IA008: Computational Logic6. Modal Logic

Achim Blumensath blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

Basic Concepts

Transition Systems

directed graph $\mathfrak{S} = \langle S, (E_a)_{a \in A}, (P_i)_{i \in I}, s_0 \rangle$ with

- ▶ states S
- ▶ initial state $s_0 \in S$
- edge relations E_a with edge colours $a \in A$ ('actions')
- unary predicates P_i with vertex colours $i \in I$ ('properties')

Modal logic

Propositional logic with modal operators

- $\langle a \rangle \varphi$ 'there exists an *a*-successor where φ holds'
- $[a]\varphi$ ' φ holds in every a-successor'

Notation: $\Diamond \varphi$, $\Box \varphi$ if there are no edge labels

Formal semantics

 $\mathfrak{S}, s \models P$: iff $s \in P$

 $\mathfrak{S}, s \models \varphi \land \psi$: iff $\mathfrak{S}, s \models \varphi$ and $\mathfrak{S}, s \models \psi$

 $\mathfrak{S}, s \models \varphi \lor \psi$: iff $\mathfrak{S}, s \models \varphi \text{ or } \mathfrak{S}, s \models \psi$

 $\mathfrak{S}, s \vDash \neg \varphi$: iff $\mathfrak{S}, s \not\vDash \varphi$

 $\mathfrak{S}, s \models \langle a \rangle \varphi$: iff there is $s \to^a t$ such that $\mathfrak{S}, t \models \varphi$

 $\mathfrak{S}, s \models [a]\varphi$: iff for all $s \rightarrow^a t$, we have $\mathfrak{S}, t \models \varphi$

```
P \land \diamondsuit Q 'The state is in P and there exists a transition to Q.'
[a]\bot 'The state has no outgoing a-transition.'
```

Interpretations

- ► **Temporal Logic** talks about time:
 - states: points in time (discrete/continuous)
 - $\Diamond \varphi$ 'sometime in the future φ holds'
 - $\Box \varphi$ 'always in the future φ holds'
- Epistemic Logic talks about knowledge:
 - states: possible worlds
 - $\Diamond \varphi$ ' φ might be true'
 - ▶ $\Box \varphi$ ' φ is certainly true'

```
system \mathfrak{S} = \langle S, \leq, \bar{P} \rangle
```

▶ "P never holds."

system
$$\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

▶ "After every *P* there is some *Q*."

system
$$\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

► "After every *P* there is some *Q*."

$$\Box(P\to\diamondsuit Q)$$

"Once P holds, it holds forever."

system
$$\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

► "After every *P* there is some *Q*."

$$\Box(P\to\diamondsuit Q)$$

"Once P holds, it holds forever."

$$\Box(P \to \Box P)$$

► "There are infinitely many *P*."

system
$$\mathfrak{S} = \langle S, \leq, \bar{P} \rangle$$

▶ "P never holds."

$$\neg \diamondsuit P$$

► "After every *P* there is some *Q*."

$$\Box(P\to\diamondsuit Q)$$

"Once P holds, it holds forever."

$$\Box(P \to \Box P)$$

 $\Box \Diamond P$

► "There are infinitely many *P*."

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

$$\mathfrak{S}, s \vDash \varphi$$
 iff $\mathfrak{S} \vDash \varphi^*(s)$.

Proof

Translation to first-order logic

Proposition

For every formula φ of propositional modal logic, there exists a formula $\varphi^*(x)$ of first-order logic such that

$$\mathfrak{S}, s \vDash \varphi$$
 iff $\mathfrak{S} \vDash \varphi^*(s)$.

Proof

$$P^* := P(x)$$

$$(\varphi \wedge \psi)^* := \varphi^*(x) \wedge \psi^*(x)$$

$$(\varphi \vee \psi)^* := \varphi^*(x) \vee \psi^*(x)$$

$$(\neg \varphi)^* := \neg \varphi^*(x)$$

$$(\langle a \rangle \varphi)^* := \exists y [E_a(x, y) \wedge \varphi^*(y)]$$

$$([a]\varphi)^* := \forall y [E_a(x, y) \rightarrow \varphi^*(y)]$$

Bisimulation

S and T transition systems

$$Z \subseteq S \times T$$
 is a **bisimulation** if, for all $\langle s, t \rangle \in Z$,
(local) $s \in P \iff t \in P$
(forth) for every $s \to s'$, exists $t \to t'$ with $\langle s', t' \rangle \in Z$,
(back) for every $t \to t'$, exists $t \to t'$ with $\langle s', t' \rangle \in Z$.

