around all four sides of an element,
or just one, two, or three of the sides.

Box Model Property #2

Borders

Property Description
border A combined short-hand property that allows you to set the style,

width, and color of a border in one property. The order is important
and must be:

border-style border-width border-color

border-style Specifies the line type of the border. Possible values are: solid,

dotted, dashed, double, groove, ridge, inset, and outset.

border-width The width of the border in a unit (but not percents). A variety of

keywords (thin, medium, etc) are also supported.

border-color The color of the border in a color unit.
border-radius The radius of a rounded corner.
border-image The URL of an image to use as a border.

Shortcut notation

With border, margin, and padding properties, there are
long-form and shortcut methods to set the 4 sides

TRBL

border-top-color: red; /* sets just the top side */
border-right-color: green; /* sets just the right side */
border-bottom-color: yellow; /* sets just the bottom side */
border-left-color: blue; /* sets just the left side */

border-color: red; /* sets all four sides to red */

border-color: red green orange blue; /* sets all four sides differently */

When using this multiple values shortcut, they are applied in clockwise order starting at the top.
Thus the order is: top right bottom left.

border-color: red green orange blue;

border-color: top right bottom left;
top

right

bottom

left

TRBL (Trouble)

Margins and Padding
Box Model Properties #3 and #4

p {
 border: solid 1pt red;
 margin: 0;
 padding: 0;
}

p {
 border: solid 1pt red;
 margin: 30px;
 padding: 0;
}

p {
 border: solid 1pt red;
 margin: 30px;
 padding: 30px;
}

Margins

Did you notice that the space
between paragraphs one and two and
between two and three is the same
as the space before paragraph one
and after paragraph three?

This is due to the fact that adjoining
vertical margins collapse.

Why they will cause you trouble.
p {
 border: solid 1pt red;
 margin: 0;
 padding: 0;
}

p {
 border: solid 1pt red;
 margin: 30px;
 padding: 0;
}

p {
 border: solid 1pt red;
 margin: 30px;
 padding: 30px;
}

Collapsing Margins

90px

90px

90px

50px

50px

50px

50px

div {
 border: dotted 1pt green;
 padding: 0;
 margin: 90px 20px;
}

p {
 border: solid 1pt red;
 padding: 0;
 margin: 50px 20px;
}

<div>
 <p>Every CSS rule ...</p>
 <p>Every CSS rule ...</p>
</div>
<div>
 <p>In CSS, the adjoining ... </p>
 <p>In CSS, the adjoining ... </p>
</div>

1

2

3

4

550px

50px

If overlapping margins did not collapse, then margin space for would be 180px
(90pixels for the bottom margin of the first <div> + 90 pixels for the top margin of the
second <div>), while the margins and for would be 100px.

However, as you can see this is not the case.

Collapsing Margins

When the vertical margins of two elements touch,

• the largest margin value of the elements will be
displayed

• the smaller margin value will be collapsed to zero.

Horizontal margins, on the other hand, never collapse.

To complicate matters even further, there are a large
number of special cases in which adjoining vertical margins
do not collapse.

How it works

Width and Height

The width and height properties specify the size of the
element’s content area.

Perhaps the only rival for collapsing margins in
troubling, box dimensions have a number of potential
issues.

Box Model Properties #5 and #6

Width and Height

Only block-level elements and non-text inline elements
such as images have a width and height that you can
specify.

By default the width of and height of elements is the
actual size of the content.

For text,

• this is determined by the font size and font face;

For images,

• the width and height of the actual image in pixels
determines the element box’s dimensions.

Potential Problem #1

Width and Height

Since the width and the height refer to the size of the
content area, by default, the total size of an element is
equal to not only its content area, but also to the sum of
its padding, borders, and margins.

Potential Problem #2

Every CSS rule begins with a selector. The selector identifies

which element or elements in the HTML document will be

affected by the declarations in the rule. Another way of

thinking of selectors is that they are a pattern which is used

by the browser to select the HTML elements that will receive

200px

100px

div {
 box-sizing: content-box;
 width: 200px;
 height: 100px;
 padding: 5px;
 margin: 10px;
 border: solid 2pt black;
}

10px 5 5 10px
2 2

True element width = 10 + 2 + 5 + 200 + 5 + 2 + 10 = 234 px
True element height = 10 + 2 + 5 + 100 + 5 + 2 + 10 = 134 px

div {
 ...
 box-sizing: border-box;
}

True element width = 10 + 200 + 10 = 220 px
True element height = 10 + 100 + 10 = 120 px

Every CSS rule begins with a selector. The selector identifies

which element or elements in the HTML document will be

affected by the declarations in the rule. Another way of

thinking of selectors is that they are a pattern which is used

by the browser to select the HTML elements that will receive

100px

200px 10px10px

Default

Width and Height

p {
 background-color: silver;
 width: 200px;
 height: 100px;
}

p {
 background-color: silver;
}

100px}

Overflow Property

overflow: visible;

overflow: hidden;

overflow: scroll;

overflow: auto;

Overflow Property

Sizing Elements

While the previous examples used pixels for its
measurement, many contemporary designers prefer to
use percentages or em units for widths and heights.

