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Basic Concepts



First-Order Logic

Syntax
▸ variables x, y, z, . . .
▸ terms x, f (t0, . . . , tn)
▸ relations R(t0, . . . , tn) and equality t0 = t1
▸ operators ∧,∨,¬,→,↔
▸ quantifiers ∃xφ,∀xφ

Semantics

A ⊧ φ(ā) A = ⟨A,R0,R1, . . . , f0, f1, . . . ⟩

Examples

φ ∶= ∀x∃y[f (y) = x] ,
ψ ∶= ∀x∀y∀z[x ≤ y ∧ y ≤ z → x ≤ z] .



Examples

Structures

• graphsG = ⟨V , E⟩
E ⊆ V ×V binary relation

• wordsW = ⟨W , ≤, (Pa)a⟩
≤ ⊆W ×W linear ordering
Pa ⊆W positions with letter a

• transition systemsS = ⟨S, (Ea)a, (Pi)i⟩
Ea ⊆ V ×V binary relation
Pi ⊆ V unary relation
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Examples
Graphs G = ⟨V , E⟩, E ⊆ V ×V

• ‘The graph is undirected.’ (i.e., E is symmetric)

∀x∀y[E(x, y)→ E(y, x)]

• ‘The graph has no isolated vertices.’

∀x∃y[E(x, y) ∨ E(y, x)]

• ‘Every vertex has outdegree 1.’

∀x∃y[E(x, y) ∧ ∀z[E(x, z)→ z = y]]
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Satisfiability
Theorem

Satisfiability for first-order logic is undecidable.



Proof
TuringmachineM = ⟨Q, Σ, ∆, q0, F+, F−⟩

Q set of states
Σ tape alphabet
∆ set of transitions ⟨p, a, b,m, q⟩ ∈ Q × Σ × Σ × {−1, 0, 1} ×Q
q0 initial state
F+ accepting states
F− rejecting states

Encoding in FO

Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t , k) letter a in field k at time t
s successor function s(n) = n + 1
0 zero

φw ∶= ADM ∧ INIT ∧ TRANS ∧ACC
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Proof
Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t , k) letter a in field k at time t
s successor function s(n) = n + 1
0 zero

Admissibility formula

ADM ∶= ∀t⋀
p≠q

¬[Sp(t) ∧ Sq(t)] unique state

∧ ∀t∀k⋀
a≠b

¬[Wa(t , k) ∧Wb(t , k)] unique letter



Proof
Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t , k) letter a in field k at time t
s successor function s(n) = n + 1

Initialisation formula for input: a0 . . . an−1

INIT ∶= Sq0(0) initial state
∧ h(0) = 0 initial head position
∧ ⋀

k<n
Wak(0, k) ∧ ∀k[k ≥ n→W◻(0, k)] initial tape content

(here k ∶= s(s(⋯s(0))) and k ≥ n ∶= ⋀i<n k ≠ i)

Acceptance formula

ACC ∶= ∃t ⋁
q∈F+

Sq(t) accepting state



Proof
Sq(t) state q at time t
h(t) head in field h(t) at time t
Wa(t , k) letter a in field k at time t
s successor function s(n) = n + 1

Transition formula

TRANS ∶= ∀t ⋁
⟨p,a,b,m,q⟩∈∆

[Sp(t) ∧Wa(t , h(t)) ∧ Sq(s(t)) ∧

h(s(t)) = h(t) +m ∧Wb(s(t), h(t))]

∧ ∀t∀k⋀
a∈Σ
[k ≠ h(t)→ [Wa(t , k)↔Wa(s(t), k)]]

where

y = x +m ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

y = s(x) if m = 1 ,
y = x if m = 0 ,
s(y) = x if m = −1 .



Tableaux



Tableau Proofs
For simplicity: first-order logic without equality

Statements φ true or φ false

Rule

φ σ

ψ τ . . .

ϑ υ

ψm τm

ϑm υm

Interpretation

If φ σ is possible then so is ψi τi , . . . , ϑi υi, for some i.



