IA008: Computational Logic 1. Propositional Logic

> Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

Propositional Logic

Syntax

- Variables $A, B, C, \ldots, X, Y, Z, \ldots$
- Operators \land , \lor , \neg , \rightarrow , \leftrightarrow

Semantics

 $\mathfrak{J} \models \varphi$ $\mathfrak{J} : \text{Variables} \rightarrow \{\text{true, false}\}$

Examples

$$\begin{split} \varphi &\coloneqq A \land (A \to B) \to B, \\ \psi &\coloneqq \neg (A \land B) \leftrightarrow (\neg A \lor \neg B) \,. \end{split}$$

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$

(do not confuse with $\mathfrak{J} \models \varphi$!) (do not confuse with $\varphi = \psi$!)

• $\varphi \equiv \psi$ iff $\varphi \models \psi$ and $\psi \models \varphi$

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$
- $\varphi \equiv \psi$ iff $\varphi \vDash \psi$ and $\psi \vDash \varphi$
- **satisfiability** $\varphi \not\equiv$ false
- validity $\varphi \equiv \text{true}$
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \vDash \psi$ iff $\varphi \rightarrow \psi$ is valid.

Examples

• $A \land (A \rightarrow B) \rightarrow B$ is

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$
- $\varphi \equiv \psi$ iff $\varphi \vDash \psi$ and $\psi \vDash \varphi$
- **satisfiability** $\varphi \not\equiv$ false
- validity $\varphi \equiv \text{true}$
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \vDash \psi$ iff $\varphi \rightarrow \psi$ is valid.

Examples

- $A \land (A \to B) \to B$ is valid.
- $A \lor B$ is

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$
- $\varphi \equiv \psi$ iff $\varphi \vDash \psi$ and $\psi \vDash \varphi$
- **satisfiability** $\varphi \not\equiv$ false
- validity $\varphi \equiv \text{true}$
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \vDash \psi$ iff $\varphi \rightarrow \psi$ is valid.

Examples

- $A \land (A \to B) \to B$ is valid.
- $A \lor B$ is satisfiable but not valid.
- $\neg A \land A$ is

- entailment $\varphi \vDash \psi$
- equivalence $\varphi \equiv \psi$
- $\varphi \equiv \psi$ iff $\varphi \vDash \psi$ and $\psi \vDash \varphi$
- **satisfiability** $\varphi \not\equiv$ false
- validity $\varphi \equiv \text{true}$
- Every valid formula is satisfiable.
- φ is valid iff $\neg \varphi$ is not satisfiable.
- $\varphi \vDash \psi$ iff $\varphi \rightarrow \psi$ is valid.

Examples

- $A \land (A \rightarrow B) \rightarrow B$ is valid.
- $A \lor B$ is satisfiable but not valid.
- $\neg A \land A$ is not satisfiable.

Equivalence Transformations

De Morgan's laws

$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$$
$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$

Equivalence Transformations

De Morgan's laws

$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$$
$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$

Distributive laws

$$\begin{array}{l} \varphi \land (\psi \lor \vartheta) \equiv (\varphi \land \psi) \lor (\varphi \land \vartheta) \\ \varphi \lor (\psi \land \vartheta) \equiv (\varphi \lor \psi) \land (\varphi \lor \vartheta) \end{array}$$

Normal Forms

Conjunctive Normal Form (CNF)

$$(A \lor \neg B) \land (\neg A \lor C) \land (A \lor \neg B \lor \neg C)$$

Disjunctive Normal Form (DNF)

$$(A \land C) \lor (\neg A \land \neg B) \lor (A \land \neg B \land \neg C)$$

Clauses

Definitions

- literal $A \text{ or } \neg A$
- ► clause set of literals $\{A, B, \neg C\}$ short-hand for disjunction $A \lor B \lor \neg C$

Clauses

Definitions

- literal $A \text{ or } \neg A$
- ► clause set of literals $\{A, B, \neg C\}$ short-hand for disjunction $A \lor B \lor \neg C$

Example

CNF $\varphi := (A \lor \neg B \lor C) \land (\neg A \lor C) \land B$ clauses $\{A, \neg B, C\}, \{\neg A, C\}, \{B\}$

