
IA008: Computational Logic

1. Propositional Logic

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz


Basic Concepts



Propositional Logic

Syntax
▸ Variables A,B,C, . . . ,X ,Y ,Z , . . .
▸ Operators ∧,∨,¬,→,↔

Semantics

J ⊧ φ J ∶ Variables→ {true, false}

Examples

φ ∶= A ∧ (A→ B)→ B ,
ψ ∶= ¬(A ∧ B)↔ (¬A ∨ ¬B) .



Terminology

▸ entailment φ ⊧ ψ (do not confuse with J ⊧ φ !)
▸ equivalence φ ≡ ψ (do not confuse with φ = ψ !)
▸ φ ≡ ψ iff φ ⊧ ψ and ψ ⊧ φ

▸ satisfiability φ ≢ false
▸ validity φ ≡ true
▸ Every valid formula is satisfiable.
▸ φ is valid iff ¬φ is not satisfiable.
▸ φ ⊧ ψ iff φ → ψ is valid.

Examples
▸ A ∧ (A→ B)→ B is valid.
▸ A ∨ B is satisfiable but not valid.
▸ ¬A ∧A is not satisfiable.



Terminology

▸ entailment φ ⊧ ψ (do not confuse with J ⊧ φ !)
▸ equivalence φ ≡ ψ (do not confuse with φ = ψ !)
▸ φ ≡ ψ iff φ ⊧ ψ and ψ ⊧ φ

▸ satisfiability φ ≢ false
▸ validity φ ≡ true
▸ Every valid formula is satisfiable.
▸ φ is valid iff ¬φ is not satisfiable.
▸ φ ⊧ ψ iff φ → ψ is valid.

Examples
▸ A ∧ (A→ B)→ B is

valid.
▸ A ∨ B is satisfiable but not valid.
▸ ¬A ∧A is not satisfiable.



Terminology

▸ entailment φ ⊧ ψ (do not confuse with J ⊧ φ !)
▸ equivalence φ ≡ ψ (do not confuse with φ = ψ !)
▸ φ ≡ ψ iff φ ⊧ ψ and ψ ⊧ φ

▸ satisfiability φ ≢ false
▸ validity φ ≡ true
▸ Every valid formula is satisfiable.
▸ φ is valid iff ¬φ is not satisfiable.
▸ φ ⊧ ψ iff φ → ψ is valid.

Examples
▸ A ∧ (A→ B)→ B is valid.
▸ A ∨ B is

satisfiable but not valid.
▸ ¬A ∧A is not satisfiable.



Terminology

▸ entailment φ ⊧ ψ (do not confuse with J ⊧ φ !)
▸ equivalence φ ≡ ψ (do not confuse with φ = ψ !)
▸ φ ≡ ψ iff φ ⊧ ψ and ψ ⊧ φ

▸ satisfiability φ ≢ false
▸ validity φ ≡ true
▸ Every valid formula is satisfiable.
▸ φ is valid iff ¬φ is not satisfiable.
▸ φ ⊧ ψ iff φ → ψ is valid.

Examples
▸ A ∧ (A→ B)→ B is valid.
▸ A ∨ B is satisfiable but not valid.
▸ ¬A ∧A is

not satisfiable.



Terminology

▸ entailment φ ⊧ ψ (do not confuse with J ⊧ φ !)
▸ equivalence φ ≡ ψ (do not confuse with φ = ψ !)
▸ φ ≡ ψ iff φ ⊧ ψ and ψ ⊧ φ

▸ satisfiability φ ≢ false
▸ validity φ ≡ true
▸ Every valid formula is satisfiable.
▸ φ is valid iff ¬φ is not satisfiable.
▸ φ ⊧ ψ iff φ → ψ is valid.

Examples
▸ A ∧ (A→ B)→ B is valid.
▸ A ∨ B is satisfiable but not valid.
▸ ¬A ∧A is not satisfiable.



