IA008: Computational Logic 2. First-Order Logic

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

First-Order Logic

Syntax

- variables x, y, z, \ldots
- terms $x, f(t_0, \ldots, t_n)$
- relations $R(t_0, \ldots, t_n)$ and equality $t_0 = t_1$
- operators $\land, \lor, \neg, \rightarrow, \leftrightarrow$
- quantifiers $\exists x \varphi, \forall x \varphi$

Semantics

$$\mathfrak{A} \vDash \varphi(\bar{a}) \qquad \mathfrak{A} = \langle A, R_0, R_1, \dots, f_0, f_1, \dots \rangle$$

Examples

$$\begin{split} \varphi &\coloneqq \forall x \exists y [f(y) = x], \\ \psi &\coloneqq \forall x \forall y \forall z [x \leq y \land y \leq z \rightarrow x \leq z]. \end{split}$$

Structures

• graphs $\mathfrak{G} = \langle V, E \rangle$

 $E \subseteq V \times V$ binary relation

Structures

graphs 𝔅 = ⟨V, E⟩ E ⊆ V × V binary relation
words 𝕮 = ⟨W, ≤, (P_a)_a⟩ ≤ ⊆ W × W linear ordering P_a ⊆ W positions with letter a

Structures

• graphs $\mathfrak{G} = \langle V, E \rangle$

 $E \subseteq V \times V$ binary relation

• words
$$\mathfrak{W} = \langle W, \leq, (P_a)_a \rangle$$

 $\leq \subseteq W \times W$ linear ordering

 $P_a \subseteq W$ positions with letter *a*

• transition systems $\mathfrak{S} = \langle S, (E_a)_a, (P_i)_i \rangle$

 $E_a \subseteq V \times V$ binary relation

 $P_i \subseteq V$ unary relation

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

• 'The graph has no isolated vertices.'

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

• 'The graph has no isolated vertices.'

 $\forall x \exists y [E(x,y) \lor E(y,x)]$

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

• 'The graph has no isolated vertices.'

 $\forall x \exists y [E(x,y) \lor E(y,x)]$

• 'Every vertex has outdegree 1.'

Graphs $\mathfrak{G} = \langle V, E \rangle, E \subseteq V \times V$

• 'The graph is undirected.' (i.e., *E* is symmetric)

 $\forall x \forall y [E(x,y) \to E(y,x)]$

• 'The graph has no isolated vertices.'

 $\forall x \exists y [E(x,y) \lor E(y,x)]$

• 'Every vertex has outdegree 1.'

 $\forall x \exists y [E(x,y) \land \forall z [E(x,z) \rightarrow z = y]]$

Satisfiability

Theorem

Satisfiability for first-order logic is **undecidable**.

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$

- Q set of states
- Σ tape alphabet
- $\Delta \quad \text{ set of transitions } \langle p, a, b, m, q \rangle \in Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$
- q_0 initial state
- F_+ accepting states
- F_- rejecting states

Turing machine $\mathcal{M} = \langle Q, \Sigma, \Delta, q_0, F_+, F_- \rangle$

- Q set of states
- Σ tape alphabet
- $\Delta \quad \text{set of transitions } \langle p, a, b, m, q \rangle \in Q \times \Sigma \times \Sigma \times \{-1, 0, 1\} \times Q$
- q_0 initial state
- F_+ accepting states
- F_{-} rejecting states

Encoding in FO

$S_q(t)$	state q at time t
h(t)	head in field $h(t)$ at time t
$W_a(t,k)$	letter <i>a</i> in field <i>k</i> at time <i>t</i>
S	successor function $s(n) = n + 1$
0	zero

 $\varphi_{w} \coloneqq \text{ADM} \land \text{INIT} \land \text{TRANS} \land \text{ACC}$

$S_q(t)$	state <i>q</i> at time <i>t</i>
h(t)	head in field $h(t)$ at time t
$W_a(t,k)$	letter a in field k at time t
S	successor function $s(n) = n + 1$
0	zero