Clauses

Definitions

- literal $A \text{ or } \neg A$
- ► clause set of literals {A, B, ¬C} short-hand for disjunction A ∨ B ∨ ¬C

Example

CNF
$$\varphi := (A \lor \neg B \lor C) \land (\neg A \lor C) \land B$$

clauses $\{A, \neg B, C\}, \{\neg A, C\}, \{B\}$

Notation

$$\Phi[L := \operatorname{true}] := \left\{ C \smallsetminus \{\neg L\} \mid C \in \Phi, L \notin C \right\}.$$

The Satisfiability Problem

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Input: a set of clauses Φ **Output:** true if Φ is satisfiable, false otherwise.

 $DPLL(\Phi)$ for every singleton $\{L\}$ in Φ (* simplify Φ *) $\Phi := \Phi[L := \text{true}]$ for every literal L whose negation does not occur in Φ $\Phi := \Phi[L := \text{true}]$ if ϕ contains the empty clause then (* are we done? *) return false if Φ is empty then return true choose some literal L in Φ (* try L := true and L := false *) if DPLL($\Phi[L := true]$) then return true else **return** DPLL($\Phi[L := \text{false}]$)

$$\Phi := \{ \{A, B, \neg C\}, \{\neg B, C, D\}, \{\neg A, \neg B, \neg D\}, \{B, C, D\}, \\ \{\neg A, \neg B, \neg C\}, \{\neg A, \neg C, \neg D\} \}$$

Step 1: $A \coloneqq$ true

$$\begin{split} \Phi &\coloneqq \{\{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\}, \\ \{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \} \end{split}$$

Step 1: A := true

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Step 2: B := true

$$\begin{split} \Phi &\coloneqq \{\{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\}, \\ \{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \} \end{split}$$

Step 1: A := true

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Step 2: B := true

$$\{C, D\}, \{\neg D\}, \{\neg C\}, \{\neg C, \neg D\}$$

Step 3: C := false and D := false

$$\begin{split} \Phi &\coloneqq \{\{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\}, \\ \{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \} \end{split}$$

Step 1: A := true

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Step 2: B := true

$$\{C, D\}, \{\neg D\}, \{\neg C\}, \{\neg C, \neg D\}$$

Step 3: C := false and D := false

 $\{D\}, \{\neg D\}$

$$\begin{split} \Phi &\coloneqq \{\{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\}, \\ \{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \} \end{split}$$

Step 1: A := true

$$\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$$

Step 2: B := true

$$\{C, D\}, \{\neg D\}, \{\neg C\}, \{\neg C, \neg D\}$$

Step 3: C := false and D := false

 ${D}, {\neg D}$ Ø failure

$$\begin{split} \Phi &\coloneqq \{\{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\}, \\ \{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \} \end{split}$$

Step 1: A := true

 $\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$

Backtrack to step 2: B := false

$$\begin{split} \Phi &\coloneqq \{\{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\}, \\ \{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \} \end{split}$$

Step 1: A := true

 $\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$

Backtrack to step 2: B := false

 $\{C,D\}, \{\neg C, \neg D\}$

Step 3: C := true

$$\begin{split} \Phi &\coloneqq \{\{A, B, \neg C\}, \ \{\neg B, C, D\}, \ \{\neg A, \neg B, \neg D\}, \ \{B, C, D\}, \\ \{\neg A, \neg B, \neg C\}, \ \{\neg A, \neg C, \neg D\} \} \end{split}$$

Step 1: A := true

 $\{\neg B, C, D\}, \{\neg B, \neg D\}, \{B, C, D\}, \{\neg B, \neg C\}, \{\neg C, \neg D\}$

Backtrack to step 2: B := false

 $\{C,D\}, \{\neg C, \neg D\}$

Step 3: C := true

 $\{\neg D\}$ satisfiable

Solution: A = true, B = false, C = true, D = false

Vertex cover

Variables:

 C_{ν} vertex ν belongs to the cover

Vertex cover

Variables:

 C_v vertex v belongs to the coverFormulae: $C_u \lor C_v$ $C_u \lor C_v$ for every edge $\langle u, v \rangle \in E$ Size_k^{\leq}"At most k of the C_v are true."