Equivalence Transformations
DeMorgan’s laws

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ

Distributive laws

φ ∧ (ψ ∨ ϑ) ≡ (φ ∧ ψ) ∨ (φ ∧ ϑ)
φ ∨ (ψ ∧ ϑ) ≡ (φ ∨ ψ) ∧ (φ ∨ ϑ)



Equivalence Transformations
DeMorgan’s laws

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ
¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ

Distributive laws

φ ∧ (ψ ∨ ϑ) ≡ (φ ∧ ψ) ∨ (φ ∧ ϑ)
φ ∨ (ψ ∧ ϑ) ≡ (φ ∨ ψ) ∧ (φ ∨ ϑ)



Normal Forms

Conjunctive Normal Form (CNF)

(A ∨ ¬B) ∧ (¬A ∨ C) ∧ (A ∨ ¬B ∨ ¬C)

Disjunctive Normal Form (DNF)

(A ∧ C) ∨ (¬A ∧ ¬B) ∨ (A ∧ ¬B ∧ ¬C)



Clauses

Definitions
▸ literal A or ¬A
▸ clause set of literals {A,B,¬C}

short-hand for disjunction A ∨ B ∨ ¬C

Example

CNF φ ∶= (A ∨ ¬B ∨ C) ∧ (¬A ∨ C) ∧ B

clauses {A,¬B,C}, {¬A,C}, {B}

Notation

Φ[L ∶= true] ∶= {C ∖ {¬L} ∣ C ∈ Φ , L ∉ C } .



Clauses

Definitions
▸ literal A or ¬A
▸ clause set of literals {A,B,¬C}

short-hand for disjunction A ∨ B ∨ ¬C

Example

CNF φ ∶= (A ∨ ¬B ∨ C) ∧ (¬A ∨ C) ∧ B

clauses {A,¬B,C}, {¬A,C}, {B}

Notation

Φ[L ∶= true] ∶= {C ∖ {¬L} ∣ C ∈ Φ , L ∉ C } .



Clauses

Definitions
▸ literal A or ¬A
▸ clause set of literals {A,B,¬C}

short-hand for disjunction A ∨ B ∨ ¬C

Example

CNF φ ∶= (A ∨ ¬B ∨ C) ∧ (¬A ∨ C) ∧ B

clauses {A,¬B,C}, {¬A,C}, {B}

Notation

Φ[L ∶= true] ∶= {C ∖ {¬L} ∣ C ∈ Φ , L ∉ C } .



The Satisfiability Problem



Davis-Putnam-Logemann-Loveland (DPLL) Algorithm
Input: a set of clauses Φ
Output: true if Φ is satisfiable, false otherwise.

DPLL(Φ)
for every singleton {L} in Φ (* simplify Φ *)

Φ ∶= Φ[L ∶= true]
for every literal L whose negation does not occur in Φ

Φ ∶= Φ[L ∶= true]
if Φ contains the empty clause then (* are we done? *)
return false

if Φ is empty then
return true

choose some literal L in Φ (* try L ∶= true and L ∶= false *)
if DPLL(Φ[L ∶= true]) then
return true

else
return DPLL(Φ[L ∶= false])



