IA008: Computational Logic 3. Prolog

Achim Blumensath
blumens@fi.muni.cz
Faculty of Informatics, Masaryk University, Brno

Prolog

Prolog

Syntax

A Prolog program consists of a sequence of statements of the form

$$
p(\bar{s}) . \quad \text { or } p(\bar{s}):-q_{0}\left(\bar{t}_{0}\right), \ldots, q_{n-1}\left(\bar{t}_{n-1}\right) .
$$

p, q_{i} relation symbols, \bar{s}, \bar{t}_{i} tuples of terms.

Semantics

$$
p(\bar{s}):-q_{0}\left(\bar{t}_{0}\right), \ldots, q_{n-1}\left(\bar{t}_{n-1}\right) .
$$

corresponds to the implication

$$
\forall \bar{x}\left[p(\bar{s}) \leftarrow q_{0}\left(\bar{t}_{0}\right) \wedge \cdots \wedge q_{n-1}\left(\bar{t}_{n-1}\right)\right]
$$

where \bar{x} are the variables appearing in the formula.

Example

father_of(peter, sam).
father_of(peter, tina).
mother_of(sara, john).
parent_of (X, Y) : - father_of (X, Y).
parent_of $(X, Y):-$ mother_of (X, Y).
sibling_of (X, Y) :- parent_of (Z, X), parent_of (Z, Y).
ancestor_of (X, Y) :- father_of (X, Z), ancestor_of (Z, Y).

Interpreter

On input

$$
p_{0}\left(\bar{s}_{0}\right), \ldots, p_{n-1}\left(\bar{s}_{n-1}\right)
$$

the program finds all values for the variables satisfying the conjunction

$$
p_{0}\left(\bar{s}_{0}\right) \wedge \cdots \wedge p_{n-1}\left(\bar{s}_{n-1}\right) .
$$

Example

```
?- sibling_of(sam, tina).
Yes
?- sibling_of(X, Y).
X = sam, Y = tina
```


Execution

Input

- program Π (set of Horn formulae

$$
\left.\forall \bar{x}\left[P(\bar{s}) \leftarrow Q_{0}\left(\bar{t}_{0}\right) \wedge \cdots \wedge Q_{n-1}\left(\bar{t}_{n-1}\right)\right]\right)
$$

- goal $\varphi(\bar{x}):=R_{0}\left(\bar{u}_{0}\right) \wedge \cdots \wedge R_{m-1}\left(\bar{u}_{m-1}\right)$

Evaluation strategy

Use resolution to check for which values of \bar{x} the union $\Pi \cup\{\neg \varphi(\bar{x})\}$ is unsatisfiable.

Remark

As we are dealing with a set of Horn formulae, we can use linear resolution. The variant used by Prolog-interpreters is called SLD-resolution.

SLD-resolution

- Current goal: $\neg \psi_{0} \vee \cdots \vee \neg \psi_{n-1}$
- If $n=0$, stop.
- Otherwise, find a formula $\psi \leftarrow \vartheta_{0} \wedge \cdots \wedge \vartheta_{m-1}$ from Π such that ψ_{0} and ψ can be unified.
- If no such formula exists, backtrack.
- Otherwise, resolve them to produce the new goal

$$
\tau\left(\neg \vartheta_{0}\right) \vee \cdots \vee \tau\left(\neg \vartheta_{m-1}\right) \vee \sigma\left(\neg \psi_{1}\right) \vee \cdots \vee \sigma\left(\neg \psi_{n-1}\right) .
$$

(σ, τ is the most general unifier of ψ_{0} and ψ.)
Implementation
Use a stack machine that keeps the current goal on the stack. $(\rightarrow$ Warren Abstract Machine)

Substitution

Definition

A substitution σ is a function that replaces in a formula every free variable by a term (and renames bound variables if necessary). Instead of $\sigma(\varphi)$ we also write $\varphi[x \mapsto s, y \mapsto t]$ if $\sigma(x)=s$ and $\sigma(y)=t$.