Admissibility formula

$$ADM \coloneqq \forall t \bigwedge_{p \neq q} \neg [S_p(t) \land S_q(t)] \qquad \text{unique state}$$
$$\land \forall t \forall k \bigwedge_{a \neq b} \neg [W_a(t,k) \land W_b(t,k)] \qquad \text{unique letter}$$

 $S_q(t)$ state q at time th(t)head in field h(t) at time t $W_a(t,k)$ letter a in field k at time tssuccessor function s(n) = n + 1

Initialisation formula for input: $a_0 \dots a_{n-1}$

INIT := $S_{q_0}(0)$ initial state $\wedge h(0) = 0$ initial head position $\wedge \bigwedge_{k < n} W_{a_k}(0, \underline{k}) \wedge \forall k [k \ge \underline{n} \to W_{\Box}(0, k)]$ initial tape content

(here $\underline{k} := s(s(\dots s(0)))$ and $k \ge \underline{n} := \bigwedge_{i < n} k \neq \underline{i}$) Acceptance formula

ACC := $\exists t \bigvee_{q \in F_+} S_q(t)$ accepting state

 $S_q(t)$ state q at time th(t)head in field h(t) at time t $W_a(t,k)$ letter a in field k at time tssuccessor function s(n) = n + 1

Transition formula

$$TRANS := \forall t \bigvee_{\substack{(p,a,b,m,q) \in \Delta \\ k \neq k}} \begin{bmatrix} S_p(t) \land W_a(t,h(t)) \land S_q(s(t)) \land \\ h(s(t)) = h(t) + m \land W_b(s(t),h(t)) \end{bmatrix}$$
$$\land \forall t \forall k \bigwedge_{a \in \Sigma} \begin{bmatrix} k \neq h(t) \rightarrow \begin{bmatrix} W_a(t,k) \leftrightarrow W_a(s(t),k) \end{bmatrix} \end{bmatrix}$$

where

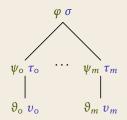
$$y = x + m := \begin{cases} y = s(x) & \text{if } m = 1, \\ y = x & \text{if } m = 0, \\ s(y) = x & \text{if } m = -1. \end{cases}$$

Tableau Proofs

For simplicity: first-order logic without equality

Statements φ true or φ false

Rule



Interpretation

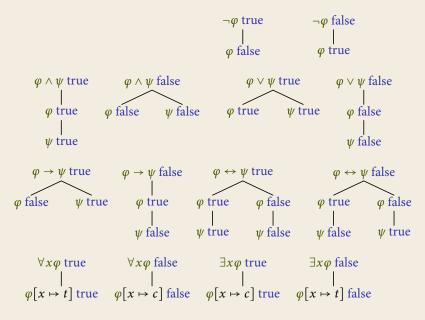
If $\varphi \sigma$ is **possible** then so is $\psi_i \tau_i, \ldots, \vartheta_i v_i$, for some *i*.

Tableaux

Construction

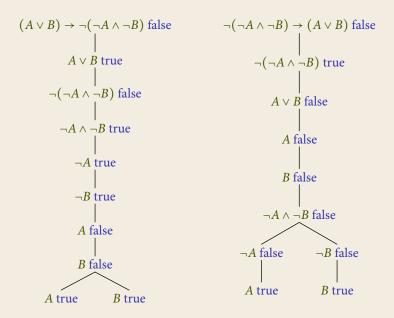
A **tableau** for a formula φ is constructed as follows:

- start with φ false
- choose a branch of the tree
- choose a statement ψ value on the branch
- choose a rule with head ψ value
- add it at the bottom of the branch
- repeat until every branch contains both statements ψ true and ψ false for some formula ψ



c a new constant symbol, *t* an arbitrary term

 $(A \lor B) \to \neg(\neg A \land \neg B)$ false $\neg(\neg A \land \neg B) \to (A \lor B)$ false



 $\exists x \forall y R(x, y) \to \forall y \exists x R(x, y) \text{ false}$

 $\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$ false

 $\exists x \forall y R(x, y) \rightarrow \forall y \exists x R(x, y)$ false $\exists x \forall y R(x, y)$ true $\forall y \exists x R(x, y)$ false $\forall yR(c, y)$ true $\exists x R(x, d)$ false R(c, d) true R(c, d) false

 $\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$ false $\forall x R(x, x)$ true $\forall x \exists y R(f(x), y)$ false $\exists y R(f(c), y)$ false R(f(c), f(c)) false R(f(c), f(c)) true

Soundness and Completeness

Theorem

A first-order formula φ is valid if, and only if, there exists a tableau *T* for φ false where every branch is contradictory.