Example

Φ ∶= {{A,B,¬C}, {¬B,C,D}, {¬A,¬B,¬D}, {B,C,D},
{¬A,¬B,¬C}, {¬A,¬C,¬D}}

Step 1: A ∶= true

{¬B,C,D}, {¬B,¬D}, {B,C,D}, {¬B,¬C}, {¬C,¬D}

Step 2: B ∶= true

{C,D}, {¬D}, {¬C}, {¬C,¬D}

Step 3: C ∶= false and D ∶= false

{D}, {¬D}
∅ failure



Example

Φ ∶= {{A,B,¬C}, {¬B,C,D}, {¬A,¬B,¬D}, {B,C,D},
{¬A,¬B,¬C}, {¬A,¬C,¬D}}

Step 1: A ∶= true

{¬B,C,D}, {¬B,¬D}, {B,C,D}, {¬B,¬C}, {¬C,¬D}

Step 2: B ∶= true

{C,D}, {¬D}, {¬C}, {¬C,¬D}

Step 3: C ∶= false and D ∶= false

{D}, {¬D}
∅ failure



Example

Φ ∶= {{A,B,¬C}, {¬B,C,D}, {¬A,¬B,¬D}, {B,C,D},
{¬A,¬B,¬C}, {¬A,¬C,¬D}}

Step 1: A ∶= true

{¬B,C,D}, {¬B,¬D}, {B,C,D}, {¬B,¬C}, {¬C,¬D}

Step 2: B ∶= true

{C,D}, {¬D}, {¬C}, {¬C,¬D}

Step 3: C ∶= false and D ∶= false

{D}, {¬D}
∅ failure



Example

Φ ∶= {{A,B,¬C}, {¬B,C,D}, {¬A,¬B,¬D}, {B,C,D},
{¬A,¬B,¬C}, {¬A,¬C,¬D}}

Step 1: A ∶= true

{¬B,C,D}, {¬B,¬D}, {B,C,D}, {¬B,¬C}, {¬C,¬D}

Step 2: B ∶= true

{C,D}, {¬D}, {¬C}, {¬C,¬D}

Step 3: C ∶= false and D ∶= false

{D}, {¬D}

∅ failure



Example

Φ ∶= {{A,B,¬C}, {¬B,C,D}, {¬A,¬B,¬D}, {B,C,D},
{¬A,¬B,¬C}, {¬A,¬C,¬D}}

Step 1: A ∶= true

{¬B,C,D}, {¬B,¬D}, {B,C,D}, {¬B,¬C}, {¬C,¬D}

Step 2: B ∶= true

{C,D}, {¬D}, {¬C}, {¬C,¬D}

Step 3: C ∶= false and D ∶= false

{D}, {¬D}
∅ failure



Example

Φ ∶= {{A,B,¬C}, {¬B,C,D}, {¬A,¬B,¬D}, {B,C,D},
{¬A,¬B,¬C}, {¬A,¬C,¬D}}

Step 1: A ∶= true

{¬B,C,D}, {¬B,¬D}, {B,C,D}, {¬B,¬C}, {¬C,¬D}

Backtrack to step 2: B ∶= false

{C,D}, {¬C,¬D}

Step 3: C ∶= true

{¬D} satisfiable

Solution: A = true, B = false, C = true, D = false



Example

Φ ∶= {{A,B,¬C}, {¬B,C,D}, {¬A,¬B,¬D}, {B,C,D},
{¬A,¬B,¬C}, {¬A,¬C,¬D}}

Step 1: A ∶= true

{¬B,C,D}, {¬B,¬D}, {B,C,D}, {¬B,¬C}, {¬C,¬D}

Backtrack to step 2: B ∶= false

{C,D}, {¬C,¬D}

Step 3: C ∶= true

{¬D} satisfiable

Solution: A = true, B = false, C = true, D = false



Example

Φ ∶= {{A,B,¬C}, {¬B,C,D}, {¬A,¬B,¬D}, {B,C,D},
{¬A,¬B,¬C}, {¬A,¬C,¬D}}

Step 1: A ∶= true

{¬B,C,D}, {¬B,¬D}, {B,C,D}, {¬B,¬C}, {¬C,¬D}

Backtrack to step 2: B ∶= false

{C,D}, {¬C,¬D}

Step 3: C ∶= true

{¬D} satisfiable

Solution: A = true, B = false, C = true, D = false



Expressing graph problems

Vertex cover

Variables:
Cv vertex v belongs to the cover

Formulae:
Cu ∨ Cv for every edge ⟨u, v⟩ ∈ E
Size≤k “At most k of the Cv are true.”

Clique

Variables:
Cv vertex v belongs to the clique

Formulae:
¬Cu ∨
¬Cv

for every non-edge ⟨u, v⟩ ∉ E

Size≥k “At least k of the Cv are true.”



Expressing graph problems

Vertex cover

Variables:
Cv vertex v belongs to the cover

Formulae:
Cu ∨ Cv for every edge ⟨u, v⟩ ∈ E
Size≤k “At most k of the Cv are true.”

Clique

Variables:
Cv vertex v belongs to the clique

Formulae:
¬Cu ∨
¬Cv

for every non-edge ⟨u, v⟩ ∉ E

Size≥k “At least k of the Cv are true.”



Expressing graph problems

Vertex cover

Variables:
Cv vertex v belongs to the cover

Formulae:
Cu ∨ Cv for every edge ⟨u, v⟩ ∈ E
Size≤k “At most k of the Cv are true.”

Clique

Variables:
Cv vertex v belongs to the clique

Formulae:
¬Cu ∨
¬Cv

for every non-edge ⟨u, v⟩ ∉ E

Size≥k “At least k of the Cv are true.”