• When you use percentages, the size is relative to the
size of the parent element.

• When you use ems, the size of the box is relative to
the size of the text within it.

The rationale behind using these relative measures is to
make one’s design scalable to the size of the browser or
device that is viewing it.

Time to embrace ems and percentages

<body>
 <div class="pixels">
 Pixels - 200px by 50 px
 </div>
 <div class="percent">
 Percent - 50% of width and height
 </div>
</body>

<body>
<div class="parentFixed">
 parent has fixed size
 <div class="percent">
 PERCENT - 50% of width and height
 </div>
</div>
<div class="parentRelative">
 parent has relative size
 <div class="percent">
 PERCENT - 50% of width and height
 </div>
</div>
</body>

 <style>
 html,body {

margin:0;
width:100%;
height:100%;
background: silver;

 }
 .pixels {

width:200px;
height:50px;
background: teal;

 }
 .percent {

width:50%;
height:50%;
background: olive;

 }

 .parentFixed {
width:400px;
height:150px;
background: beige;

 }
 .parentRelative {

width:50%;
height:50%;
background: yellow;

 }
 </style>

50%

50%

50%

50%

50%

50%

50% 50%

50% of parent (= 200px)

50% of parent (= 200px)

50% 50%

50% of parent

Developer Tools

Developer tools in current browsers make it significantly
easier to examine and troubleshot CSS than was the
case a decade ago.

You can use the various browsers’ CSS inspection tools
to examine, for instance, the box values for a selected
element.

Help is on the way

Developer Tools

Chrome – Inspect Element Firefox – Inspect

Internet Explorer – Developer Tools

Opera – Inspect Element

CSS Selectors Level 3/4 – teaser

:has

It lets you change the parent element if it has a child or
another element that follows it.

You can only style down, from parent to child, but never
back up the tree. :has completely changes this
because up until now there have been no parent
selectors in CSS and there are some good reasons why.

Because of the way in which browsers parse HTML and
CSS, selecting the parent if certain conditions are met
could lead to all sorts of performance concerns.

It’s not supported in any browser today.

A parent selector pseudo-class

https://snook.ca/archives/html_and_css/css-parent-selectors
https://caniuse.com/?search=%3Ahas

:has

div:has(p) {

background: red;

}

div:has(+ div) {

color: blue;

}

a:has(> img) {

border: 20px solid white;

}

A parent selector pseudo-class

:not

Selectors Level 3 only allowed :not() pseudo-class
to accept a single simple selector, which the element
must not match any of. Thus, :not(a, .b, [c]) or
:not(a.b[c]) did not work.

Selectors Level 4 allows :not() to accept a list of
selectors. Thus, :not(a):not(.b):not([c])
can instead be written as :not(a, .b, [c]) and
:not(a.b[c]) works as intended.

It’s supported in major browser today.

A negation selector pseudo-class

https://caniuse.com/?search=%3Anot

:not

ul li:not(:first-of-type) {

color: red;

}

A negation selector pseudo-class

:is

The :is() (formerly :matches(), formerly
:any()) pseudo-class checks whether the element at
its position in the outer selector matches any of the
selectors in its selector list. It's useful syntactic sugar
that allows you to avoid writing out all the
combinations manually as separate selectors.

The effect is similar to nesting in Sass and most other
CSS preprocessors.

It’s supported in major browser today.

A check selector pseudo-class

https://caniuse.com/?search=%3Ais

:is

:is(section, article, aside, nav) :is(h1, h2,
h3, h4, h5, h6) {

color: #BADA55;

}

/* ... which would be the equivalent of: */

section h1, section h2, section h3, section h4,
section h5, section h6, article h1, article h2,
article h3, article h4, article h5, article h6,
aside h1, aside h2, aside h3, aside h4, aside
h5, aside h6, nav h1, nav h2, nav h3, nav h4,
nav h5, nav h6 {

color: #BADA55;

}

A check selector pseudo-class

CSS Variables

A strong point of CSS preprocessors is the possibility of
using variables to create re-usable values and avoid
code redundancy.

While tools like SASS are very useful for front-end web
development, they aren’t required for using variables,
as this can be done in native CSS.

Variables are declared by giving them a name preceded
by two dashes. When wanting to use a previously
created variable, use the var() function.

CSS Variables

:root {

--main-bg-color: coral;

--main-txt-color: #fff;

--main-padding: 15px;

}

#div1 {

background-color: var(--main-bg-color);

color: var(--main-txt-color);

padding: var(--main-padding);

}

Curve Text Around a Floating Image

shape-outside is a CSS property that allows
geometric shapes to be set, in order to define an area
for text to flow around.

It’s supported in major browser today.

.shape {

width: 300px;

float: left;

shape-outside: circle(50%);

}

https://caniuse.com/?search=shape-outside

Curve Text Around a Floating Image

Text Styling

Text Properties

CSS provides two types of properties that affect text.

• font properties that affect the font and its
appearance.

• paragraph properties that affect the text in a
similar way no matter which font is being used.

Two basic types

Font-Family

A word processor on a desktop machine can make use
of any font that is installed on the computer; browsers
are no different.

