IA008: Computational Logic
3. Prolog

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno


mailto:blumens@fi.muni.cz

Prolog



Prolog

Syntax

A Prolog program consists of a sequence of statements of the form
p(3s). or p(3):=qolfo)s.-->gn-1(tn-1).

P> qi relation symbols, , #; tuples of terms.

Semantics
p(3) = qo(to)s- - - gn-1(tn-1)-

corresponds to the implication

V[p(5) < qo(fo) A+ A gu1 (E-1)]

where x are the variables appearing in the formula.



Example

father_of(peter, sam).
father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) : — father_of(X, Y).
parent_of(X, Y) : — mother_of(X, Y).

sibling of(X,Y) : — parent_of(Z, X), parent_of(Z,Y).
ancestor_of(X,Y) : — father_of(X, Z), ancestor_of(Z,Y).



Interpreter
On input
P0(30)7 e apn—l(gn—l)-

the program finds all values for the variables satisfying the
conjunction

P0(30) A+ Apn-1(Su-1) -

Example
?- sibling_of(sam, tina).

Yes

?- sibling_of (X, Y).
X = sam, Y = tina



Execution
Input
« program II (set of Horn formulae
VX[P(35) < Qo(fo) A+ A Qu-1(En-1)])
« goal ¢(X) = Ro(tg) A -+ A Ry (#hm-1)

Evaluation strategy

Use resolution to check for which values of X the union IT U {-¢(%) }
is unsatisfiable.

Remark

As we are dealing with a set of Horn formulae, we can use linear
resolution. The variant used by Prolog-interpreters is called
SLD-resolution.



SLD-resolution

v

Current goal: =y V -+ V =y,1

v

If n = 0, stop.

v

Otherwise, find a formula y < 99 A--- A 9,1 from IT such that
Yo and y can be unified.

v

If no such formula exists, backtrack.

v

Otherwise, resolve them to produce the new goal

7(=9) V- vT(=9p_1) Va(-y1) V.-V a(-ypu1) .

(0, 7 is the most general unifier of ¥, and y.)
Implementation

Use a stack machine that keeps the current goal on the stack.
(— Warren Abstract Machine)



Substitution

Definition

A substitution o is a function that replaces in a formula every free
variable by a term (and renames bound variables if necessary).
Instead of o () we also write p[x — s,y — t]if 0(x) =sand o(y) = 1.

Examples

(x=fONlx=g(x), y=c]

Jz(x=z+2z)[x > 2]

g(x) =£(c)

Ju(z =u+u)



Unification

Definition

A unifier of two terms s(X) and #(X) is a pair of substitution o, 7 such
that o(s) = 7(t).

A unifier o, 7 is most general if every other unifier ¢’, 7’ can be
written as 0’ = p o 0 and 7’ = v o 7, for some p, v.

Examples
s=f(xglx)) t=f(ax)  xec x> g(c)
s=f(xg(x)) t=f(xy) xwx X > X
y > g(x)
x>g(x)  xeg(x)
y > g(g(x))

s=f(x) t=g(x) unification not possible



Unification Algorithm

unify(s, t)

if s is a variable x then
setxtoft

else if ¢ is a variable x then
setxtos

elses=f(i)andt =g(v)
if f = g then

forall i unify(u;,v;)

else

fail



Union-Find-Algorithm

values

|_l_, I_l_l variables

find : variable — value

» follows pointers to the root and creates shortcuts

S

union : (variable x variable) — unit

» links roots by a pointer

YO



Example

father_of(peter, sam).
father_of (peter, tina).
mother_of (sara, john).
parent_of (X, Y) :- mother_of(X, Y).
parent_of (X, Y) :- father_of(X, Y).

sibling_of (X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina, sam)

goal —sibling_of(tina, sam)
unify with  sibling of(X, Y) < parent_of(Z, X) A parent_of(Z,Y)
unifier X =tina, Y = sam

new goal  —parent_of(Z, tina), —parent_of(Z, sam)

goal —parent_of(Z, tina), —parent_of(Z, sam)
unify with  parent_of(X,Y) < mother_of(X,Y)

IR el V 7 VYV _ i



Search tree

sibling_of (tina, sam)

parent_of (Z, tina), parent_of (Z, sam)

mother_of (Z, tina), parent_of (Z, sam) father_of (Z, tina), parent_of(Z, sam)
fail parent_of (peter, sam)
mother_of (peter, sam) father_of (peter, sam)

fail success



Caveats

Prolog-interpreters use a simpler (and unsound) form of unification
that ignores multiple occurrences of variables. E.g. they happily unify

p(x,f(x)) with p(f(y),f(y)) (equating x = f(y) for the first x and

x = y for the second one).