 \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if there is a bisimulation Z with $\langle s, t \rangle \in Z$.

Unravelling

Lemma

 \mathfrak{S} and $\mathcal{U}(\mathfrak{S})$ are bisimilar.

Bisimulation invariance

Theorem

Two **finite** transition systems \mathfrak{S} , s and \mathfrak{T} , t are **bisimilar** if, and only if,

$$\mathfrak{S}, s \vDash \varphi \iff \mathfrak{T}, t \vDash \varphi$$
, for every modal formula φ .

Definition

A formula $\varphi(x)$ is **bisimulation invariant** if

$$\mathfrak{S}, s \sim \mathfrak{T}, t$$
 implies $\mathfrak{S} \models \varphi(s) \Leftrightarrow \mathfrak{T} \models \varphi(t)$.

Theorem

A first-order formula φ is equivalent to a **modal formula** if, and only if, it is **bisimulation invariant.**

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a Σ -structure \mathfrak{A}_s such that

$$s \to^a t$$
 implies $A_s \subseteq A_t$

First-Order Modal Logic

Syntax

first-order logic with modal operators $\langle a \rangle \varphi$ and $[a] \varphi$

Models

transistion systems where each state s is labelled with a $\Sigma\text{-structure}\,\mathfrak{A}_s$ such that

$$s \to^a t$$
 implies $A_s \subseteq A_t$

- ▶ $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$ is valid.
- $\forall x \Box \varphi(x) \rightarrow \Box \forall x \varphi(x)$ is not valid.

Tableau Proofs

Statements

$$s \vDash \varphi$$
 $s \not\vDash \varphi$ $s \rightarrow^a t$

s,t state labels, φ a modal formula

Rules

Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

- start with $s_0 \not\models \varphi$
- choose a branch of the tree
- choose a statement $s = \psi/s \neq \psi$ on the branch
- choose a rule with head $s = \psi/s \neq \psi$
- add it at the bottom of the branch
- ▶ repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux

Construction

A **tableau** for a formula φ is constructed as follows:

- ▶ start with $s_0 \not\models \varphi$
- choose a branch of the tree
- choose a statement $s = \psi/s \neq \psi$ on the branch
- choose a rule with head $s = \psi/s \neq \psi$
- add it at the bottom of the branch
- ▶ repeat until every branch contains both statements $s \models \psi$ and $s \not\models \psi$ for some formula ψ

Tableaux with premises Γ

▶ choose a branch, a state *s* on the branch, a premise $\psi \in \Gamma$, and add $s \models \psi$ to the branch

Rules

Rules

t a new state, t' every state with entry $s \rightarrow^a t'$ on the branch, c a new constant symbol, u an arbitrary term

Example $\varphi \vDash \Box \varphi$

Example $\vDash \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$

$$s \nvDash \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$

$$s \vDash \Box(\varphi \to \psi)$$

$$s \vDash \Box \varphi$$

$$s \vDash \Box \varphi$$

$$s \vDash \Box \psi$$

$$t \vDash \psi$$

$$t \vDash \varphi$$

$$t \vDash \varphi \to \psi$$

Example $\models \Box \forall x \varphi \rightarrow \forall x \Box \varphi$

$$\begin{array}{c|c}
s \not\models \Box \forall x \varphi \to \forall x \Box \varphi \\
 & \downarrow \\
s \models \Box \forall x \varphi \\
 & \downarrow \\
s \not\models \forall x \Box \varphi \\
 & \downarrow \\
s \mapsto t \\
 & \downarrow \\
t \not\models \varphi[x \mapsto c] \\
 & \downarrow \\
t \models \varphi[x \mapsto c]
\end{array}$$

Soundness and Completeness

Consequence

 ψ is a **consequence** of Γ if, and only if, for all transition systems \mathfrak{S} ,

$$\mathfrak{S}, s \models \varphi$$
, for all $s \in S$ and $\varphi \in \Gamma$,

implies that

$$\mathfrak{S}, s \models \psi$$
, for all $s \in S$.