Tableaux
Construction

A tableau for a formula φ is constructed as follows:
▸ start with φ false
▸ choose a branch of the tree
▸ choose a statement ψ value on the branch
▸ choose a rule with head ψ value
▸ add it at the bottom of the branch
▸ repeat until every branch contains both statements ψ true and

ψ false for some formula ψ



¬φ true

φ false

¬φ false

φ true

φ ∧ ψ true

φ true

ψ true

φ ∧ ψ false

φ false ψ false

φ ∨ ψ true

φ true ψ true

φ ∨ ψ false

φ false

ψ false

φ → ψ true

φ false ψ true

φ → ψ false

φ true

ψ false

φ↔ ψ true

φ true

ψ true

φ false

ψ false

φ↔ ψ false

φ true

ψ false

φ false

ψ true

∀xφ true

φ[x ↦ t] true

∀xφ false

φ[x ↦ c] false

∃xφ true

φ[x ↦ c] true

∃xφ false

φ[x ↦ t] false

c a new constant symbol, t an arbitrary term



Example

(A∨ B)→ ¬(¬A∧ ¬B) false ¬(¬A∧ ¬B)→ (A∨ B) false



Example

(A∨ B)→ ¬(¬A∧ ¬B) false

A∨ B true

¬(¬A∧ ¬B) false

¬A∧ ¬B true

¬A true

¬B true

A false

B false

A true B true

¬(¬A∧ ¬B)→ (A∨ B) false

¬(¬A∧ ¬B) true

A∨ B false

A false

B false

¬A∧ ¬B false

¬A false ¬B false

A true B true



Example

∃x∀yR(x , y)→ ∀y∃xR(x , y) false ∀xR(x , x)→ ∀x∃yR( f (x), y) false



Example

∃x∀yR(x , y)→ ∀y∃xR(x , y) false

∃x∀yR(x , y) true

∀y∃xR(x , y) false

∀yR(c, y) true

∃xR(x , d) false

R(c, d) true

R(c, d) false

∀xR(x , x)→ ∀x∃yR( f (x), y) false

∀xR(x , x) true

∀x∃yR( f (x), y) false

∃yR( f (c), y) false

R( f (c), f (c)) false

R( f (c), f (c)) true



Soundness and Completeness

Theorem

A first-order formula φ is valid if, and only if, there exists a tableau T
for φ false where every branch is contradictory.

Corollary

Validity of first-order formulae is recursively enumerable, but not
decidable.
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Soundness and Completeness

Theorem

A first-order formula φ is valid if, and only if, there exists a tableau T
for φ false where every branch is contradictory.

Terminology

A tableau for a statement φ value is a tableau T where the root is
labelled with φ value.
A branch β is contradictory if it contains both statements ψ true and
ψ false, for some formula ψ.
A branch β is consistent with a structure A if
▸ A ⊧ ψ, for all statements ψ true on β and
▸ A ⊭ ψ, for all statements ψ false on β.

A branch β is complete if, for every atomic formula ψ, it contains one
of the statements ψ true or ψ false.



Proof Sketch: Soundness

Lemma

If β is consistent with A and we extend the tableau by applying a rule,
the new tableau has a branch β′ extending β that is consistent with A.

Corollary

If A ⊭ φ, then every tableau for φ false has a branch that is not
contradictory.

Corollary

If φ is not valid, there is no tableau for φ false where all branches are
contradictory.



Proof Sketch: Completeness

Lemma

If every tableau for φ false has a non-contradictory branch, there exists
a tableau for φ false with a branch β that is complete and
non-contradictory.

Lemma

If a branch β is complete and non-contradictory, there exists a
structure A such that β is consistent with A.

Corollary

If every tableau for φ false has a non-contradictory branch, there exists
a structure A with A ⊭ φ.



Natural Deduction



Proof Calculi
Notation

ψ1, . . . ,ψn ⊢ φ φ is provable with assumptions ψ1, . . . ,ψn

φ is provable if ⊢ φ.