Soundness and Completeness

Theorem

A first-order formula φ is valid if, and only if, there exists a tableau *T* for φ false where every branch is contradictory.

Corollary

Validity of first-order formulae is **recursively enumerable**, but **not decidable**.

Soundness and Completeness

Theorem

A first-order formula φ is valid if, and only if, there exists a tableau *T* for φ false where every branch is contradictory.

Terminology

A tableau **for** a statement φ value is a tableau *T* where the root is labelled with φ value.

A branch β is **contradictory** if it contains both statements ψ true and ψ false, for some formula ψ .

A branch β is **consistent with** a structure \mathfrak{A} if

- $\mathfrak{A} \models \psi$, for all statements ψ true on β and
- $\mathfrak{A} \neq \psi$, for all statements ψ false on β .

A branch β is **complete** if, for every atomic formula ψ , it contains one of the statements ψ true or ψ false.

Proof Sketch: Soundness

Lemma

If β is consistent with \mathfrak{A} and we extend the tableau by applying a rule, the new tableau has a branch β' extending β that is consistent with \mathfrak{A} .

Corollary

If $\mathfrak{A} \not\models \varphi$, then every tableau for φ false has a branch that is not contradictory.

Corollary

If φ is not valid, there is no tableau for φ false where all branches are contradictory.

Proof Sketch: Completeness

Lemma

If every tableau for φ false has a non-contradictory branch, there exists a tableau for φ false with a branch β that is complete and non-contradictory.

Lemma

If a branch β is complete and non-contradictory, there exists a structure \mathfrak{A} such that β is consistent with \mathfrak{A} .

Corollary

If every tableau for φ false has a non-contradictory branch, there exists a structure \mathfrak{A} with $\mathfrak{A} \neq \varphi$.

Natural Deduction

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi$ φ is provable with assumptions ψ_1, \ldots, ψ_n

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi$ φ is provable with assumptions ψ_1, \ldots, ψ_n φ is provable if $\vdash \varphi$.

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi$ φ is provable with assumptions ψ_1, \ldots, ψ_n φ is provable if $\vdash \varphi$.

Rules

$$\frac{\Gamma_1 \vdash \varphi_1 \ \dots \ \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \quad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \qquad \varphi_1 \land \dots \land \varphi_n \Rightarrow \psi$$

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi$ φ is provable with assumptions ψ_1, \ldots, ψ_n φ is provable if $\vdash \varphi$.

Rules

$$\frac{\Gamma_1 \vdash \varphi_1 \dots \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \quad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \qquad \varphi_1 \land \dots \land \varphi_n \Rightarrow \psi$$

Axiom

 $\Delta \vdash \psi$

Proof Calculi

Notation

 $\psi_1, \ldots, \psi_n \vdash \varphi$ φ is provable with assumptions ψ_1, \ldots, ψ_n φ is provable if $\vdash \varphi$.

Rules

 $\frac{\Gamma_1 \vdash \varphi_1 \, \dots \, \Gamma_n \vdash \varphi_n}{\Delta \vdash \psi} \quad \begin{array}{c} \text{premises} \\ \text{conclusion} \end{array} \qquad \varphi_1 \land \dots \land \varphi_n \Rightarrow \psi$

Axiom

 $\underline{\Delta \vdash \psi}$ rule without premises

Remark

Tableaux speak about **possibilities** while Natural Deduction proofs speak about **necesseties**.

