
IA008: Computational Logic

3. Prolog

Achim Blumensath
blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Prolog

Prolog
Syntax

A Prolog program consists of a sequence of statements of the form

p(s̄). or p(s̄) ∶ − q0(t̄0), . . . , qn−1(t̄n−1).

p, qi relation symbols, s̄, t̄i tuples of terms.

Semantics

p(s̄) ∶ − q0(t̄0), . . . , qn−1(t̄n−1).

corresponds to the implication

∀x̄[p(s̄)← q0(t̄0) ∧ ⋅ ⋅ ⋅ ∧ qn−1(t̄n−1)]

where x̄ are the variables appearing in the formula.

Example

father_of(peter, sam).
father_of(peter, tina).
mother_of(sara, john).

parent_of(X ,Y) ∶ − father_of(X ,Y).
parent_of(X ,Y) ∶ − mother_of(X ,Y).

sibling_of(X ,Y) ∶ − parent_of(Z ,X), parent_of(Z ,Y).

ancestor_of(X ,Y) ∶ − father_of(X ,Z), ancestor_of(Z ,Y).

Interpreter
On input

p0(s̄0), . . . , pn−1(s̄n−1).

the program finds all values for the variables satisfying the
conjunction

p0(s̄0) ∧ ⋅ ⋅ ⋅ ∧ pn−1(s̄n−1) .

Example

?- sibling_of(sam, tina).

Yes

?- sibling_of(X, Y).

X = sam, Y = tina

Execution
Input

• program Π (set of Horn formulae
∀x̄[P(s̄)← Q0(t̄0) ∧ ⋅ ⋅ ⋅ ∧Qn−1(t̄n−1)])

• goal φ(x̄) ∶= R0(ū0) ∧ ⋅ ⋅ ⋅ ∧ Rm−1(ūm−1)

Evaluation strategy

Use resolution to check for which values of x̄ the union Π ∪ {¬φ(x̄)}
is unsatisfiable.

Remark
As we are dealing with a set of Horn formulae, we can use linear
resolution. The variant used by Prolog-interpreters is called
SLD-resolution.

SLD-resolution
▸ Current goal: ¬ψ0 ∨ ⋅ ⋅ ⋅ ∨ ¬ψn−1

▸ If n = 0, stop.
▸ Otherwise, find a formula ψ ← ϑ0 ∧ ⋅ ⋅ ⋅ ∧ ϑm−1 from Π such that

ψ0 and ψ can be unified.
▸ If no such formula exists, backtrack.
▸ Otherwise, resolve them to produce the new goal

τ(¬ϑ0) ∨ ⋅ ⋅ ⋅ ∨ τ(¬ϑm−1) ∨ σ(¬ψ1) ∨ ⋅ ⋅ ⋅ ∨ σ(¬ψn−1) .

(σ , τ is the most general unifier of ψ0 and ψ.)
Implementation

Use a stack machine that keeps the current goal on the stack.
(→Warren Abstract Machine)

Substitution
Definition

A substitution σ is a function that replaces in a formula every free
variable by a term (and renames bound variables if necessary).
Instead of σ(φ) we also write φ[x ↦ s, y ↦ t] if σ(x) = s and σ(y) = t.

Examples

(x = f (y))[x ↦ g(x), y ↦ c] = g(x) = f (c)
∃z(x = z + z)[x ↦ z] = ∃u(z = u + u)

Unification
Definition

A unifier of two terms s(x̄) and t(x̄) is a pair of substitution σ , τ such
that σ(s) = τ(t).
A unifier σ , τ ismost general if every other unifier σ ′, τ′ can be
written as σ ′ = ρ ○ σ and τ′ = υ ○ τ, for some ρ, υ.

Examples

s = f (x, g(x)) t = f (c, x) x ↦ c x ↦ g(c)
s = f (x, g(x)) t = f (x, y) x ↦ x x ↦ x

y ↦ g(x)
x ↦ g(x) x ↦ g(x)

y ↦ g(g(x))
s = f (x) t = g(x) unification not possible

Unification Algorithm
unify(s, t)

if s is a variable x then
set x to t

else if t is a variable x then
set x to s

else s = f (ū) and t = g(v̄)
if f = g then
forall i unify(ui , vi)

else
fail

Union-Find-Algorithm
 values

⎫
⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪
⎭

variables

find ∶ variable → value
▸ follows pointers to the root and creates shortcuts

union ∶ (variable × variable)→ unit
▸ links roots by a pointer

Example
father_of(peter, sam).

father_of(peter, tina).

mother_of(sara, john).

parent_of(X, Y) :- mother_of(X, Y).

parent_of(X, Y) :- father_of(X, Y).

sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).