Soundness and Completeness

Consequence

 ψ is a **consequence** of Γ if, and only if, for all transition systems \mathfrak{S} ,

$$\mathfrak{S}, s \models \varphi$$
, for all $s \in S$ and $\varphi \in \Gamma$,

implies that

$$\mathfrak{S}, s \models \psi$$
, for all $s \in S$.

Theorem

A modal formula φ is a consequence of Γ if, and only if, there exists a tableau T for φ with premises Γ where every branch is contradictory.

Complexity

Theorem

Satisfiability for propositional modal logic is in **deterministic linear** space.

Theorem

Satisfiability for first-order modal logic is **undecidable**.

Temporal Logics

Linear Temporal Logic (LTL)

Speaks about **paths.** $P \longrightarrow \bullet \longrightarrow P, Q \longrightarrow Q \longrightarrow \bullet \longrightarrow \cdots$

Syntax

- atomic predicates P, Q, \dots
- ▶ boolean operations ∧, ∨, ¬
- next $X\varphi$
- until $\varphi U \psi$
- finally $F\varphi := \top U\varphi$
- generally $G\varphi := \neg F \neg \varphi$

Examples

FP a state in P is reachable

GFP we can reach infinitely many states in P $(\neg P)U(P \land Q)$ the first reachable state in P is also in Q

Theorem

Let *L* be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Theorem

Let *L* be a set of paths. The following statements are equivalent:

- L can be defined in LTL.
- L can be defined in first-order logic.
- L can be defined by a star-free regular expression.

Translation LTL to FO

```
P^* := P(x)
(\varphi \wedge \psi)^* := \varphi^*(x) \wedge \psi^*(x)
(\varphi \vee \psi)^* := \varphi^*(x) \vee \psi^*(x)
(\neg \varphi)^* := \neg \varphi^*(x)
(X\varphi)^* := \exists y[x < y \wedge \neg \exists z(x < z \wedge z < y) \wedge \varphi^*(y)]
(\varphi U\psi)^* := \exists y[x \le y \wedge \psi^*(y) \wedge \forall z[x \le z \wedge z < y \to \varphi^*(z)]]
```

Theorem

Satisfiablity of LTL formulae is **PSPACE-complete**.

Theorem

Model checking \mathfrak{S} , $s \models \varphi$ for LTL is **PSPACE-complete.** It can be done in

time
$$\mathcal{O}(|S| \cdot 2^{\mathcal{O}(|\varphi|)})$$
 or space $\mathcal{O}((|\varphi| + \log |S|)^2)$.

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking \mathfrak{S} , $s \models \varphi$ for LTL is **PSPACE-complete**. It can be done in

time
$$\mathcal{O}(|S| \cdot 2^{\mathcal{O}(|\varphi|)})$$
 or space $\mathcal{O}((|\varphi| + \log |S|)^2)$.

Formula complexity: PSPACE-complete

Data complexity: NLOGSPACE-complete

Computation Tree Logic (CTL and CTL*)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL*)

• state formulae φ :

$$\varphi := P \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \neg \varphi \mid A\psi \mid E\psi$$

• path formulae ψ :

$$\psi ::= \varphi \mid \psi \wedge \psi \mid \psi \vee \psi \mid \neg \psi \mid X\psi \mid \psi U\psi \mid F\psi \mid G\psi$$

Examples

EFP a state in *P* is reachable

AFP every branch contains a state in *P*

EGFP there is a branch with infinitely many *P*

EGEFP there is a branch such that we can reach *P* from every

of its states

Computation Tree Logic (CTL and CTL*)

Theorem

Satisfiability for CTL is **EXPTIME-complete**.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL is **P-complete.** It can be done in

$$\mathbf{time}\ \mathcal{O}\big(|\varphi|\cdot|S|\big)\quad \text{or}\quad \mathbf{space}\ \mathcal{O}\big(|\varphi|\cdot\log^2\left(|\varphi|\cdot|S|\right)\big)\,.$$

Data complexity: NLOGSPACE-complete

Computation Tree Logic (CTL and CTL*)

Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL is **P-complete.** It can be done in

$$\mathbf{time}\;\mathcal{O}\!\left(|\varphi|\cdot|S|\right)\quad\text{or}\quad\mathbf{space}\;\mathcal{O}\!\left(|\varphi|\cdot\log^2\left(|\varphi|\cdot|S|\right)\right).$$

Data complexity: NLOGSPACE-complete

Theorem

Satisfiability for CTL* is 2EXPTIME-complete.