Expressing graph problems

Vertex cover

Variables:
Cv vertex v belongs to the cover

Formulae:
Cu ∨ Cv for every edge ⟨u, v⟩ ∈ E
Size≤k “At most k of the Cv are true.”

Clique

Variables:
Cv vertex v belongs to the clique

Formulae:
¬Cu ∨
¬Cv

for every non-edge ⟨u, v⟩ ∉ E

Size≥k “At least k of the Cv are true.”



Expressing graph problems
The Size≥k formulae

Fix an enumeration v0, . . . , vn−1 of V .

Variables:
Skm at least k variables Cvi with i < m are true

Formulae:

S0m
¬Sk0 for k > 0
Cvi → [Ski ↔ Sk+1i+1 ]
¬Cvi → [Ski ↔ Ski+1]
Skn

v0 v1 v2

Cvi 1 0 1

S0i 1 1 1 1
S1i 0 1 1 1
S2i 0 0 0 1
S3i 0 0 0 0

A similar construction works for Size≤k .



Expressing graph problems
The Size≥k formulae

Fix an enumeration v0, . . . , vn−1 of V .

Variables:
Skm at least k variables Cvi with i < m are true

Formulae:

S0m
¬Sk0 for k > 0
Cvi → [Ski ↔ Sk+1i+1 ]
¬Cvi → [Ski ↔ Ski+1]
Skn

v0 v1 v2

Cvi 1 0 1

S0i 1 1 1 1
S1i 0 1 1 1
S2i 0 0 0 1
S3i 0 0 0 0

A similar construction works for Size≤k .



Expressing graph problems
The Size≥k formulae

Fix an enumeration v0, . . . , vn−1 of V .

Variables:
Skm at least k variables Cvi with i < m are true

Formulae:

S0m
¬Sk0 for k > 0
Cvi → [Ski ↔ Sk+1i+1 ]
¬Cvi → [Ski ↔ Ski+1]
Skn

v0 v1 v2

Cvi 1 0 1

S0i 1 1 1 1
S1i 0 1 1 1
S2i 0 0 0 1
S3i 0 0 0 0

A similar construction works for Size≤k .



Expressing graph problems
The Size≥k formulae

Fix an enumeration v0, . . . , vn−1 of V .

Variables:
Skm at least k variables Cvi with i < m are true

Formulae:

S0m
¬Sk0 for k > 0
Cvi → [Ski ↔ Sk+1i+1 ]
¬Cvi → [Ski ↔ Ski+1]
Skn

v0 v1 v2

Cvi 1 0 1

S0i 1 1 1 1
S1i 0 1 1 1
S2i 0 0 0 1
S3i 0 0 0 0

A similar construction works for Size≤k .



The Satisfiability Problem

Theorem

3-SAT (satisfiability for formulae in 3-CNF) is NP-complete.

Proof

Given Turing machineM and input w, construct formula φ such that

M accepts w iff φ is satisfiable.



The Satisfiability Problem

Theorem

3-SAT (satisfiability for formulae in 3-CNF) is NP-complete.

Proof

Given Turing machineM and input w, construct formula φ such that

M accepts w iff φ is satisfiable.



Proof
TuringmachineM = ⟨Q, Σ, ∆, q0, F+, F−⟩
Q set of states
Σ tape alphabet
∆ set of transitions ⟨p, a, b,m, q⟩ ∈ Q × Σ × Σ × {−1, 0, 1} ×Q
q0 initial state
F+ accepting states
F− rejecting states

nondeterministic, runtime bounded by the polynomial r(n)

Encoding in PL

St,q state q at time t
Ht,k head in field k at time t
Wt,k,a letter a in field k at time t

φw ∶= ⋀
t<r(n)

[ADMt ∧ INIT ∧ TRANSt ∧ACC]



Proof
TuringmachineM = ⟨Q, Σ, ∆, q0, F+, F−⟩
Q set of states
Σ tape alphabet
∆ set of transitions ⟨p, a, b,m, q⟩ ∈ Q × Σ × Σ × {−1, 0, 1} ×Q
q0 initial state
F+ accepting states
F− rejecting states

nondeterministic, runtime bounded by the polynomial r(n)

Encoding in PL

St,q state q at time t
Ht,k head in field k at time t
Wt,k,a letter a in field k at time t