However, just because a given font is available on the
web developer’s computer, it does not mean that that
same font will be available for all users who view the
site.

For this reason, it is conventional to supply a so-called
web font stack, that is, a series of alternate fonts to
use in case the original font choice in not on the user’s
computer.

A few issues here

Specifying the Font-Family

p { font-family: Cambria, Georgia, "Times New Roman", serif; }

Use this font as
the first choice

But if it is not available,
then use this one

If it isn’t available, then
use this one

And if it is not available
either, then use the
default generic serif font

1

2

3

4

Generic Font-Family

The font-family property supports five different
generic families.

The browser supports a typeface from each family.

This

This

This

This

This

serif

sans-serif

monospace

cursive

fantasy

Th
Th

serif

Without
("sans") serif

This
In a monospace font,
each letter has the
same width

Decorative and cursive fonts
vary from system to system;
rarely used as a result.

Generic
Font-Family
Name

This
In a regular,
proportionally-spaced
font, each letter has a
variable width

@font-face

Over the past few years, the most recent browser
versions have begun to support the @font-face selector
in CSS.

This selector allows you to use a font on your site even if
it is not installed on the end user’s computer.

Due to the on-going popularity of open source font sites
such as Google Web Fonts
(http://www.google.com/webfonts) and Font Squirrel
(http://www.fontsquirrel.com/), @font-face seems to
have gained a critical mass of widespread usage.

The future is now

Font Sizes

The issue of font sizes is unfortunately somewhat tricky.

In a print-based program such as a word processor,
specifying a font size in points is unproblematic.

However, absolute units such as points and inches do
not translate very well to pixel-based devices.

Somewhat surprisingly, pixels are also a problematic
unit.

Newer mobile devices in recent years have been
increasing pixel densities so that a given CSS pixel
does not correlate to a single device pixel.

Mo control, mo problems

Font Sizes

If we wish to create web layouts that work well on
different devices, we should learn to use relative units
such as em units or percentages for our font sizes (and
indeed for other sizes in CSS as well).

One of the principles of the web is that the user should
be able to change the size of the text if he or she so
wishes to do so.

Using percentages or em units ensures that this user
action will work.

Welcome ems and percents again

How to use ems and percents

When used to specify a font size, both em units and
percentages are relative to the parent’s font size.

How to use ems and percents

Browser’s default text size is usually 16 pixels

200% or 2em is 32 pixels
150% or 1.5em is 24 pixels

125% or 1.125em is 18 pixels

<body>

<h3>

<h2>

<h1>

100% or 1em is 16 pixels<p>

/* using 16px scale */

body { font-size: 100%; }
h3 { font-size: 1.125em; } /* 1.25 x 16 = 18 */
h2 { font-size: 1.5em; } /* 1.5 x 16 = 24 */
h1 { font-size: 2em; } /* 2 x 16 = 32 */

<body>
 <p>this will be about 16 pixels</p>
 <h1>this will be about 32 pixels</h1>
 <h2>this will be about 24 pixels</h2>
 <h3>this will be about 18 pixels</h3>
 <p>this will be about 16 pixels</p>
</body>

How to use ems and percents

While this looks pretty easy to master, things
unfortunately can quickly become quite complicated.

Remember that percents and em units are relative to
their parents, so if the parent font size changes, this
affects all of its contents.

It might seem easy … but it’s not …

ems and percents

/* using 16px scale */

body { font-size: 100%; }

p { font-size: 1em; } /* 1 x 16 = 16px */

h1 { font-size: 2em; } /* 2 x 16 = 32px */

<body>

 <p>this is 16 pixels</p>

 <h1>this is 32 pixels</h1>

 <article>

 <h1>this is 32 pixels</h1>

 <p>this is 16 pixels</p>

 <div>

 <h1>this is 32 pixels</h1>

 <p>this is 16 pixels</p>

 </div>

 </article>

</body>

/* using 16px scale */

body { font-size: 100%; }

p { font-size: 1em; }

h1 { font-size: 2em; }

article { font-size: 75% } /* h1 = 2 * 16 * 0.75 = 24px

 p = 1 * 16 * 0.75 = 12px */

div { font-size: 75% } /* h1 = 2 * 16 * 0.75 * 0.75 = 18px

 p = 1 * 16 * 0.75 * 0.75 = 9px */

The rem unit

CSS3 now supports a new relative measure, the rem
(for root em unit).

This unit is always relative to the size of the root
element (i.e., the <html> element).

However, since Internet Explorer prior to version 9 do
not support the rem units, you need to provide some
type of fallback for those browsers.

Solution to font sizing hassles?

The rem unit

/* using 16px scale */

body { font-size: 100%; }

p {

 font-size: 16px; /* for older browsers: won’t scale properly though */

 font-size: 1rem; /* for new browsers: scales and simple too */

}

h1 { font-size: 2em; }

article { font-size: 75% } /* h1 = 2 * 16 * 0.75 = 24px

 p = 1 * 16 = 16px */

div { font-size: 75% } /* h1 = 2 * 16 * 0.75 * 0.75 = 18px

 p = 1 * 16 = 16px */