Rules

Γ1 ⊢ φ1 . . . Γn ⊢ φn

∆ ⊢ ψ
premises
conclusion

φ1 ∧ ⋅ ⋅ ⋅ ∧ φn ⇒ ψ

Axiom

∆ ⊢ ψ
rule without premises

Remark

Tableaux speak about possibilities while Natural Deduction proofs
speak about necesseties.
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Proof Calculi
Derivation

Γ ⊢ φ ∆0 ⊢ ψ0

∆1 ⊢ ψ1 Γ′ ⊢ φ′

Σ ⊢ ϑ
tree of rules



Natural Deduction (propositional part)
(I⊺) Γ ⊢ ⊺

(Ax)
Γ , φ ⊢ φ

(I∧)
Γ ⊢ φ ∆ ⊢ ψ
Γ , ∆ ⊢ φ ∧ ψ

(E∧)
Γ ⊢ φ ∧ ψ

Γ ⊢ φ
Γ ⊢ φ ∧ ψ

Γ ⊢ ψ

(I∨)
Γ ,¬ψ ⊢ φ
Γ ⊢ φ ∨ ψ

Γ ,¬φ ⊢ ψ
Γ ⊢ φ ∨ ψ

(E∨)
Γ ⊢ φ ∨ ψ ∆, φ ⊢ ϑ ∆′,ψ ⊢ ϑ

Γ , ∆, ∆′ ⊢ ϑ

(I¬)
Γ , φ ⊢ �
Γ ⊢ ¬φ

(E¬)
Γ ,¬φ ⊢ �

Γ ⊢ φ

(I�)
Γ ⊢ φ Γ ⊢ ¬φ

Γ ⊢ �
(E�)

Γ ⊢ �
Γ ⊢ φ

(I→)
Γ , φ ⊢ ψ

Γ ⊢ φ → ψ
(E→)

Γ ⊢ φ ∆ ⊢ φ → ψ
Γ , ∆ ⊢ ψ

(I↔)
Γ , φ ⊢ ψ ∆,ψ ⊢ φ

Γ , ∆ ⊢ φ↔ ψ
(E↔)

Γ ⊢ φ ∆ ⊢ φ↔ ψ
Γ , ∆ ⊢ ψ

( + sym.)



Examples

⊢ (φ ∨ ψ)→ ¬(¬φ ∧ ¬ψ)



Examples

φ ∨ ψ,¬φ ∧ ¬ψ ⊢ φ ∨ ψ
φ ⊢ φ

¬φ ∧ ¬ψ ⊢ ¬φ ∧ ¬ψ
¬φ ∧ ¬ψ ⊢ ¬φ

φ,¬φ ∧ ¬ψ ⊢ �
⋯

ψ,¬φ ∧ ¬ψ ⊢ �
φ ∨ ψ,¬φ ∧ ¬ψ ⊢ �
φ ∨ ψ ⊢ ¬(¬φ ∧ ¬ψ)
⊢ (φ ∨ ψ)→ ¬(¬φ ∧ ¬ψ)



Natural Deduction (quantifiers and equality)

(I∃)
Γ ⊢ φ[x ↦ t]

Γ ⊢ ∃xφ
(E∃)

Γ ⊢ ∃xφ ∆, φ[x ↦ c] ⊢ ψ
Γ , ∆ ⊢ ψ

(I∀)
Γ ⊢ φ[x ↦ c]

Γ ⊢ ∀xφ
(E∀)

Γ ⊢ ∀xφ
Γ ⊢ φ[x ↦ t]

(I=) Γ ⊢ t = t
(E=)

Γ ⊢ s = t ∆ ⊢ φ[x ↦ s]
Γ , ∆ ⊢ φ[x ↦ t]

c a new constant symbol, s, t arbitrary terms



Examples

s = t ⊢ t = s

s = t ⊢ s = t ⊢ s = s
s = t ⊢ t = s

(E=)

s = t , t = u ⊢ s = u

t = u ⊢ t = u s = t ⊢ s = t
s = t , t = u ⊢ s = u

(E=)

∃x∀yR(x, y) ⊢ ∀y∃xR(x, y)

∃x∀yR(x, y) ⊢ ∃x∀yR(x, y)

∀yR(c, y) ⊢ ∀yR(c, y)
∀yR(c, y) ⊢ R(c, d)

(E∀)

∀yR(c, y) ⊢ ∃xR(x, d)
(I∃)

∀yR(c, y) ⊢ ∀y∃xR(x, y)
(I∀)

∃x∀yR(x, y) ⊢ ∀y∃xR(x, y)
(E∃)
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Soundness and Completeness

Theorem
A formula φ is provable using Natural Deduction if, and only if, it is
valid.