φw ∶= ⋀
t<r(n)

[ADMt ∧ INIT ∧ TRANSt ∧ACC]



Proof
St,q state q at time t
Ht,k head in field k at time t
Wt,k,a letter a in field k at time t

Admissibility formula

ADMt ∶= ⋀
p≠q
[¬St,p ∨ ¬St,q] unique state

∧ ⋀
k≠l
[¬Ht,k ∨ ¬Ht,l] unique head position

∧ ⋀
k
⋀
a≠b
[¬Wt,k,a ∨ ¬Wt,k,b] unique letter



Proof
St,q state q at time t
Ht,k head in field k at time t
Wt,k,a letter a in field k at time t

Initialisation formula for input: a0 . . . an−1

INIT ∶= S0,q0 initial state
∧H0,0 initial head position
∧ ⋀

k<n
W0,k,ak ∧ ⋀

n≤k≤r(n)
W0,k,◻ initial tape content

Acceptance formula

ACC ∶= ⋁
q∈F+

⋁
t≤r(n)

St,q accepting state



Proof
St,q state q at time t
Ht,k head in field k at time t
Wt,k,a letter a in field k at time t

Transition formula

TRANSt ∶= ⋁
⟨p,a,b,m,q⟩∈∆

⋁
k≤r(n)

[St,p ∧Ht,k ∧Wt,k,a ∧
St+1,q ∧Ht+1,k+m ∧Wt+1,k,b]

effect of transition

∧ ⋀
k≤r(n)

⋀
a∈Σ
[¬Ht,k ∧Wt,k,a →Wt+1,k,a]

rest of tape remains unchanged



Proof

TRANSt ∶= ⋁
⟨p,a,b,m,q⟩∈∆

⋁
k≤r(n)

[St,p ∧Ht,k ∧Wt,k,a ∧

St+1,q ∧Ht+1,k+m ∧Wt+1,k,b] ∧ . . .

equivalently:

⋀
k≤r(n)

⋀
p∈Q
⋀
a∈Σ
[St,p ∧Ht,k ∧Wt,k,a → ⋁

q∈TS(p,a)
St+1,q]

∧ ⋀
k≤r(n)

⋀
p,q∈Q

⋀
a∈Σ
[St,p ∧Ht,k ∧Wt,k,a ∧ St+1,q → ⋁

m∈TH(p,a,q)
Ht+1,k+m]

∧ ⋀
k≤r(n)

⋀
p,q∈Q

⋀
a∈Σ

⋀
m∈{−1,0,1}

[St,p ∧Ht,k ∧Wt,k,a ∧ St+1,q ∧Ht+1,k+m →

⋁
b∈TW(p,a,m,q)

Wt+1,k,b]



Proof

TRANSt ∶= ⋁
⟨p,a,b,m,q⟩∈∆

⋁
k≤r(n)

[St,p ∧Ht,k ∧Wt,k,a ∧

St+1,q ∧Ht+1,k+m ∧Wt+1,k,b] ∧ . . .

equivalently:

⋀
k≤r(n)

⋀
p∈Q
⋀
a∈Σ
[St,p ∧Ht,k ∧Wt,k,a → ⋁

q∈TS(p,a)
St+1,q]

∧ ⋀
k≤r(n)

⋀
p,q∈Q

⋀
a∈Σ
[St,p ∧Ht,k ∧Wt,k,a ∧ St+1,q → ⋁

m∈TH(p,a,q)
Ht+1,k+m]

∧ ⋀
k≤r(n)

⋀
p,q∈Q

⋀
a∈Σ

⋀
m∈{−1,0,1}

[St,p ∧Ht,k ∧Wt,k,a ∧ St+1,q ∧Ht+1,k+m →

⋁
b∈TW(p,a,m,q)

Wt+1,k,b]

TS(p, a) ∶= { q ∈ Q ∣ ⟨p, a, b,m, q⟩ ∈ ∆ }



Proof

TRANSt ∶= ⋁
⟨p,a,b,m,q⟩∈∆

⋁
k≤r(n)

[St,p ∧Ht,k ∧Wt,k,a ∧

St+1,q ∧Ht+1,k+m ∧Wt+1,k,b] ∧ . . .

equivalently:

⋀
k≤r(n)