Examples

$$
\begin{array}{lll}
(x=f(y))[x \mapsto g(x), y \mapsto c] & = & g(x)=f(c) \\
\exists z(x=z+z)[x \mapsto z] & = & \exists u(z=u+u)
\end{array}
$$

Unification

Definition

A unifier of two terms $s(\bar{x})$ and $t(\bar{x})$ is a pair of substitution σ, τ such that $\sigma(s)=\tau(t)$.
A unifier σ, τ is most general if every other unifier $\sigma^{\prime}, \tau^{\prime}$ can be written as $\sigma^{\prime}=\rho \circ \sigma$ and $\tau^{\prime}=v \circ \tau$, for some ρ, v.

Examples

$$
\left.\begin{array}{llll}
s=f(x, g(x)) & t=f(c, x) & x & \mapsto c \\
s=f(x, g(x)) & t=f(x, y) & x & \mapsto x \\
& & x & \mapsto x \\
& & & \\
& & \mapsto g(x) & x
\end{array}\right)
$$

Unification Algorithm

```
unify \((s, t)\)
if \(s\) is a variable \(x\) then
    set \(x\) to \(t\)
else if \(t\) is a variable \(x\) then
    set \(x\) to \(s\)
else \(s=f(\bar{u})\) and \(t=g(\bar{v})\)
    if \(f=g\) then
        forall \(i\) unify \(\left(u_{i}, v_{i}\right)\)
    else
        fail
```


Union-Find-Algorithm

values

find: variable \rightarrow value

- follows pointers to the root and creates shortcuts

union: $($ variable \times variable $) \rightarrow$ unit
- links roots by a pointer

Example

father_of(peter, sam).
father_of(peter, tina).
mother_of(sara, john).
parent_of (X, Y) :- mother_of (X, Y).
parent_of (X, Y) :- father_of (X, Y).
sibling_of(X, Y) :- parent_of(Z, X), parent_of(Z, Y).
Input sibling_of(tina, sam)
goal $\quad \neg$ sibling_of(tina, sam)
unify with sibling_of $(X, Y) \leftarrow$ parent_of $(Z, X) \wedge$ parent_of (Z, Y)
unifier $\quad X=$ tina,$Y=$ sam
new goal \neg parent_of $(Z$, tina $), \neg$ parent_of $(Z$, sam $)$
goal
\neg parent_of $(Z$, tina $), ~ \neg$ parent_of $(Z$, sam $)$
unify with parent_of $(X, Y) \leftarrow$ mother_of (X, Y)

Search tree

Caveats

Prolog-interpreters use a simpler (and unsound) form of unification that ignores multiple occurrences of variables. E.g. they happily unify $p(x, f(x))$ with $p(f(y), f(y))$ (equating $x=f(y)$ for the first x and $x=y$ for the second one).

It is also easy to get infinite loops if you are not careful with the ordering of the rules:

```
edge(c,d).
path(X,Y) :- path(X,Z),edge(Z,Y).
path(X,Y) :- edge(X,Y).
```

produces

```
?- path(X,Y).
path(X,Z), edge(Z,Y).
path(X,U), edge(U,Z), edge(Z,Y).
path(X,V), edge(V,U), edge(U,Z), edge(Z,Y).
```


Example: List processing

```
append([], L, L).
append([H|T], L, [H|R]) :- append(T, L, R).
?- append([a,b], [c,d], X).
X = [a,b,c,d]
?- append(X, Y, [a,b,c,d])
X = [], Y = [a,b,c,d]
X = [a], Y = [b,c,d]
X = [a,b], Y = [c,d]
X = [a,b,c], Y = [d]
X = [a,b,c,d], Y = []
```


Example: List processing

```
reverse(Xs, Ys) :- reverse_(Xs, [], Ys).
reverse_([], Ys, Ys).
reverse_([X|Xs], Rs, Ys) :- reverse_(Xs, [X|Rs], Ys).
reverse([a,b,c], X)
reverse_([a,b,c], [], X)
reverse_([b,c], [a], X)
reverse_([c], [b,a], X)
reverse_([], [c,b,a], X)
X = [c,b,a]
```