Input sibling_of(tina, sam)
goal ¬sibling_of(tina, sam)
unify with sibling_of(X ,Y)← parent_of(Z ,X) ∧ parent_of(Z ,Y)
unifier X = tina, Y = sam
new goal ¬parent_of(Z , tina), ¬parent_of(Z , sam)

goal ¬parent_of(Z , tina), ¬parent_of(Z , sam)
unify with parent_of(X ,Y)← mother_of(X ,Y)
unifier X = Z , Y = tina
new goal ¬mother_of(Z , tina), ¬parent_of(Z , sam)

goal ¬mother_of(Z , tina), ¬parent_of(Z , sam)
unify with mother_of(sara, john)
fails
backtrack to ¬parent_of(Z , tina), ¬parent_of(Z , sam)

goal ¬parent_of(Z , tina), ¬parent_of(Z , sam)
unify with parent_of(X ,Y)← father_of(X ,Y)
unifier X = Z , Y = tina
new goal ¬father_of(Z , tina), ¬parent_of(Z , sam)

goal ¬father_of(Z , tina), ¬parent_of(Z , sam)
unify with father_of(peter, sam)
fails
unify with father_of(peter, tina)
unifier Z = peter
new goal ¬parent_of(peter, sam)

goal ¬parent_of(peter, sam)
.
goal ¬father_of(peter, sam)
unify with father_of(peter, sam)
new goal empty

Search tree

sibling_of(tina, sam)

parent_of(Z , tina), parent_of(Z , sam)

mother_of(Z , tina), parent_of(Z , sam) father_of(Z , tina), parent_of(Z , sam)

fail parent_of(peter, sam)

mother_of(peter, sam) father_of(peter, sam)

fail success

Caveats
Prolog-interpreters use a simpler (and unsound) form of unification
that ignores multiple occurrences of variables. E.g. they happily unify
p(x, f (x)) with p(f (y), f (y)) (equating x = f (y) for the first x and
x = y for the second one).

It is also easy to get infinite loops if you are not careful with the
ordering of the rules:

edge(c,d).

path(X,Y) :- path(X,Z),edge(Z,Y).

path(X,Y) :- edge(X,Y).

produces
?- path(X,Y).

path(X,Z), edge(Z,Y).

path(X,U), edge(U,Z), edge(Z,Y).

path(X,V), edge(V,U), edge(U,Z), edge(Z,Y).

...

Example: List processing
append([], L, L).

append([H|T], L, [H|R]) :- append(T, L, R).

?- append([a,b], [c,d], X).

X = [a,b,c,d]

?- append(X, Y, [a,b,c,d])

X = [], Y = [a,b,c,d]

X = [a], Y = [b,c,d]

X = [a,b], Y = [c,d]

X = [a,b,c], Y = [d]

X = [a,b,c,d], Y = []

Example: List processing
reverse(Xs, Ys) :- reverse_(Xs, [], Ys).

reverse_([], Ys, Ys).

reverse_([X|Xs], Rs, Ys) :- reverse_(Xs, [X|Rs], Ys).

reverse([a,b,c], X)

reverse_([a,b,c], [], X)

reverse_([b,c], [a], X)

reverse_([c], [b,a], X)

reverse_([], [c,b,a], X)

X = [c,b,a]

Example: Natural language recognition
sentence(X,R) :- noun(X, Y), verb(Y, R).

sentence(X,R) :- noun(X, Y), verb(Y, Z), noun(Z, R).

noun_phrase(X, R) :- noun(X, R).

noun_phrase(['a' | X], R) :- noun(X, R).

noun_phrase(['the' | X], R) :- noun(X, R).

noun(['cat' | R], R).

noun(['mouse' | R], R).

noun(['dog' | R], R).

verb(['eats' | R], R).

verb(['hunts' | R], R).

verb(['plays' | R], R).

Cuts
Control backtracking using cuts:

p ∶ − q0, q1, !, q2, q3.