Proof Calculi

Derivation

$$\frac{\overline{\Gamma \vdash \varphi} \quad \overline{\Delta_0 \vdash \psi_0}}{\underline{\Delta_1 \vdash \psi_1}} \quad \overline{\Gamma' \vdash \varphi'} \\ \overline{\Sigma \vdash \vartheta} \quad \text{tree of rules}$$

Natural Deduction (propositional part)

$$\begin{array}{ll} (\mathrm{I}_{\mathrm{T}}) & \overline{\Gamma \vdash \mathrm{T}} & (\mathrm{Ax}) & \overline{\Gamma, \varphi \vdash \varphi} \\ (\mathrm{I}_{\wedge}) & \frac{\Gamma \vdash \varphi & \Delta \vdash \psi}{\Gamma, \Delta \vdash \varphi \land \psi} & (\mathrm{E}_{\wedge}) & \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \varphi} & \frac{\Gamma \vdash \varphi \land \psi}{\Gamma \vdash \psi} \\ (\mathrm{I}_{\vee}) & \frac{\Gamma, \neg \psi \vdash \varphi}{\Gamma \vdash \varphi \lor \psi} & \frac{\Gamma, \neg \varphi \vdash \psi}{\Gamma \vdash \varphi \lor \psi} & (\mathrm{E}_{\vee}) & \frac{\Gamma \vdash \varphi \lor \psi & \Delta, \varphi \vdash \vartheta & \Delta', \psi \vdash \vartheta}{\Gamma, \Delta, \Delta' \vdash \vartheta} \\ (\mathrm{I}_{\vee}) & \frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} & (\mathrm{E}_{\vee}) & \frac{\Gamma, \neg \varphi \vdash \bot}{\Gamma \vdash \varphi} \\ (\mathrm{I}_{\perp}) & \frac{\Gamma \vdash \varphi & \Gamma \vdash \neg \varphi}{\Gamma \vdash \bot} & (\mathrm{E}_{\perp}) & \frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi} \\ (\mathrm{I}_{\rightarrow}) & \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi} & (\mathrm{E}_{\rightarrow}) & \frac{\Gamma \vdash \varphi & \Delta \vdash \varphi \rightarrow \psi}{\Gamma, \Delta \vdash \psi} \\ (\mathrm{I}_{\leftrightarrow}) & \frac{\Gamma, \varphi \vdash \psi & \Delta, \psi \vdash \varphi}{\Gamma, \Delta \vdash \varphi \leftrightarrow \psi} & (\mathrm{E}_{\leftrightarrow}) & \frac{\Gamma \vdash \varphi & \Delta \vdash \varphi \leftrightarrow \psi}{\Gamma, \Delta \vdash \psi} & (+ \operatorname{sym.}) \end{array}$$

 $\overline{\vdash (\varphi \lor \psi) \to \neg (\neg \varphi \land \neg \psi)}$

	$\neg \varphi \land \neg \psi \vdash \neg \varphi \land \neg \psi$	
	$ \varphi \vdash \varphi $	
$\varphi \lor \psi, \neg \varphi \land \neg \psi \vdash \varphi \lor \psi$	$\varphi,\neg \phi \wedge \neg \psi \vdash \bot$	$\psi, \neg \varphi \land \neg \psi \vdash \bot$
	$\varphi \lor \psi, \neg \varphi \land \neg \psi \vdash \bot$	
	$\varphi \lor \psi \vdash \neg (\neg \varphi \land \neg \psi)$	
	$\vdash (\varphi \lor \psi) \to \neg (\neg \varphi \land \neg \psi)$	

Natural Deduction (quantifiers and equality)

$$\begin{array}{l} (\mathrm{I}_{\exists}) \; \frac{\Gamma \vdash \varphi[x \mapsto t]}{\Gamma \vdash \exists x \varphi} & (\mathrm{E}_{\exists}) \; \frac{\Gamma \vdash \exists x \varphi \quad \Delta, \varphi[x \mapsto c] \vdash \psi}{\Gamma, \Delta \vdash \psi} \\ (\mathrm{I}_{\forall}) \; \frac{\Gamma \vdash \varphi[x \mapsto c]}{\Gamma \vdash \forall x \varphi} & (\mathrm{E}_{\forall}) \; \frac{\Gamma \vdash \forall x \varphi}{\Gamma \vdash \varphi[x \mapsto t]} \\ (\mathrm{I}_{\exists}) \; \frac{\Gamma \vdash t = t}{\Gamma \vdash t = t} & (\mathrm{E}_{\exists}) \; \frac{\Gamma \vdash s = t \quad \Delta \vdash \varphi[x \mapsto s]}{\Gamma, \Delta \vdash \varphi[x \mapsto t]} \end{array}$$