Example: Natural language recognition

```
sentence(X,R) :- noun(X, Y), verb(Y, R).
sentence(X,R) :- noun(X, Y), verb(Y, Z), noun(Z, R).
noun_phrase(X, R) :- noun(X, R).
noun_phrase(['a' | X], R) :- noun(X, R).
noun_phrase(['the' | X], R) :- noun(X, R).
noun(['cat' | R], R).
noun(['mouse' | R], R).
noun(['dog' | R], R).
verb(['eats' | R], R).
verb(['hunts' | R], R).
verb(['plays' | R], R).
```


Cuts

Control backtracking using cuts:

$$
p:-q_{0}, q_{1},!, q_{2}, q_{3}
$$

When backtracking across a cut !, directly jump to the head of the rule and assume it fails. Do not try other rules.

Example

s	$\leftarrow p$
s	$\leftarrow t$
p	$\leftarrow q_{1}, q_{2},!, q_{3}, q_{4}$
p	$\leftarrow r$
r	
q_{1}	
q_{2}	
q_{3}	

Negation

Problem

If we allow negation, the formulae are no longer Horn and SLD-resolution does no longer work.

Possible Solutions

- Closed World Assumption If we cannot derive p, it is false (Negation as Failure).
- Completed Database
$p \leftarrow q_{0}, \ldots, p \leftarrow q_{n}$ is interpreted as the stronger statement $p \leftrightarrow q_{0} \vee \cdots \vee q_{n}$.

Examples

Being connected by a path of non-edges:

```
q(X,X).
q(X,Y) :- q(X,Z), not(p(Z,Y)).
```

Implementing negation using cuts:

```
not(A) :- A, !, fail.
not(A).
```

Some cuts can be implemented using negation:
p :- a, !, b.
$p:-a, b$.
p:-c.
p:- not(a), c.

Nonmonotonic Logic

Negation as Failure

Goal
Develop a proof calculus supporting Negation as Failure as used in Prolog.

Monotonicity

Ordinary deduction is monotone: if we add new assumption, all consequences we have already derived remain. More information does not invalidate already made deductions.

Non-Monotonicity

Negation as Failure is non-monotone:

$$
P \text { implies } \neg Q \quad \text { but } \quad P, Q \text { does not imply } \neg Q
$$

Default Logic

Rule

Derive γ provided that we can derive $\alpha_{0}, \ldots, \alpha_{m}$, but none of $\beta_{0}, \ldots, \beta_{n}$.

Example

$$
\frac{\operatorname{bird}(x): \text { penguin }(x) \text { ostrich }(x)}{\operatorname{can} _f l y(x)}
$$

Semantics

Definition

A set Φ of formulae is consistent with respect to a set of rules R if, for every rule

$$
\frac{\alpha_{0} \ldots \alpha_{m}: \beta_{0} \ldots \beta_{n}}{\gamma} \in R
$$

such that $\alpha_{0}, \ldots, \alpha_{m} \in \Phi$ and $\beta_{0}, \ldots, \beta_{n} \notin \Phi$, we have $\gamma \in \Phi$.

Note

If there are no restraints β_{i}, consistent sets are closed under intersection.
\Rightarrow There is a unique smallest such set, that of all provable formulae.
If there are restraints, this may not be the case. Formulae that belong to all consistent sets are called secured consequences.

Examples

The system

$$
\bar{\alpha} \quad \frac{\alpha: \beta}{\beta}
$$

has a unique consistent set $\{\alpha, \beta\}$.
The system

$$
\bar{\alpha} \quad \frac{\alpha: \beta}{\gamma} \quad \frac{\alpha: \gamma}{\beta}
$$

has consistent sets

$$
\{\alpha, \beta\}, \quad\{\alpha, \gamma\}, \quad\{\alpha, \beta, \gamma\}
$$

Databases

Databases

Definition

A database is a set of relations called tables.

Example

flight	from	to	price
LH8302	Prague	Frankfurt	240
OA1472	Vienna	Warsaw	300
UA0870	London	Washington	800
\ldots			

Formal Definitions

We treat a database as a structure $\mathfrak{A}=\left\langle A, R_{0}, \ldots, R_{n}\right\rangle$ with

- universe A containing all entries and
- one relation $R_{i} \subseteq A \times \cdots \times A$ per table.

