How we have made our data publicly available

Jana Hozzová

Institute of Computer Science

What is this about?

We all know that we "should" make our scientific data publicly available.

We (HiPerCore group) have actually done that.

Here is what we have learned.

Open science

- open data: tables, images, videos, text files
- open source: code, scripts, frameworks, web services
- open reproducible research: pre-registration, lab protocols, workflows
- open access

Open science

Why you should do it?

- useful research ≫ publishable research
- diminishes reproducibility crisis in science
- handles publication bias to some extent
- enables faster progress
- makes it cheaper
- supports innovation
- engages public

https://www.fosteropenscience.eu/

What's in it for me?

- makes research more visible
- increases number of citations
- gives you credit for your work
- creates funding opportunities
- facilitates networking

It makes you a better, more conscientious researcher.

Data suitable for opening

- demanding to acquire (time, resources, people)
- potential for re-use
- others can use them
 - to reproduce your research
 - to explore other hypotheses
 - in their methodology (training data, baseline, default parameter values, scripts for processing)
 - in their evaluation (evaluation data, comparable results, the truth, metrics for comparison)

Make them usable for computers

- create a clear directory structure
- name data files/scripts/options consistently
- format files for easy machine processing
- make the output/logs easy to process by a machine
- replace hard-coded parameters with options
- fix the code or make bugs known
- make building and deployment easy
- handle dependencies' versions

Make data usable for people

- describe metadata: file structure, columns' names, units, cmd options
- make data readable for humans if possible
- describe how data were measured/can be recomputed
- describe the processing: filtering, outliers, omitted data, corner cases, conversions
- provide scripts for processing the data
- deal with sensitive data (anonymization, consent)
- decide licencing

Make code usable for people

- start with readable, refactored, commented code
- add logging
- provide examples of usage and/or tutorials
- write documentation or at least README
- set reasonable default values for parameters
- set contribution rules
- decide licencing

All of this takes quite some time.

Ways to make data public

- supplementary material alongside the research article
- data repository
 - DOI, reference in your research article
 - Mendeley Data
 - Zenodo
 - OSF

Ways to make data public

- data repository + data article
 - no hypotheses, no conclusions, just data and their description
 - two DOIs, reference in your research article
 - general: Data in Brief (Elsevier), Journal of Open Research Software (Ubiquity Press), CODATA Data Science Journal (CODATA), Data (MDPI)
 - life sciences: Scientific Data (Nature), GigaScience (BioMed Central), BMC Research Notes (BioMed Central)

Data in Brief

- research journal for data articles
- all research areas
- template for article structure
- separate submission or co-submission
- review: complete, well-documented data
- preprints allowed, open access for USD 700

Lets' look at repositories and articles

```
https://github.com/HiPerCoRe/KTT
nonpublic repository on https://gitlab.ics.muni.cz/
https:
//data.mendeley.com/datasets/nn53dskr7z/2
https://arxiv.org/abs/2102.05299
https://arxiv.org/abs/2102.05297
```

Where should * go?

- github: C++ application, some scripts, description of that
- non-public gitlab: scripts, data
- data repository: subset of data, some scripts
- data article: description of data and its processing
- research article: hypotheses and conclusions

Support at ICS

- Data Security and Management Department within Cybersecurity and Data Management Division
- Jiří Marek as manager of Open Access
- provide support especially when dealing with sensitive data
- provide money for open access fees

So, how can I even start with this?

- the best way to learn is by doing
- supplementary material: scripts to generate the figures and raw data tables
- data repository: a small subset of your data (one method, one GPU, one instance)
- data repository + data article: consistent dataset with all scripts

Conclusion

- as writing a paper forces you to tidy up and "finish" your research
- as open source forces you to tidy up and "finish" your code
- open data force you to tidy up and "finish" our data
- always easier to keep things tidy along the way
- but even if not, do it after paper/grant/* submission
- it's good for you, good for others, good for science
- it makes you a better researcher