Model checking \mathfrak{S} , $s \models \varphi$ for CTL* is **PSPACE-complete.** It can be done in

time
$$\mathcal{O}(|S|^2 \cdot 2^{\mathcal{O}(|\varphi|)})$$
 or space $\mathcal{O}(|\varphi|(|\varphi| + \log|S|)^2)$.

Formula complexity: PSPACE-complete

Data complexity: NLOGSPACE-complete

Fixed points

Theorem (Knaster, Tarski)

Let $\langle A, \leq \rangle$ be a **complete** partial order and $f: A \to A$ **monotone**. Then f has a **least** and a **greatest fixed point** and

$$lfp(f) = \lim_{\alpha \to \infty} f^{\alpha}(\bot)$$
 and $gfp(f) = \lim_{\alpha \to \infty} f^{\alpha}(\top)$

0, 1, 2, 3, . . .

 $0, 1, 2, 3, \ldots \omega$

 $0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots$

$$0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2$$

 $0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots$

$$0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots$$

 $\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots$

$$0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots$$

 $\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2$

$$0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots$$

 $\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots$

```
0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots

\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots

\omega^{\omega}
```

```
0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots

\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots

\omega^{\omega}, \ldots \omega^{\omega^{\omega}}, \ldots \omega^{\omega^{\omega^{\omega}}}, \ldots
```

```
0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots

\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots

\omega^{\omega}, \ldots \omega^{\omega^{\omega}}, \ldots \omega^{\omega^{\omega^{\omega}}}, \ldots \varepsilon, \ldots
```

```
0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots

\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots

\omega^{\omega}, \ldots \omega^{\omega^{\omega}}, \ldots \omega^{\omega^{\omega^{\omega}}}, \ldots \varepsilon, \ldots \omega_1, \ldots \omega_2, \ldots
```

```
0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots

\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots

\omega^{\omega}, \ldots \omega^{\omega^{\omega}}, \ldots \omega^{\omega^{\omega^{\omega}}}, \ldots \varepsilon, \ldots \omega_1, \ldots \omega_2, \ldots
```

3 Kinds

• 0

```
0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots

\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots

\omega^{\omega}, \ldots \omega^{\omega^{\omega}}, \ldots \omega^{\omega^{\omega^{\omega}}}, \ldots \varepsilon, \ldots \omega_1, \ldots \omega_2, \ldots
```

3 Kinds

- 0
- successor $\alpha + 1$

```
0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots

\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots

\omega^{\omega}, \ldots \omega^{\omega^{\omega}}, \ldots \omega^{\omega^{\omega^{\omega}}}, \ldots \varepsilon, \ldots \omega_1, \ldots \omega_2, \ldots
```

3 Kinds

- 0
- successor $\alpha + 1$
- limit δ

```
0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots

\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots

\omega^{\omega}, \ldots \omega^{\omega^{\omega}}, \ldots \omega^{\omega^{\omega^{\omega}}}, \ldots \varepsilon, \ldots \omega_1, \ldots \omega_2, \ldots
```

3 Kinds

- 0
- successor $\alpha + 1$
- limit δ

Proposition

Every non-empty set of ordinals has a least element.

$$0, 1, 2, 3, \ldots \omega, \omega + 1, \omega + 2, \ldots \omega + \omega = \omega 2, \omega 2 + 1, \omega 2 + 2, \ldots$$

 $\omega 3, \ldots \omega 4, \ldots \omega 5, \ldots \omega \omega = \omega^2, \ldots \omega^3, \ldots \omega^4, \ldots$
 $\omega^{\omega}, \ldots \omega^{\omega^{\omega}}, \ldots \omega^{\omega^{\omega^{\omega}}}, \ldots \varepsilon, \ldots \omega_1, \ldots \omega_2, \ldots$

3 Kinds

- 0
- successor $\alpha + 1$
- limit δ

Proposition

Every non-empty set of ordinals has a least element.