The active domain of a database is the set of elements appearing in some relation.

Example

In the previous table, the active domain contains:
LH8302, OA1472, UA0870, 240, 300, 800,
Prague, Frankfurt, Vienna, Warsaw, London, Washington

Queries

A query is a function mapping each database to a relation.

Example

Input: database of direct flights
Output: table of all flight connections possibly including stops
In Prolog: database flight, query connection.

```
flight('LH8302', 'Prague', 'Frankfurt', 240).
flight('OA1472', 'Vienna', 'Warsaw', 300).
flight('UA0870', 'London', 'Washington', 800).
connection(From, To) :- flight(X, From, To, Y).
connection(From, To) :-
    flight(X, From, T, Y), connection(T, To).
```


Relational Algebra

Syntax

- basic relations
- boolean operations \cap, \cup, \backslash, All
- cartesian product \times
- selection $\sigma_{i j}$
- projection $\pi_{u_{0} \ldots u_{n-1}}$

Examples

- $\pi_{1,0}(R)=\{(b, a) \mid(a, b) \in R\}$
- $\pi_{0,3}\left(\sigma_{1,2}(E \times E)\right)=\{(a, c) \mid(a, b),(b, c) \in E\}$

Join

$$
R \bowtie_{i j} S:=\sigma_{i j}(R \times S)
$$

Expressive Power

Theorem

Relational Algebra $=$ First-Order Logic
Proof
$(\leq) s \mapsto s^{*}$ such that $s=\left\{\bar{a} \mid \mathfrak{A} \vDash s^{*}(\bar{a})\right\}$

$$
\begin{aligned}
R^{*} & :=R\left(x_{0}, \ldots, x_{n-1}\right) \\
(s \cap t)^{*} & :=s^{*} \wedge t^{*} \\
(s \cup t)^{*} & :=s^{*} \vee t^{*} \\
(s \backslash t)^{*} & :=s^{*} \wedge \neg t^{*} \\
\operatorname{All}^{*} & :=\text { true } \\
(s \times t)^{*} & :=s^{*}\left(x_{0}, \ldots, x_{m-1}\right) \wedge t^{*}\left(x_{m}, \ldots, x_{m+n-1}\right) \\
\sigma_{i j}(s)^{*} & :=s^{*} \wedge x_{i}=x_{j} \\
\pi_{u_{0}, \ldots, u_{n-1}}(s)^{*} & :=\exists \bar{y}\left[s^{*}(\bar{y}) \wedge \bigwedge_{i<n} x_{i}=y_{u_{i}}\right]
\end{aligned}
$$

Expressive Power

Theorem

Relational Algebra $=$ First-Order Logic
Proof
$(\geq) \varphi \mapsto \varphi^{*}$ such that $\varphi^{*}=\{\bar{a} \mid \mathfrak{A} \vDash \varphi(\bar{a})\}$

$$
\begin{aligned}
& R\left(x_{u_{0}}, \ldots, x_{u_{n-1}}\right)^{*}:=\pi_{0, \ldots, m-1}\left(\sigma_{u_{0}, m+0} \cdots \sigma_{u_{n-1}, m+n-1}\right. \\
&\quad(\text { All } \times \cdots \times \text { All } \times R)) \\
&\left(x_{i}=x_{j}\right)^{*}:=\sigma_{i j}(\text { All } \times \cdots \times \text { All }) \\
&(\varphi \wedge \psi)^{*}:=\varphi^{*} \cap \psi^{*} \\
&(\varphi \vee \psi)^{*}:=\varphi^{*} \cup \psi^{*} \\
&(\neg \varphi)^{*}:=\text { All } \times \cdots \times \text { All } \backslash \varphi^{*} \\
&\left(\exists x_{i} \varphi\right)^{*}:=\pi_{0, \ldots, i-1, n, i+1, \ldots, n-1}\left(\varphi^{*} \times \text { All }\right)
\end{aligned}
$$

Datalog

Simplified version of Prolog developped in database theory:

- no function symbols,
- no cut, no negation, etc.