⋀
p∈Q
⋀
a∈Σ
[St,p ∧Ht,k ∧Wt,k,a → ⋁

q∈TS(p,a)
St+1,q]

∧ ⋀
k≤r(n)

⋀
p,q∈Q

⋀
a∈Σ
[St,p ∧Ht,k ∧Wt,k,a ∧ St+1,q → ⋁

m∈TH(p,a,q)
Ht+1,k+m]

∧ ⋀
k≤r(n)

⋀
p,q∈Q

⋀
a∈Σ

⋀
m∈{−1,0,1}

[St,p ∧Ht,k ∧Wt,k,a ∧ St+1,q ∧Ht+1,k+m →

⋁
b∈TW(p,a,m,q)

Wt+1,k,b]

TH(p, a, q) ∶= {m ∣ ⟨p, a, b,m, q⟩ ∈ ∆ }



Proof

TRANSt ∶= ⋁
⟨p,a,b,m,q⟩∈∆

⋁
k≤r(n)

[St,p ∧Ht,k ∧Wt,k,a ∧

St+1,q ∧Ht+1,k+m ∧Wt+1,k,b] ∧ . . .

equivalently:

⋀
k≤r(n)

⋀
p∈Q
⋀
a∈Σ
[St,p ∧Ht,k ∧Wt,k,a → ⋁

q∈TS(p,a)
St+1,q]

∧ ⋀
k≤r(n)

⋀
p,q∈Q

⋀
a∈Σ
[St,p ∧Ht,k ∧Wt,k,a ∧ St+1,q → ⋁

m∈TH(p,a,q)
Ht+1,k+m]

∧ ⋀
k≤r(n)

⋀
p,q∈Q

⋀
a∈Σ

⋀
m∈{−1,0,1}

[St,p ∧Ht,k ∧Wt,k,a ∧ St+1,q ∧Ht+1,k+m →

⋁
b∈TW(p,a,m,q)

Wt+1,k,b]
TW(p, a,m, q) ∶= { b ∈ Q ∣ ⟨p, a, b,m, q⟩ ∈ ∆ }



Proof
Properties of φw

▸ It is in CNF.
▸ It has length ∼ r(n)3.
▸ It is satisfiable if, and only if, the Turing machine accepts w.

Consequently, the satisfiability problem for PL-formulae in CNF is
NP-complete.

Reduction to 3-CNF

{L0, L1, L2, . . . , Ln} ↦ {L0, L1,X}, {¬X , L2, . . . , Ln}
(X new variable)



Proof
Properties of φw

▸ It is in CNF.
▸ It has length ∼ r(n)3.
▸ It is satisfiable if, and only if, the Turing machine accepts w.

Consequently, the satisfiability problem for PL-formulae in CNF is
NP-complete.

Reduction to 3-CNF

{L0, L1, L2, . . . , Ln} ↦ {L0, L1,X}, {¬X , L2, . . . , Ln}
(X new variable)



Resolution



Resolution

Resolution Step

The resolvent of two clauses

C = {L,A0, . . . ,Am} and C′ = {¬L,B0, . . . ,Bn}

is the clause

{A0, . . . ,Am,B0, . . . ,Bn} .

Lemma

Let C be the resolvent of two clauses in Φ. Then

Φ ⊧ Φ ∪ {C} .



Resolution

Resolution Step

The resolvent of two clauses

C = {L,A0, . . . ,Am} and C′ = {¬L,B0, . . . ,Bn}

is the clause

{A0, . . . ,Am,B0, . . . ,Bn} .

(This is the inverse of the splitting trick from the last slide.)

Lemma

Let C be the resolvent of two clauses in Φ. Then

Φ ⊧ Φ ∪ {C} .



The ResolutionMethod

Observation

If Φ contains the empty clause ∅, then Φ is not satisfiable.

ResolutionMethod
Input: a set of clauses Φ
Output: true if Φ is satisfiable, false otherwise.

RM(Φ)
add to Φ all possible resolvents
repeat until no new clauses are generated
if ∅ ∈ Φ then
return false

else
return true

Theorem

The resolution method for propositional logic is sound and complete.