It is also easy to get infinite loops if you are not careful with the
ordering of the rules:

edge(c,d).
path(X,Y) :- path(X,Z),edge(Z,Y).
path(X,Y) :- edge(X,Y).

produces

?7- path(X,Y).

path(X,Z), edge(Z,Y).

path(X,U), edge(U,Z), edge(Z,Y).

path(X,V), edge(V,U), edge(U,Z), edge(Z,Y).



Example: List processing

append([], L, L).
append([H|T], L, [H|R]) :- append(T, L, R).

?- append([a,b], [c,d], X).
X = [a,b,c,d]

?- append(X, Y, [a,b,c,d])
=[1, Y = [a,b,c,d]
[al, Y = [b,c,d]
= [a,b], Y = [c,d]
[a,b,c], Y = [d]
= [a,b,c,d], Y =[]

>xX X X X X
|



Example: List processing

reverse(Xs, Ys) :- reverse_(Xs, [], VYs).

reverse_([], Ys, Ys).
reverse_([X|Xs], Rs, Ys) :- reverse_(Xs, [X|Rs], Ys).

reverse([a,b,c], X)
reverse_([a,b,c1, [1, X)
reverse_([b,c], [al, X)
reverse_([c], [b,al, X)
reverse_([], [c,b,al, X)
X = [c,b,al



Example: Natural language recognition

sentence(X,R) :- noun(X, Y), verb(Y, R).
sentence(X,R) :- noun(X, Y), verb(Y, Z), noun(Z, R).

noun_phrase(X, R) :- noun(X, R).
noun_phrase(['a’ | X1, R) :- noun(X, R).
noun_phrase(['the"' | X1, R) :- noun(X, R).

noun(['cat' | R1, R).
noun([ 'mouse' | R], R).
noun([ 'dog' | R1, R).
verb(['eats' | R1, R).

verb(['hunts' | R], R).
verb(['plays' | R1, R).



Cuts

Control backtracking using cuts:

P e qo0> 41> !> q2,43.

When backtracking across a cut !, directly jump to the head of the rule
and assume it fails. Do not try other rules.



Example

N (—p p/\t
s« t /\ |
P< 91,9293, 94 d1> 92515 93594 r fail
per
42,9594  success
r
q NP
92
q4

q3 |
fail



Negation

Problem

If we allow negation, the formulae are no longer Horn and
SLD-resolution does no longer work.

Possible Solutions

» Closed World Assumption
If we cannot derive p, it is false (Negation as Failure).

» Completed Database
P < qo»--.»P < qn is interpreted as the stronger statement
P qoV:-Vn.



Examples

Being connected by a path of non-edges:

q(X,X).
q(X,Y) :- a(X,2), not(p(Z,Y)).

Implementing negation using cuts:

not(A) :- A, !, fail.
not(A).

Some cuts can be implemented using negation:

p:-a, !, b. p :-a, b.
p :- c. p :- not(a), c.



Nonmonotonic Logic



Negation as Failure
Goal

Develop a proof calculus supporting Negation as Failure as used in
Prolog.

Monotonicity

Ordinary deduction is monotone: if we add new assumption, all
consequences we have already derived remain. More information does
not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is non-monotone:

P implies -Q but P, Q does not imply -Q.



Default Logic

Rule
«; assumptions
g ... &m0 ... .
0 m:Po - Pu Bi restraints

y y  consequence
Derive y provided that we can derive ay, . . ., &, but none of
ﬁo; e ﬁ?’l'
Example

bird(x) : penguin(x) ostrich(x)

can_{fly(x)



Semantics

Definition

A set @ of formulae is consistent with respect to a set of rules R if, for
every rule

&0 - Ui Po .. Pu R
14

such that ag, ..., a,, € @ and fo, ..., B, ¢ ©,we havey € .

Note

If there are no restraints f3;, consistent sets are closed under
intersection.
= There is a unique smallest such set, that of all provable formulae.

If there are restraints, this may not be the case. Formulae that belong
to all consistent sets are called secured consequences.



Examples

The system

e

a B
has a unique consistent set {«, 5}.
The system

o aifp acy

a Yy P

has consistent sets

{o. B} {ay) {a By}



Databases



Databases

Definition

A database is a set of relations called tables.

Example

flight from to price

LH8302 Prague  Frankfurt 240
OA1472 Vienna  Warsaw 300
UA0870 London Washington 800




Formal Definitions

We treat a database as a structure 2 = (A, R, ..., R,;) with
» universe A containing all entries and
> one relation R; € A x --- x A per table.