Corollary
The set of valid first-order formulae is recursively enumerable.



Isabelle/HOL



Isabelle/HOL
Proof assistant designed for software verification.

General structure

theory T

imports T1 ... Tn

begin

declarations, definitions, and proofs

end



Syntax
Two levels:
▸ themeta-language (Isabelle) used to define theories,
▸ the logical language (HOL) used to write formulae.

To distinguish the levels, one encloses formulae of the logical language
in quotes.

datatype 'a list = Nil ("[]")

| Cons 'a "'a list" (infixr "#" 65)

primrec app :: "'a list => 'a list => 'a list"

(infixr "@" 65)

where

"[] @ ys = ys" |

"(x # xs) @ ys = x # (xs @ ys)"



Logical Language
Types
▸ base types: bool, nat, int,…
▸ type constructors: α list, α set,…
▸ function types: α⇒ β
▸ type variables: 'a, 'b,…

Terms
▸ application: f x y, x + y,…
▸ abstraction: λx.t
▸ type annoation: t ∶∶ α
▸ if b then t else u
▸ let x = t in u
▸ case x of p0 ⇒ t0 |⋯ | pn ⇒ tn

Formulae
▸ terms of type bool
▸ boolean operations ¬,∧,∨,→
▸ quantifiers ∀x, ∃x
▸ predicates ==, <,…



Basic Types
datatype bool = True | False

fun conj :: "bool => bool => bool" where

"conj True True = True" |

"conj _ _ = False"

datatype nat = 0 | Suc nat

fun add :: "nat => nat => nat" where

"add 0 n = n" |

"add (Suc m) n = Suc (add m n)"

lemma add_02: "add m 0 = m"

apply (induction m)

apply (auto)

done



Proofs
lemma add_02: "add m 0 = m"

apply (induction m)

1. add 0 0 = 0

2. ⋀m. add m 0 = m ==> add (Suc m) 0 = Suc m

apply (auto)



Proofs
lemma add_02: "add m 0 = m"

apply (induction m)

1. add 0 0 = 0

2. ⋀m. add m 0 = m ==> add (Suc m) 0 = Suc m

apply (auto)



Proofs
lemma add_02: "add m 0 = m"

apply (induction m)

1. add 0 0 = 0

2. ⋀m. add m 0 = m ==> add (Suc m) 0 = Suc m

apply (auto)



Proofs
lemma add_02: "add m 0 = m"

apply (induction m)

1. add 0 0 = 0

2. ⋀m. add m 0 = m ==> add (Suc m) 0 = Suc m

apply (auto)



datatype 'a list = Nil ("[]")

| Cons 'a "'a list" (infixr "#" 65)

fun app :: "'a list => 'a list => 'a list"

(infixr "@" 65)

where

"[] @ ys = ys" |

"(x # xs) @ ys = x # (xs @ ys)"

fun rev :: "'a list => 'a list" where

"rev [] = []" |

"rev (x # xs) = (rev xs) @ (x # [])"



theorem rev_rev [simp]: "rev (rev xs) = xs"

apply(induction xs)

1. rev (rev Nil) = Nil

2. ⋀x1 xs. rev (rev xs) = xs ==>

rev (rev (Cons x1 xs)) = Cons x1 xs

apply(auto)

1. ⋀x1 xs.

rev (rev xs) = xs ==>

rev (rev xs @ Cons x1 Nil) = Cons x1 xs



theorem rev_rev [simp]: "rev (rev xs) = xs"

apply(induction xs)

1. rev (rev Nil) = Nil

2. ⋀x1 xs. rev (rev xs) = xs ==>

rev (rev (Cons x1 xs)) = Cons x1 xs

apply(auto)

1. ⋀x1 xs.

rev (rev xs) = xs ==>

rev (rev xs @ Cons x1 Nil) = Cons x1 xs



theorem rev_rev [simp]: "rev (rev xs) = xs"

apply(induction xs)