Example

{A,C} {B,¬C} {¬A, B,C} {A,¬B} {¬A,¬B,¬C} {¬B,C}



Example

{A,C} {B,¬C} {¬A, B,C} {A,¬B} {¬A,¬B,¬C} {¬B,C}

{A, B} {¬A, B} {¬B,¬C}

{B} {¬B}

∅



Davis-PutnamAlgorithm

Input: a set of clauses Φ
Output: true if Φ is satisfiable, false otherwise.

DP(Φ)
remove all tautological clauses from Φ

if Φ = ∅ then
return true

if Φ = {∅} then
return false

select a variable X
add to Φ all resolvents over X
remove all clauses containing X or ¬X from Φ

repeat



Example
{A,C} {B,¬C} {¬A,B,C} {A,¬B} {¬A,¬B,¬C} {¬B,C}

select A : {B,C} {¬B,C,¬C} {B,¬B,C} {¬B,¬C}
removals: {B,¬C} {¬B,C} {B,C} {¬B,¬C}
select B : {C,¬C} {¬C} {C} {C,¬C}
removals: {¬C} {C}
select C : ∅



Example
{A,C} {B,¬C} {¬A,B,C} {A,¬B} {¬A,¬B,¬C} {¬B,C}
select A : {B,C} {¬B,C,¬C} {B,¬B,C} {¬B,¬C}

removals: {B,¬C} {¬B,C} {B,C} {¬B,¬C}
select B : {C,¬C} {¬C} {C} {C,¬C}
removals: {¬C} {C}
select C : ∅



Example
{A,C} {B,¬C} {¬A,B,C} {A,¬B} {¬A,¬B,¬C} {¬B,C}
select A : {B,C} {¬B,C,¬C} {B,¬B,C} {¬B,¬C}
removals: {B,¬C} {¬B,C} {B,C} {¬B,¬C}

select B : {C,¬C} {¬C} {C} {C,¬C}
removals: {¬C} {C}
select C : ∅



Example
{A,C} {B,¬C} {¬A,B,C} {A,¬B} {¬A,¬B,¬C} {¬B,C}
select A : {B,C} {¬B,C,¬C} {B,¬B,C} {¬B,¬C}
removals: {B,¬C} {¬B,C} {B,C} {¬B,¬C}
select B : {C,¬C} {¬C} {C} {C,¬C}

removals: {¬C} {C}
select C : ∅



Example
{A,C} {B,¬C} {¬A,B,C} {A,¬B} {¬A,¬B,¬C} {¬B,C}
select A : {B,C} {¬B,C,¬C} {B,¬B,C} {¬B,¬C}
removals: {B,¬C} {¬B,C} {B,C} {¬B,¬C}
select B : {C,¬C} {¬C} {C} {C,¬C}
removals: {¬C} {C}

select C : ∅



Example
{A,C} {B,¬C} {¬A,B,C} {A,¬B} {¬A,¬B,¬C} {¬B,C}
select A : {B,C} {¬B,C,¬C} {B,¬B,C} {¬B,¬C}
removals: {B,¬C} {¬B,C} {B,C} {¬B,¬C}
select B : {C,¬C} {¬C} {C} {C,¬C}
removals: {¬C} {C}
select C : ∅



Horn formulae



Linear Resolution

A linear resolution is a sequence of resolution steps where in each
step the resolvent of the previous step is used.

{¬A,¬B} {A,¬C} {B,¬C ,¬D} {C ,¬D} {D}

{¬B,¬C}

{¬C ,¬D}

{¬D}

∅



Horn formulae and linear resolution
Horn formulae

A Horn clause is a clause C that contains at most one positive literal.

Example

A0 ∧ ⋅ ⋅ ⋅ ∧An → B ≡ {¬A0, . . . ,¬An,B}

Theorem

A set of Horn clauses is unsatisfiable if, and only if, one can use linear
resolution to derive the empty clause from it.

SLD Resolution

Linear resolution where the clauses are sequences instead of sets and
we always resolve the leftmost literal of the current clause.



Horn formulae and linear resolution
Horn formulae

A Horn clause is a clause C that contains at most one positive literal.

Example

A0 ∧ ⋅ ⋅ ⋅ ∧An → B ≡ {¬A0, . . . ,¬An,B}

Theorem

A set of Horn clauses is unsatisfiable if, and only if, one can use linear
resolution to derive the empty clause from it.

SLD Resolution

Linear resolution where the clauses are sequences instead of sets and
we always resolve the leftmost literal of the current clause.