Vertex cover

Variables:

$C_{ u}$	vertex v belongs to the cover
formulae:	
$C_u \vee C_v$	for every edge $\langle u, v \rangle \in E$
Size_k^{\leq}	"At most k of the C_{ν} are true."
lique	
Variables:	

 C_{ν} vertex ν belongs to the clique

Vertex cover

Variables:

C_{ν}	vertex v belongs to the cover
Formulae:	
$C_u \vee C_v$	for every edge $\langle u, v \rangle \in E$
$Size_k^{\leq}$	"At most k of the C_v are true."
Clique	
Variables:	
C_{ν}	vertex v belongs to the clique

Formulae:

The $Size_k^{\geq}$ **formulae**

Fix an enumeration v_0, \ldots, v_{n-1} of *V*.

Variables:

$$S_m^k$$
 at least k variables C_{v_i} with $i < m$ are true

The $Size_k^{\geq}$ formulae

Fix an enumeration v_0, \ldots, v_{n-1} of *V*.

Variables:

$$S_m^k$$
 at least k variables C_{v_i} with $i < m$ are true

Formulae:

$$S_{m}^{0} - S_{0}^{k} \quad \text{for } k > 0$$

$$C_{\nu_{i}} \rightarrow \left[S_{i}^{k} \leftrightarrow S_{i+1}^{k+1}\right] - C_{\nu_{i}} \rightarrow \left[S_{i}^{k} \leftrightarrow S_{i+1}^{k}\right]$$

$$S_{n}^{k}$$

The $Size_k^{\geq}$ **formulae**

Fix an enumeration v_0, \ldots, v_{n-1} of *V*.

Variables:

 S_m^k at least k variables C_{v_i} with i < m are true

Formulae:

S_m^0			v_0		v_1		v_2	
$\neg S_0^k$ for $k > 0$	C_{ν_i}		1		0		1	
$C_{\nu_i} \to \left[S_i^k \leftrightarrow S_{i+1}^{k+1}\right]$	S_i^0	1		1		1		1
$\neg C_{\nu_i} \rightarrow \left[S_i^k \leftrightarrow S_{i+1}^k\right]$	S_i^{i}	0		1		1		1
S_n^k	S_i^2	0		0		0		1
	S^3	0		0		0		0

The $Size_k^{\geq}$ formulae

Fix an enumeration v_0, \ldots, v_{n-1} of *V*.

Variables:

 S_m^k at least k variables C_{v_i} with i < m are true

Formulae:

S_m^0			ν_0		ν_1		v_2	
$\neg S_0^k$ for $k > 0$	C_{v_i}		1		0		1	
$C_{\nu_i} \to \left[S_i^k \leftrightarrow S_{i+1}^{k+1}\right]$	S_i^0	1		1		1		1
$\neg C_{\nu_i} \rightarrow \left[S_i^k \leftrightarrow S_{i+1}^k\right]$	S_i^1	0		1		1		1
S_n^k	S_i^2	0		0		0		1
	S_i^3	0		0		0		0

A similar construction works for Size_k^{\leq} .

The Satisfiability Problem

Theorem

3-SAT (satisfiability for formulae in 3-CNF) is NP-complete.

The Satisfiability Problem

Theorem

3-SAT (satisfiability for formulae in 3-CNF) is NP-complete.

Proof

Given Turing machine \mathcal{M} and input w, construct formula φ such that

 \mathcal{M} accepts w iff φ is satisfiable.

Proof

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$

- Q set of states
- Σ tape alphabet
- $\Delta \quad \text{set of transitions } \langle p, a, b, m, q \rangle \in Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$
- q_0 initial state
- F_+ accepting states
- F_- rejecting states

nondeterministic, runtime bounded by the polynomial r(n)

Proof

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$

- Q set of states
- Σ tape alphabet
- $\Delta \quad \text{set of transitions } \langle p, a, b, m, q \rangle \in Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$
- q_0 initial state
- F_+ accepting states
- F_- rejecting states

nondeterministic, runtime bounded by the polynomial r(n)