1. rev (rev Nil) = Nil

2. ⋀x1 xs. rev (rev xs) = xs ==>

rev (rev (Cons x1 xs)) = Cons x1 xs

apply(auto)

1. ⋀x1 xs.

rev (rev xs) = xs ==>

rev (rev xs @ Cons x1 Nil) = Cons x1 xs



theorem rev_rev [simp]: "rev (rev xs) = xs"

apply(induction xs)

1. rev (rev Nil) = Nil

2. ⋀x1 xs. rev (rev xs) = xs ==>

rev (rev (Cons x1 xs)) = Cons x1 xs

apply(auto)

1. ⋀x1 xs.

rev (rev xs) = xs ==>

rev (rev xs @ Cons x1 Nil) = Cons x1 xs



theorem rev_rev [simp]: "rev (rev xs) = xs"

apply(induction xs)

1. rev (rev Nil) = Nil

2. ⋀x1 xs. rev (rev xs) = xs ==>

rev (rev (Cons x1 xs)) = Cons x1 xs

apply(auto)

1. ⋀x1 xs.

rev (rev xs) = xs ==>

rev (rev xs @ Cons x1 Nil) = Cons x1 xs



lemma app_Nil2 [simp]: "xs @ Nil = xs"

apply(induction xs)

apply(auto)

done

lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"

apply(induction xs)

apply(auto)

1. ⋀x1 xs.

rev (xs @ ys) = rev ys @ rev xs ==>

(rev ys @ rev xs) @ Cons x1 Nil =

rev ys @ (rev xs @ Cons x1 Nil)

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"

apply (induction xs)

apply (auto)

done



lemma app_Nil2 [simp]: "xs @ Nil = xs"

apply(induction xs)

apply(auto)

done

lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"

apply(induction xs)

apply(auto)

1. ⋀x1 xs.

rev (xs @ ys) = rev ys @ rev xs ==>

(rev ys @ rev xs) @ Cons x1 Nil =

rev ys @ (rev xs @ Cons x1 Nil)

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"

apply (induction xs)

apply (auto)

done



lemma app_Nil2 [simp]: "xs @ Nil = xs"

apply(induction xs)

apply(auto)

done

lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"

apply(induction xs)

apply(auto)

1. ⋀x1 xs.

rev (xs @ ys) = rev ys @ rev xs ==>

(rev ys @ rev xs) @ Cons x1 Nil =

rev ys @ (rev xs @ Cons x1 Nil)

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"

apply (induction xs)

apply (auto)

done



lemma app_Nil2 [simp]: "xs @ [] = xs"

apply(induction xs)

apply(auto)

done

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"

apply(induction xs)

apply(auto)

done

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"

apply(induction xs)

apply(auto)

done

theorem rev_rev [simp]: "rev(rev xs) = xs"

apply(induction xs)

apply(auto)

done

end



Nonmonotonic Logic



Negation as Failure
Goal

Develop a proof calculus supporting Negation as Failure as used in
Prolog.

Monotonicity

Ordinary deduction ismonotone: if we add new assumption, all
consequences we have already derived remain. More information does
not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is non-monotone:

P implies ¬Q but P,Q does not imply ¬Q .



Default Logic
Rule

α0 . . . αm ∶ β0 . . . βn
γ

αi assumptions
βi restraints
γ consequence

Derive γ provided that we can derive α0, . . . , αm, but none of
β0, . . . , βn.

Example

bird(x) ∶ penguin(x) ostrich(x)
can_fly(x)



Semantics
Definition

A set Φ of formulae is consistent with respect to a set of rules R if, for
every rule

α0 . . . αm ∶ β0 . . . βn
γ

∈ R

such that α0, . . . , αm ∈ Φ and β0, . . . , βn ∉ Φ, we have γ ∈ Φ.

Note

If there are no restraints βi, consistent sets are closed under
intersection.
⇒There is a unique smallest such set, that of all provable formulae.

If there are restraints, this may not be the case. Formulae that belong
to all consistent sets are called secured consequences.



Examples
The system

α
α ∶ β
β

has a unique consistent set {α, β}.

The system

α
α ∶ β

γ
α ∶ γ
β

has consistent sets

{α, β}, {α, γ}, {α, β, γ} .