Minimal models
Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Algorithm to compute it:

Input: Φ set of Horn-formulae
T ∶= ∅
repeat

for all A0 ∧ ⋅ ⋅ ⋅ ∧An−1 → B ∈ Φ do
if A0, . . . ,An−1 ∈ T then

T ∶= T ∪ {B}
until T does not change anymore

Theorem

Satisfiability for sets of Horn-formulae can be checked in linear time.



Minimal models
Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Algorithm to compute it:

Input: Φ set of Horn-formulae
T ∶= ∅
repeat

for all A0 ∧ ⋅ ⋅ ⋅ ∧An−1 → B ∈ Φ do
if A0, . . . ,An−1 ∈ T then
T ∶= T ∪ {B}

until T does not change anymore

Theorem

Satisfiability for sets of Horn-formulae can be checked in linear time.



Minimal models
Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Algorithm to compute it:

Input: Φ set of Horn-formulae
T ∶= ∅
repeat

for all A0 ∧ ⋅ ⋅ ⋅ ∧An−1 → B ∈ Φ do
if A0, . . . ,An−1 ∈ T then
T ∶= T ∪ {B}

until T does not change anymore

Theorem

Satisfiability for sets of Horn-formulae can be checked in linear time.



Example

B ∧ C→ A A ∧D → B F→ C E → D
D ∧ E → A C ∧ F→ B 1→ F



Example

B ∧ C→ A A ∧D → B F→ C E → D
D ∧ E → A C ∧ F→ B 1→ F



Example

B ∧ C→ A A ∧D → B F→ C E → D
D ∧ E → A C ∧ F→ B 1→ F



Example

B ∧ C→ A A ∧D → B F→ C E → D
D ∧ E → A C ∧ F→ B 1→ F



Example

B ∧ C→ A A ∧D → B F→ C E → D
D ∧ E → A C ∧ F→ B 1→ F



Finite Games G = ⟨V◇,V◻, E⟩
Players◇ and ◻

◇

◻

◻

◇

◻

◻

◇

◇

◇

◻ ◇

◻

Winning regions: W◇,W◻



Finite Games G = ⟨V◇,V◻, E⟩
Players◇ and ◻

◇

◻

◻

◇

◻

◻

◇

◇

◇

◻ ◇

◻

Winning regions: W◇,W◻



Reduction
positions

V◇ = variables ⟨A⟩ and V◻ = formulae [A0 ∧ ⋅ ⋅ ⋅ ∧An−1 → B]

edges

⟨B⟩ → [A0 ∧ ⋅ ⋅ ⋅ ∧An−1 → B]
[A0 ∧ ⋅ ⋅ ⋅ ∧An−1 → B] → ⟨Ai⟩

Lemma

A variable A belongs to W◇ iff it is true in the minimal model.



B ∧ C → A A ∧D → B F → C
D ∧ E → A C ∧ F → B 1→ F

⟨F⟩

[F → C]

[C ∧ F → B]

⟨C⟩

⟨B⟩

[B ∧ C → A]

[A∧ D → B]

⟨A⟩

⟨D⟩

[D ∧ E → A] ⟨E⟩

[→ F]



Simple Algorithm
Win(v, σ)

if v ∈ Vσ then
if there is an edge v → u with Win(u, σ) then
return true

else
return false

if v ∈ Vσ then (*◇ ∶= ◻ ◻ ∶=◇ *)
if for every edge v → u we have Win(u, σ) then
return true

else
return false



Linear Algorithm
Input: game ⟨V◇,V◻, E⟩
forall v ∈ V do

win[v] ∶= � (* winner of the position *)
P[v] ∶= ∅ (* set of predecessors of v *)
n[v] ∶= 0 (* number of successors of v *)

end

forall ⟨u, v⟩ ∈ E do
P[v] ∶= P[v] ∪ {u}
n[u] ∶= n[u] + 1

end

forall v ∈ V◇ do
if n[v] = 0 then Propagate(v,◻)

forall v ∈ V◻ do
if n[v] = 0 then Propagate(v,◇)

return win



procedure Propagate(v, σ) =
if win[v] ≠ � then return
win[v] ∶= σ
forall u ∈ P[v] do
n[u] ∶= n[u] − 1
if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

end
end