c a new constant symbol, s, t arbitrary terms

 $s = t \vdash t = s$

$$s = t \vdash t = s \qquad \frac{s = t \vdash s = t \qquad \vdash s = s}{s = t \vdash t = s} \quad (E_{=})$$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ (E₌)

$$s = t, t = u \vdash s = u$$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ (E_=)

$$s = t, t = u \vdash s = u \qquad \frac{t = u \vdash t = u \qquad s = t \vdash s = t}{s = t, t = u \vdash s = u} \quad (E_{=})$$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ (E_=)

$$s = t, t = u \vdash s = u \qquad \frac{t = u \vdash t = u \qquad s = t \vdash s = t}{s = t, t = u \vdash s = u} \quad (E_{=})$$

 $\exists x \forall y R(x, y) \vdash \forall y \exists x R(x, y)$

$$s = t \vdash t = s$$
 $\frac{s = t \vdash s = t}{s = t \vdash t = s}$ (E_=)

$$s = t, t = u \vdash s = u \qquad \frac{t = u \vdash t = u \qquad s = t \vdash s = t}{s = t, t = u \vdash s = u} \quad (E_{=})$$

$$\frac{\exists x \forall y R(x,y) \vdash \forall y \exists x R(x,y)}{\exists x \forall y R(x,y) \vdash \exists x \forall y R(x,y)} \xrightarrow{\forall y R(c,y) \vdash \forall y R(c,y)}{\forall y R(c,y) \vdash \exists x R(x,d)} (E_{\forall})$$

$$\frac{\exists x \forall y R(x,y) \vdash \exists x \forall y R(x,y)}{\exists x \forall y R(x,y) \vdash \forall y \exists x R(x,y)} (E_{\exists})$$

Soundness and Completeness

Theorem

A formula φ is provable using Natural Deduction if, and only if, it is valid.

Corollary

The set of valid first-order formulae is recursively enumerable.

Isabelle/HOL

Isabelle/HOL

Proof assistant designed for software verification.

General structure

theory T
imports T1 ... Tn
begin
 declarations, definitions, and proofs
end

Syntax

Two levels:

- the meta-language (Isabelle) used to define theories,
- the **logical language** (HOL) used to write formulae.

To distinguish the levels, one encloses formulae of the logical language in quotes.

Logical Language

Types

- base types: bool, nat, int,...
- type constructors: α list, α set,...
- function types: $\alpha \Rightarrow \beta$
- type variables: 'a, 'b,...

Terms

- **application**: *f x y*, *x* + *y*,...
- **abstraction:** $\lambda x.t$
- type annoation: $t :: \alpha$
- if b then t else u
- let x = t in u
- case x of $p_0 \Rightarrow t_0 \mid \cdots \mid p_n \Rightarrow t_n$

Formulae

- terms of type bool
- boolean operations \neg , \land , \lor , \rightarrow
- quantifiers $\forall x, \exists x$
- predicates ==, <,...</p>

Basic Types

```
datatype bool = True | False
fun conj :: "bool => bool => bool" where
"conj True True = True"
"conj _ _ = False"
datatype nat = 0 | Suc nat
fun add :: "nat => nat => nat" where
"add 0 n = n"
"add (Suc m) n = Suc (add m n)"
lemma add 02: "add m 0 = m"
apply (induction m)
apply (auto)
done
```

lemma add_02: "add m 0 = m"

lemma add_02: "add m 0 = m"

apply (induction m)

lemma add_02: "add m 0 = m"

apply (induction m)
1. add 0 0 = 0
2. ∧m. add m 0 = m ==> add (Suc m) 0 = Suc m

```
lemma add_02: "add m 0 = m"
apply (induction m)
1. add 0 0 = 0
2. \m. add m 0 = m ==> add (Suc m) 0 = Suc m
apply (auto)
```

theorem rev_rev [simp]: "rev (rev xs) = xs"

theorem rev_rev [simp]: "rev (rev xs) = xs"

```
apply(induction xs)
```

theorem rev_rev [simp]: "rev (rev xs) = xs"

```
apply(induction xs)
```

```
1. rev (rev Nil) = Nil
```

```
2. ∧x1 xs. rev (rev xs) = xs ==>
```

```
rev (rev (Cons x1 xs)) = Cons x1 xs
```