The active domain of a database is the set of elements appearing in
some relation.

Example
In the previous table, the active domain contains:

LH8302, OA1472, UA0870, 240, 300, 800,
Prague, Frankfurt, Vienna, Warsaw, London, Washington



Queries

A query is a function mapping each database to a relation.

Example

Input: database of direct flights
Output: table of all flight connections possibly including stops

In Prolog: database flight, query connection.

flight('LH8302', 'Prague', 'Frankfurt', 240).
flight('0OA1472', 'Vienna', 'Warsaw', 300).
flight('UA@870', 'London', 'Washington', 800).

connection(From, To) :- flight(X, From, To, Y).
connection(From, To) :-
flight(X, From, T, Y), connection(T, To).



Relational Algebra

Syntax
» basic relations
» boolean operations N, U, \, All
> cartesian product x
> selection o

> projection 7y, 4, ,

Examples
> ﬂlo(R)Z{(b a) ‘ (a b)ER}
> m03(012(ExE)) = { (a¢) | (a,b), (b,c) € E}

Join

R ;i S = 0;(R % S)



Expressive Power

Theorem
Relational Algebra = First-Order Logic

Proof
(<)s~s"suchthats={a|AE=s*(a)}

R* :=R(x0,...,Xn-1)
(snt) =s" At
(sut) =s" Vvt
(snt) i=s" A=t"
All" := true
(sxt) =5"(x0s vy Xm-1) A (Xms o+ s Xman—1)
0ii(s)" =" A xi = x;

T[qu-sun—l(S)* = 3)_/[5*(}-)) A /\X,’ :yui]

i<n



Expressive Power

Theorem
Relational Algebra = First-Order Logic

Proof
(2) g~ ¢* suchthat o* ={a | A E ¢(a) }

R(Xugs -+ - Xuyy) ™ = 700,..om—1(Ougm+0"* Oy man—1
(All x --- x All x R))
(xi =x))" = o3 (All x -~ x All)
(pAy) =9 ny”
(pvy) =9 uy”
(=¢)* = All x --- x All \ ¢*
(3xip)™ =m0, i—1mi+1,..,n-1(@" x All)



Datalog

Simplified version of Prolog developped in database theory:
» no function symbols,
> no cut, no negation, etc.

A datalog program for a database A = (A, Ry, ..., R,) is a set of Horn
formulae

Po(X) < qoo(X,Y) Ao A qom, (X, Y)

Pﬂ(X) < q”,O(X> Y) N NGnmy, (X> Y)

where py, ..., p, are new relation symbols and the g;; are either
relation symbols from A, possibly negated, or one of the new
symbols py (not negated).



Datalog queries
The query defined by a datalog program

Po(X) < qoo(X, Y) Ao A qom (X, Y)

pn(X) < qn,O(X’ Y) ARRRNAN qn,mn(X> Y)

maps a database A to the relations py, . .., p, defined by these
formulae.
Evaluation strategy

» Start with empty relations py = @, ..., p, = @.

> Apply each rule to add new tuples to the relations.

» Repeat until no new tuples are generated.

Note
The relations computed in this way satisfy the Completed Database
assumption.



Example

path(X,Y) < edge(X,Y)
path(X,Y) < path(X,Z) A path(Z,Y)

o



Example

path(X,Y) < edge(X,Y)
path(X,Y) < path(X,Z) A path(Z,Y)

D



Example

path(X,Y) < edge(X,Y)
path(X,Y) < path(X,Z) A path(Z,Y)

o—P o

O E

e




Example

path(X,Y) < edge(X,Y)
path(X,Y) < path(X,Z) A path(Z,Y)

o—P o

O E

SN




Example: Arithmetic

Add(x,y,z) «y=0Ax=z

Add(x,y,z) < E(y',y) NE(Z',2) A Add(x,y',Z")
Mul(x,y,z) < y=0Az=0

Mul(x,y,2z) < E(y',y) A Add(x,2',z) A Mul(x,y’,2")

stage0 O

stagel  (k,0,k)

stage2  (k,0,k), (k,1,k+1)

stage 3 (kOk) (k,1,k+1),(k,2,k+2)

stage n (kOk) (k,1L,k+1),....(k,n-1,k+n-1)



Complexity
Theorem

For databases 2 = (A, R, <) equipped with a linear order <, a query Q
can be expressed as a Datalog program if, and only if, it can be
evaluated in polynomial type.