Encoding in PL

 $\begin{array}{ll} S_{t,q} & \text{state } q \text{ at time } t \\ H_{t,k} & \text{head in field } k \text{ at time } t \\ W_{t,k,a} & \text{letter } a \text{ in field } k \text{ at time } t \end{array}$

$$\varphi_{w} \coloneqq \bigwedge_{t < r(n)} \left[\text{ADM}_{t} \land \text{INIT} \land \text{TRANS}_{t} \land \text{ACC} \right]$$
$\begin{array}{ll} S_{t,q} & \text{state } q \text{ at time } t \\ H_{t,k} & \text{head in field } k \text{ at time } t \\ W_{t,k,a} & \text{letter } a \text{ in field } k \text{ at time } t \end{array}$

Admissibility formula

$$ADM_{t} := \bigwedge_{\substack{p \neq q}} \left[\neg S_{t,p} \lor \neg S_{t,q} \right] \qquad \mathbf{u}$$
$$\land \bigwedge_{\substack{k \neq l}} \left[\neg H_{t,k} \lor \neg H_{t,l} \right] \qquad \mathbf{u}$$
$$\land \bigwedge_{\substack{k \neq b}} \left[\neg W_{t,k,a} \lor \neg W_{t,k,b} \right] \qquad \mathbf{u}$$

unique state

unique head position

unique letter

 $\begin{array}{ll} S_{t,q} & \text{state } q \text{ at time } t \\ H_{t,k} & \text{head in field } k \text{ at time } t \\ W_{t,k,a} & \text{letter } a \text{ in field } k \text{ at time } t \end{array}$

Initialisation formula for input: $a_0 \dots a_{n-1}$

$$\operatorname{NIT} := S_{0,q_0} \\ \wedge H_{0,0} \\ \wedge \bigwedge_{k < n} W_{0,k,a_k} \wedge \bigwedge_{n \le k \le r(n)} W_{0,k,\square}$$

initial state initial head position initial tape content

Acceptance formula

 $ACC := \bigvee_{q \in F_+} \bigvee_{t \le r(n)} S_{t,q}$

accepting state

 $\begin{array}{ll} S_{t,q} & \text{state } q \text{ at time } t \\ H_{t,k} & \text{head in field } k \text{ at time } t \\ W_{t,k,a} & \text{letter } a \text{ in field } k \text{ at time } t \end{array}$

Transition formula

$$TRANS_{t} := \bigvee_{\substack{\langle p,a,b,m,q \rangle \in \Delta \\ k \le r(n) }} \bigvee_{\substack{k \le r(n) \\ k \le r(n) }} \begin{bmatrix} S_{t,p} \land H_{t,k} \land W_{t,k,a} \land \\ S_{t+1,q} \land H_{t+1,k+m} \land W_{t+1,k,b} \end{bmatrix}$$
effect of transition
$$\land \bigwedge_{\substack{k \le r(n) \\ a \in \Sigma }} [\neg H_{t,k} \land W_{t,k,a} \rightarrow W_{t+1,k,a}]$$

rest of tape remains unchanged

$$\operatorname{TRANS}_{t} := \bigvee_{(p,a,b,m,q) \in \Delta} \bigvee_{k \le r(n)} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge S_{t+1,q} \wedge H_{t+1,k+m} \wedge W_{t+1,k,b} \right] \wedge \dots$$

$$\operatorname{TRANS}_{t} := \bigvee_{(p,a,b,m,q) \in \Delta} \bigvee_{k \le r(n)} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge S_{t+1,q} \wedge H_{t+1,k+m} \wedge W_{t+1,k,b} \right] \wedge \dots$$

equivalently:

$$\bigwedge_{k \le r(n)} \bigwedge_{p \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \land H_{t,k} \land W_{t,k,a} \to \bigvee_{q \in TS(p,a)} S_{t+1,q} \right]$$

$$TS(p,a) \coloneqq \{ q \in Q \mid \langle p, a, b, m, q \rangle \in \Delta \}$$

$$\operatorname{TRANS}_{t} := \bigvee_{(p,a,b,m,q) \in \Delta} \bigvee_{k \le r(n)} \left[S_{t,p} \wedge H_{t,k} \wedge W_{t,k,a} \wedge S_{t+1,q} \wedge H_{t+1,k+m} \wedge W_{t+1,k,b} \right] \wedge \dots$$

equivalently:

$$\bigwedge_{k \le r(n)} \bigwedge_{p \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \land H_{t,k} \land W_{t,k,a} \to \bigvee_{q \in TS(p,a)} S_{t+1,q} \right]$$
$$\land \bigwedge_{k \le r(n)} \bigwedge_{p,q \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \land H_{t,k} \land W_{t,k,a} \land S_{t+1,q} \to \bigvee_{m \in TH(p,a,q)} H_{t+1,k+m} \right]$$

$$TH(p, a, q) \coloneqq \{ m \mid \langle p, a, b, m, q \rangle \in \Delta \}$$

$$TRANS_{t} := \bigvee_{(p,a,b,m,q) \in \Delta} \bigvee_{k \le r(n)} \left[S_{t,p} \land H_{t,k} \land W_{t,k,a} \land S_{t+1,q} \land H_{t+1,k+m} \land W_{t+1,k,b} \right] \land \dots$$

equivalently:

$$\begin{split} & \bigwedge_{k \le r(n)} \bigwedge_{p \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \land H_{t,k} \land W_{t,k,a} \to \bigvee_{q \in TS(p,a)} S_{t+1,q} \right] \\ & \land \bigwedge_{k \le r(n)} \bigwedge_{p,q \in Q} \bigwedge_{a \in \Sigma} \left[S_{t,p} \land H_{t,k} \land W_{t,k,a} \land S_{t+1,q} \to \bigvee_{m \in TH(p,a,q)} H_{t+1,k+m} \right] \\ & \land \bigwedge_{k \le r(n)} \bigwedge_{p,q \in Q} \bigwedge_{a \in \Sigma} \bigwedge_{m \in \{-1,0,1\}} \left[S_{t,p} \land H_{t,k} \land W_{t,k,a} \land S_{t+1,q} \land H_{t+1,k+m} \to \bigvee_{k \le r(n)} W_{t+1,k,k} \right] \\ & TW(p,a,m,q) \coloneqq \left\{ b \in Q \mid \langle p,a,b,m,q \rangle \in \Delta \right\} \xrightarrow{b \in TW(p,a,m,q)} W_{t+1,k,k} \end{split}$$

Properties of φ_w

- It is in CNF.
- It has length $\sim r(n)^3$.
- It is satisfiable if, and only if, the Turing machine accepts *w*.

Consequently, the satisfiability problem for PL-formulae in CNF is NP-complete.

Properties of φ_w

- It is in CNF.
- It has length $\sim r(n)^3$.
- It is satisfiable if, and only if, the Turing machine accepts *w*.

Consequently, the satisfiability problem for PL-formulae in CNF is NP-complete.

Reduction to 3-CNF

 $\{L_0, L_1, L_2, \dots, L_n\} \quad \mapsto \quad \{L_0, L_1, X\}, \ \{\neg X, L_2, \dots, L_n\}$ (X new variable)

Resolution

Resolution

Resolution Step

The resolvent of two clauses

 $C = \{L, A_0, \dots, A_m\}$ and $C' = \{\neg L, B_0, \dots, B_n\}$

is the clause

 $\{A_0,\ldots,A_m,B_0,\ldots,B_n\}.$

Lemma

Let *C* be the resolvent of two clauses in Φ . Then

 $\Phi \vDash \Phi \cup \{C\}.$

Resolution

Resolution Step

The resolvent of two clauses

 $C = \{L, A_0, \dots, A_m\}$ and $C' = \{\neg L, B_0, \dots, B_n\}$

is the clause

 $\{A_0,\ldots,A_m,B_0,\ldots,B_n\}.$

(This is the inverse of the splitting trick from the last slide.)

Lemma

Let *C* be the resolvent of two clauses in Φ . Then

 $\Phi \vDash \Phi \cup \{C\}.$

The Resolution Method

Observation

If Φ contains the empty clause \emptyset , then Φ is not satisfiable.

Resolution Method

Input: a set of clauses Φ **Output:** true if Φ is satisfiable, false otherwise.

 $RM(\Phi)$ add to Φ all possible resolvents repeat until no new clauses are generated if $\emptyset \in \Phi$ then return false else return true

Theorem

The resolution method for propositional logic is sound and complete.