When backtracking across a cut !, directly jump to the head of the rule
and assume it fails. Do not try other rules.

Example

s ← p
s ← t
p← q1, q2, !, q3, q4
p← r
r
q1
q2
q3

s

p t

q , q , !, q , q r fail

q , !, q , q success

!, q , q

q

fail

Negation
Problem

If we allow negation, the formulae are no longerHorn and
SLD-resolution does no longer work.

Possible Solutions
▸ ClosedWorld Assumption

If we cannot derive p, it is false (Negation as Failure).
▸ Completed Database

p← q0, . . . , p← qn is interpreted as the stronger statement
p↔ q0 ∨ ⋅ ⋅ ⋅ ∨ qn.

Examples

Being connected by a path of non-edges:
q(X,X).

q(X,Y) :- q(X,Z), not(p(Z,Y)).

Implementing negation using cuts:
not(A) :- A, !, fail.

not(A).

Some cuts can be implemented using negation:
p :- a, !, b. p :- a, b.

p :- c. p :- not(a), c.

Nonmonotonic Logic

Negation as Failure
Goal

Develop a proof calculus supporting Negation as Failure as used in
Prolog.

Monotonicity

Ordinary deduction ismonotone: if we add new assumption, all
consequences we have already derived remain. More information does
not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is non-monotone:

P implies ¬Q but P,Q does not imply ¬Q .

Default Logic
Rule

α0 . . . αm ∶ β0 . . . βn
γ

αi assumptions
βi restraints
γ consequence

Derive γ provided that we can derive α0, . . . , αm, but none of
β0, . . . , βn.

Example

bird(x) ∶ penguin(x) ostrich(x)
can_fly(x)

Semantics
Definition

A set Φ of formulae is consistent with respect to a set of rules R if, for
every rule

α0 . . . αm ∶ β0 . . . βn
γ

∈ R

such that α0, . . . , αm ∈ Φ and β0, . . . , βn ∉ Φ, we have γ ∈ Φ.

Note

If there are no restraints βi, consistent sets are closed under
intersection.
⇒There is a unique smallest such set, that of all provable formulae.

If there are restraints, this may not be the case. Formulae that belong
to all consistent sets are called secured consequences.

Examples
The system

α
α ∶ β
β

has a unique consistent set {α, β}.

The system

α
α ∶ β
γ

α ∶ γ
β

has consistent sets

{α, β}, {α, γ}, {α, β, γ} .

Databases

Databases
Definition

A database is a set of relations called tables.

Example

flight from to price

LH8302 Prague Frankfurt 240
OA1472 Vienna Warsaw 300
UA0870 London Washington 800
…

Formal Definitions
We treat a database as a structure A = ⟨A,R0, . . . ,Rn⟩ with
▸ universe A containing all entries and
▸ one relation Ri ⊆ A × ⋅ ⋅ ⋅ ×A per table.

The active domain of a database is the set of elements appearing in
some relation.

Example

In the previous table, the active domain contains:
LH8302, OA1472, UA0870, 240, 300, 800,
Prague, Frankfurt,Vienna,Warsaw, London,Washington

Queries
A query is a function mapping each database to a relation.

Example

Input: database of direct flights
Output: table of all flight connections possibly including stops

In Prolog: database flight, query connection.
flight('LH8302', 'Prague', 'Frankfurt', 240).

flight('OA1472', 'Vienna', 'Warsaw', 300).

flight('UA0870', 'London', 'Washington', 800).

connection(From, To) :- flight(X, From, To, Y).

connection(From, To) :-

flight(X, From, T, Y), connection(T, To).

Relational Algebra
Syntax
▸ basic relations
▸ boolean operations ∩, ∪,∖, All
▸ cartesian product ×
▸ selection σij
▸ projection πu0 ...un−1

Examples
▸ π1,0(R) = { (b, a) ∣ (a, b) ∈ R}
▸ π0,3(σ1,2(E × E)) = { (a, c) ∣ (a, b), (b, c) ∈ E }

Join

R &ij S ∶= σij(R × S)