A datalog program for a database $\mathcal{A}=\left\langle A, R_{0}, \ldots, R_{n}\right\rangle$ is a set of Horn formulae

$$
\begin{aligned}
p_{0}(\bar{X}) & \leftarrow q_{0,0}(\bar{X}, \bar{Y}) \wedge \cdots \wedge q_{0, m_{0}}(\bar{X}, \bar{Y}) \\
& \vdots \\
p_{n}(\bar{X}) & \leftarrow q_{n, 0}(\bar{X}, \bar{Y}) \wedge \cdots \wedge q_{n, m_{n}}(\bar{X}, \bar{Y})
\end{aligned}
$$

where p_{0}, \ldots, p_{n} are new relation symbols and the $q_{i j}$ are either relation symbols from \mathcal{A}, possibly negated, or one of the new symbols p_{k} (not negated).

Datalog queries

The query defined by a datalog program

$$
\begin{aligned}
p_{0}(\bar{X}) & \leftarrow q_{0,0}(\bar{X}, \bar{Y}) \wedge \cdots \wedge q_{0, m_{0}}(\bar{X}, \bar{Y}) \\
& \vdots \\
p_{n}(\bar{X}) & \leftarrow q_{n, 0}(\bar{X}, \bar{Y}) \wedge \cdots \wedge q_{n, m_{n}}(\bar{X}, \bar{Y})
\end{aligned}
$$

maps a database \mathcal{A} to the relations p_{0}, \ldots, p_{n} defined by these formulae.

Evaluation strategy

- Start with empty relations $p_{0}=\varnothing, \ldots, p_{n}=\varnothing$.
- Apply each rule to add new tuples to the relations.
- Repeat until no new tuples are generated.

Note
The relations computed in this way satisfy the Completed Database assumption.

Example

$$
\begin{aligned}
& \operatorname{path}(X, Y) \leftarrow \operatorname{edge}(X, Y) \\
& \operatorname{path}(X, Y) \leftarrow \operatorname{path}(X, Z) \wedge \operatorname{path}(Z, Y)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{path}(X, Y) \leftarrow \operatorname{edge}(X, Y) \\
& \operatorname{path}(X, Y) \leftarrow \operatorname{path}(X, Z) \wedge \operatorname{path}(Z, Y)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{path}(X, Y) \leftarrow \operatorname{edge}(X, Y) \\
& \operatorname{path}(X, Y) \leftarrow \operatorname{path}(X, Z) \wedge \operatorname{path}(Z, Y)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \operatorname{path}(X, Y) \leftarrow \operatorname{edge}(X, Y) \\
& \operatorname{path}(X, Y) \leftarrow \operatorname{path}(X, Z) \wedge \operatorname{path}(Z, Y)
\end{aligned}
$$

Example: Arithmetic

$$
\begin{aligned}
& \operatorname{Add}(x, y, z) \leftarrow y=0 \wedge x=z \\
& \operatorname{Add}(x, y, z) \leftarrow E\left(y^{\prime}, y\right) \wedge E\left(z^{\prime}, z\right) \wedge \operatorname{Add}\left(x, y^{\prime}, z^{\prime}\right) \\
& \operatorname{Mul}(x, y, z) \leftarrow y=0 \wedge z=0 \\
& \operatorname{Mul}(x, y, z) \leftarrow E\left(y^{\prime}, y\right) \wedge \operatorname{Add}\left(x, z^{\prime}, z\right) \wedge \operatorname{Mul}\left(x, y^{\prime}, z^{\prime}\right)
\end{aligned}
$$

stage $0 \quad \varnothing$
stage $1 \quad(k, 0, k)$
stage $2(k, 0, k),(k, 1, k+1)$
stage $3(k, 0, k),(k, 1, k+1),(k, 2, k+2)$
stage $n \quad(k, 0, k),(k, 1, k+1), \ldots,(k, n-1, k+n-1)$

Complexity

Theorem

For databases $\mathfrak{A}=\langle A, \bar{R}, \leq\rangle$ equipped with a linear order \leq, a query Q can be expressed as a Datalog program if, and only if, it can be evaluated in polynomial type.