 $\{A,C\} \qquad \{B,\neg C\} \qquad \{\neg A,B,C\} \qquad \{A,\neg B\} \quad \{\neg A,\neg B,\neg C\} \quad \{\neg B,C\}$

Davis-Putnam Algorithm

Input: a set of clauses Φ **Output:** true if Φ is satisfiable, false otherwise.

 $DP(\Phi)$ remove all tautological clauses from Φ if $\Phi = \emptyset$ then return true if $\Phi = \{\emptyset\}$ then return false select a variable X add to Φ all resolvents over X remove all clauses containing *X* or $\neg X$ from Φ repeat

$\left\{A,C\right\}\left\{B,\neg C\right\}\left\{\neg A,B,C\right\}\left\{A,\neg B\right\}\left\{\neg A,\neg B,\neg C\right\}\left\{\neg B,C\right\}$

 $\{A, C\} \{B, \neg C\} \{\neg A, B, C\} \{A, \neg B\} \{\neg A, \neg B, \neg C\} \{\neg B, C\}$ select *A*: $\{B, C\} \{\neg B, C, \neg C\} \{B, \neg B, C\} \{\neg B, \neg C\}$

 $\{A, C\} \{B, \neg C\} \{\neg A, B, C\} \{A, \neg B\} \{\neg A, \neg B, \neg C\} \{\neg B, C\}$ select *A*: $\{B, C\} \{\neg B, C, \neg C\} \{B, \neg B, C\} \{\neg B, \neg C\}$ removals: $\{B, \neg C\} \{\neg B, C\} \{B, C\} \{\neg B, \neg C\}$

 $\{A, C\} \{B, \neg C\} \{\neg A, B, C\} \{A, \neg B\} \{\neg A, \neg B, \neg C\} \{\neg B, C\}$ select *A*: $\{B, C\} \{\neg B, C, \neg C\} \{B, \neg B, C\} \{\neg B, \neg C\}$ removals: $\{B, \neg C\} \{\neg B, C\} \{B, C\} \{\neg B, \neg C\}$ select *B*: $\{C, \neg C\} \{\neg C\} \{C\} \{C, \neg C\}$

 $\{A, C\} \{B, \neg C\} \{\neg A, B, C\} \{A, \neg B\} \{\neg A, \neg B, \neg C\} \{\neg B, C\}$ select *A*: $\{B, C\} \{\neg B, C, \neg C\} \{B, \neg B, C\} \{\neg B, \neg C\}$ removals: $\{B, \neg C\} \{\neg B, C\} \{B, C\} \{\neg B, \neg C\}$ select *B*: $\{C, \neg C\} \{\neg C\} \{C\} \{C, \neg C\}$ removals: $\{\neg C\} \{C\}$

```
 \{A, C\} \{B, \neg C\} \{\neg A, B, C\} \{A, \neg B\} \{\neg A, \neg B, \neg C\} \{\neg B, C\} 
select A: \{B, C\} \{\neg B, C, \neg C\} \{B, \neg B, C\} \{\neg B, \neg C\} 
removals: \{B, \neg C\} \{\neg B, C\} \{B, C\} \{\neg B, \neg C\} 
select B: \{C, \neg C\} \{\neg C\} \{C\} \{C, \neg C\} 
removals: \{\neg C\} \{C\} 
select C: \emptyset
```

Horn formulae

Linear Resolution

A **linear resolution** is a sequence of resolution steps where in each step the resolvent of the previous step is used.

Horn formulae and linear resolution

Horn formulae

A Horn clause is a clause C that contains at most one positive literal.

Example

 $A_0 \wedge \dots \wedge A_n \rightarrow B \equiv \{\neg A_0, \dots, \neg A_n, B\}$

Horn formulae and linear resolution

Horn formulae

A Horn clause is a clause *C* that contains at most one positive literal.

Example

$$A_0 \wedge \dots \wedge A_n \to B \quad \equiv \quad \{\neg A_0, \dots, \neg A_n, B\}$$

Theorem

A set of Horn clauses is unsatisfiable if, and only if, one can use linear resolution to derive the empty clause from it.

SLD Resolution

Linear resolution where the clauses are **sequences** instead of sets and we always resolve the **leftmost literal** of the current clause.