Expressive Power
Theorem
Relational Algebra = First-Order Logic

Proof
(≤) s ↦ s∗ such that s = { ā ∣ A ⊧ s∗(ā) }

R∗ ∶= R(x0, . . . , xn−1)
(s ∩ t)∗ ∶= s∗ ∧ t∗

(s ∪ t)∗ ∶= s∗ ∨ t∗

(s ∖ t)∗ ∶= s∗ ∧ ¬t∗

All∗ ∶= true
(s × t)∗ ∶= s∗(x0, . . . , xm−1) ∧ t∗(xm, . . . , xm+n−1)
σij(s)∗ ∶= s∗ ∧ xi = xj

πu0 ,...,un−1(s)∗ ∶= ∃ȳ[s∗(ȳ) ∧⋀
i<n

xi = yui]

Expressive Power
Theorem
Relational Algebra = First-Order Logic

Proof
(≥) φ ↦ φ∗ such that φ∗ = { ā ∣ A ⊧ φ(ā) }

R(xu0 , . . . , xun−1)∗ ∶= π0,...,m−1(σu0 ,m+0⋯σun−1 ,m+n−1
(All × ⋅ ⋅ ⋅ ×All × R))

(xi = xj)∗ ∶= σij(All × ⋅ ⋅ ⋅ ×All)
(φ ∧ ψ)∗ ∶= φ∗ ∩ ψ∗

(φ ∨ ψ)∗ ∶= φ∗ ∪ ψ∗

(¬φ)∗ ∶= All × ⋅ ⋅ ⋅ ×All ∖ φ∗

(∃xiφ)∗ ∶= π0,...,i−1,n,i+1,...,n−1(φ∗ ×All)

Datalog
Simplified version of Prolog developped in database theory:
▸ no function symbols,
▸ no cut, no negation, etc.

A datalog program for a databaseA = ⟨A,R0, . . . ,Rn⟩ is a set of Horn
formulae

p0(X̄)← q0,0(X̄ , Ȳ) ∧ ⋅ ⋅ ⋅ ∧ q0,m0(X̄ , Ȳ)
⋮

pn(X̄)← qn,0(X̄ , Ȳ) ∧ ⋅ ⋅ ⋅ ∧ qn,mn(X̄ , Ȳ)

where p0, . . . , pn are new relation symbols and the qij are either
relation symbols fromA, possibly negated, or one of the new
symbols pk (not negated).

Datalog queries
The query defined by a datalog program

p0(X̄)← q0,0(X̄ , Ȳ) ∧ ⋅ ⋅ ⋅ ∧ q0,m0(X̄ , Ȳ)
⋮

pn(X̄)← qn,0(X̄ , Ȳ) ∧ ⋅ ⋅ ⋅ ∧ qn,mn(X̄ , Ȳ)

maps a databaseA to the relations p0, . . . , pn defined by these
formulae.

Evaluation strategy
▸ Start with empty relations p0 = ∅, . . . , pn = ∅.
▸ Apply each rule to add new tuples to the relations.
▸ Repeat until no new tuples are generated.

Note
The relations computed in this way satisfy the Completed Database
assumption.

Example

path(X ,Y)← edge(X ,Y)
path(X ,Y)← path(X ,Z) ∧ path(Z ,Y)

A stage

Example

path(X ,Y)← edge(X ,Y)
path(X ,Y)← path(X ,Z) ∧ path(Z ,Y)

A stage

Example

path(X ,Y)← edge(X ,Y)
path(X ,Y)← path(X ,Z) ∧ path(Z ,Y)

A stage

Example

path(X ,Y)← edge(X ,Y)
path(X ,Y)← path(X ,Z) ∧ path(Z ,Y)

A stage

Example: Arithmetic

Add(x, y, z)← y = 0 ∧ x = z
Add(x, y, z)← E(y′, y) ∧ E(z′, z) ∧Add(x, y′, z′)
Mul(x, y, z)← y = 0 ∧ z = 0
Mul(x, y, z)← E(y′, y) ∧Add(x, z′, z) ∧Mul(x, y′, z′)

stage 0 ∅
stage 1 (k, 0, k)
stage 2 (k, 0, k), (k, 1, k + 1)
stage 3 (k, 0, k), (k, 1, k + 1), (k, 2, k + 2)

⋯
stage n (k, 0, k), (k, 1, k + 1),…, (k, n − 1, k + n − 1)

⋯

Complexity
Theorem

For databases A = ⟨A, R̄, ≤⟩ equipped with a linear order ≤, a query Q
can be expressed as a Datalog program if, and only if, it can be
evaluated in polynomial type.