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
1. rev (rev Nil) = Nil
2. \x1 xs. rev (rev xs) = xs ==>
  rev (rev (Cons x1 xs)) = Cons x1 xs
apply(auto)
```

```
theorem rev_rev [simp]: "rev (rev xs) = xs"
apply(induction xs)
1. rev (rev Nil) = Nil
2. \land x1 xs. rev (rev xs) = xs ==>
  rev (rev (Cons x1 xs)) = Cons x1 xs
apply(auto)
1. ∧x1 xs.
  rev (rev xs) = xs ==>
  rev (rev xs @ Cons x1 Nil) = Cons x1 xs
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)
1. Ax1 xs.
  rev (xs @ ys) = rev ys @ rev xs ==>
  (rev ys @ rev xs) @ Cons x1 Nil =
  rev ys @ (rev xs @ Cons x1 Nil)
```

```
lemma app_Nil2 [simp]: "xs @ Nil = xs"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev (xs @ ys) = rev ys @ rev xs"
apply(induction xs)
apply(auto)
1. Ax1 xs.
  rev (xs @ ys) = rev ys @ rev xs ==>
  (rev ys @ rev xs) @ Cons x1 Nil =
  rev ys @ (rev xs @ Cons x1 Nil)
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply (induction xs)
apply (auto)
done
```

```
lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induction xs)
apply(auto)
done
lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induction xs)
apply(auto)
done
lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induction xs)
apply(auto)
done
```

```
theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induction xs)
apply(auto)
done
```

end

Nonmonotonic Logic

Negation as Failure

Goal

Develop a proof calculus supporting Negation as Failure as used in Prolog.

Monotonicity

Ordinary deduction is **monotone:** if we add new assumption, all consequences we have already derived remain. More information does not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is **non-monotone**:

P implies $\neg Q$ but *P*, *Q* does not imply $\neg Q$.

Default Logic

Rule

$$\frac{\alpha_0 \ \dots \ \alpha_m : \beta_0 \ \dots \ \beta_n}{\gamma} \qquad \begin{array}{c} \alpha_i & \text{assumptions} \\ \beta_i & \text{restraints} \\ \gamma & \text{consequence} \end{array}$$

Derive γ provided that we can derive $\alpha_0, \ldots, \alpha_m$, but none of β_0, \ldots, β_n .

Example

 $\frac{\text{bird}(x):\text{penguin}(x) \text{ ostrich}(x)}{\text{can_fly}(x)}$

Semantics

Definition

A set Φ of formulae is **consistent** with respect to a set of rules *R* if, for every rule

$$\frac{\alpha_0 \ldots \alpha_m : \beta_0 \ldots \beta_n}{\gamma} \in R$$

such that $\alpha_0, \ldots, \alpha_m \in \Phi$ and $\beta_0, \ldots, \beta_n \notin \Phi$, we have $\gamma \in \Phi$.

Note

If there are no restraints β_i , consistent sets are **closed under intersection**.

 \Rightarrow There is a unique smallest such set, that of all **provable** formulae.

If there are restraints, this may not be the case. Formulae that belong to all consistent sets are called **secured consequences**.

The system

$$\frac{\alpha : \beta}{\beta}$$

has a unique consistent set $\{\alpha, \beta\}$.

The system

$$\frac{\alpha : \beta}{\gamma} \quad \frac{\alpha : \gamma}{\beta}$$

has consistent sets

 $\{\alpha,\beta\}, \{\alpha,\gamma\}, \{\alpha,\beta,\gamma\}.$