Minimal models

Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Minimal models

Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Algorithm to compute it:

Input: Φ set of Horn-formulae $T := \emptyset$ **repeat for all** $A_0 \land \dots \land A_{n-1} \rightarrow B \in \Phi$ **do if** $A_0, \dots, A_{n-1} \in T$ **then** $T := T \cup \{B\}$ **until** T does not change anymore

Minimal models

Lemma

Every satisfiable set of Horn-formulae has a minimal model.

Algorithm to compute it:

Input: Φ set of Horn-formulae $T := \emptyset$ **repeat for all** $A_0 \land \dots \land A_{n-1} \rightarrow B \in \Phi$ **do if** $A_0, \dots, A_{n-1} \in T$ **then** $T := T \cup \{B\}$ **until** T does not change anymore

Theorem

Satisfiability for sets of Horn-formulae can be checked in linear time.

 $B \land C \to A \qquad A \land D \to B \qquad F \to C \qquad E \to D$ $D \land E \to A \qquad C \land F \to B \qquad 1 \to F$

 $B \land C \to A \qquad A \land D \to B \qquad \mathbf{F} \to C \qquad E \to D$ $D \land E \to A \qquad C \land \mathbf{F} \to B \qquad 1 \to \mathbf{F}$

 $B \land \mathbf{C} \to A \qquad A \land D \to B \qquad \mathbf{F} \to \mathbf{C} \qquad E \to D$ $D \land E \to A \qquad \mathbf{C} \land \mathbf{F} \to B \qquad 1 \to \mathbf{F}$

 $B \land C \to A \qquad A \land D \to B \qquad F \to C \qquad E \to D$ $D \land E \to A \qquad C \land F \to B \qquad 1 \to F$

 $B \land C \to A \qquad A \land D \to B \qquad F \to C \qquad E \to D$ $D \land E \to A \qquad C \land F \to B \qquad 1 \to F$

Finite Games $\mathcal{G} = \langle V_{\diamondsuit}, V_{\Box}, E \rangle$

Players \diamondsuit and \Box

Winning regions: W_{\diamondsuit} , W_{\Box}

Finite Games $\mathcal{G} = \langle V_{\diamondsuit}, V_{\Box}, E \rangle$

Players \diamondsuit and \Box

Winning regions: W_{\diamondsuit} , W_{\Box}
Reduction

positions

 $V_{\diamondsuit} = \text{variables } \langle A \rangle \quad \text{and} \quad V_{\Box} = \text{formulae} \left[A_0 \land \dots \land A_{n-1} \rightarrow B \right]$

edges

Lemma

A variable A belongs to W_{\diamondsuit} iff it is true in the minimal model.

 $B \land C \to A \qquad A \land D \to B \qquad F \to C$ $D \land E \to A \qquad C \land F \to B \qquad 1 \to F$

Simple Algorithm

 $Win(v, \sigma)$ if $v \in V_{\sigma}$ then if there is an edge $v \rightarrow u$ with Win (u, σ) then return true else return false $(*\overline{\diamondsuit}:=\Box \quad \overline{\Box}:=\diamondsuit^*)$ if $v \in V_{\overline{\sigma}}$ then if for every edge $v \rightarrow u$ we have Win (u, σ) then return true else return false

Linear Algorithm

```
Input: game \langle V_{\diamondsuit}, V_{\Box}, E \rangle

forall v \in V do

win[v] := \bot (* winner or

P[v] := \varnothing (* set of pre-

n[v] := 0 (* number of

end
```

```
(* winner of the position *)
(* set of predecessors of v *)
(* number of successors of v *)
```

```
forall \langle u, v \rangle \in E do

P[v] := P[v] \cup \{u\}

n[u] := n[u] + 1

end
```

```
forall v \in V_{\diamondsuit} do

if n[v] = 0 then \operatorname{Propagate}(v, \Box)

forall v \in V_{\Box} do

if n[v] = 0 then \operatorname{Propagate}(v, \diamondsuit)

return win
```

```
procedure Propagate(v, \sigma) =

if win[v] \neq \bot then return

win[v] \coloneqq \sigma

forall u \in P[v] do

n[u] \coloneqq n[u] - 1

if u \in V_{\sigma} or n[u] = 0 then Propagate(u, \sigma)

end

end
```