Iteration

$$f^{0}(x) := x,$$

$$f^{\alpha+1}(x) := f(f^{\alpha}(x)),$$

$$f^{\delta}(x) := \sup_{\alpha < \delta} f^{\alpha}(x), \text{ for limit ordinals } \delta.$$

Monotonicity $f^{\alpha}(\bot) \le f^{\beta}(\bot)$ for $\alpha \le \beta$

$$\perp \leq f(\perp)$$

Monotonicity
$$f^{\alpha}(\bot) \le f^{\beta}(\bot)$$
 for $\alpha \le \beta$
 $\bot \le f(\bot)$
 $f^{\alpha}(\bot) \le f^{\beta}(\bot) \implies f^{\alpha+1}(\bot) \le f^{\beta+1}(\bot)$

Monotonicity
$$f^{\alpha}(\bot) \le f^{\beta}(\bot)$$
 for $\alpha \le \beta$
 $\bot \le f(\bot)$
 $f^{\alpha}(\bot) \le f^{\beta}(\bot) \Rightarrow f^{\alpha+1}(\bot) \le f^{\beta+1}(\bot)$
 $f^{\alpha}(\bot) \le f^{\delta}(\bot)$ for all $\alpha < \delta$

Monotonicity $f^{\alpha}(\bot) \leq f^{\beta}(\bot)$ for $\alpha \leq \beta$ $\bot \leq f(\bot)$ $f^{\alpha}(\bot) \leq f^{\beta}(\bot) \Rightarrow f^{\alpha+1}(\bot) \leq f^{\beta+1}(\bot)$ $f^{\alpha}(\bot) \leq f^{\delta}(\bot)$ for all $\alpha < \delta$ $\Rightarrow f^{\alpha+1}(\bot) \leq f^{\delta+1}(\bot)$

Monotonicity
$$f^{\alpha}(\bot) \leq f^{\beta}(\bot)$$
 for $\alpha \leq \beta$
 $\bot \leq f(\bot)$
 $f^{\alpha}(\bot) \leq f^{\beta}(\bot) \Rightarrow f^{\alpha+1}(\bot) \leq f^{\beta+1}(\bot)$
 $f^{\alpha}(\bot) \leq f^{\delta}(\bot)$ for all $\alpha < \delta$
 $\Rightarrow f^{\alpha+1}(\bot) \leq f^{\delta+1}(\bot)$
 $\Rightarrow f^{\delta}(\bot) = \sup_{\alpha \leq \delta} f^{\alpha}(\bot) \leq f^{\delta+1}(\bot)$

$\begin{array}{ll} \textbf{Monotonicity} & f^{\alpha}(\bot) \leq f^{\beta}(\bot) \text{ for } \alpha \leq \beta \\ \bot \leq f(\bot) \\ f^{\alpha}(\bot) \leq f^{\beta}(\bot) & \Rightarrow & f^{\alpha+1}(\bot) \leq f^{\beta+1}(\bot) \\ f^{\alpha}(\bot) \leq f^{\delta}(\bot) & \text{ for all } \alpha < \delta \\ \Rightarrow f^{\alpha+1}(\bot) \leq f^{\delta+1}(\bot) \\ \Rightarrow f^{\delta}(\bot) = \sup_{\alpha < \delta} f^{\alpha}(\bot) \leq f^{\delta+1}(\bot) \\ f^{\alpha}(\bot) \leq \sup_{\beta < \delta} f^{\beta}(\bot) = f^{\delta}(\bot) \end{array}$

Existence

$$\begin{array}{ll} \textbf{Monotonicity} & f^{\alpha}(\bot) \leq f^{\beta}(\bot) \text{ for } \alpha \leq \beta \\ \bot \leq f(\bot) \\ f^{\alpha}(\bot) \leq f^{\beta}(\bot) & \Rightarrow & f^{\alpha+1}(\bot) \leq f^{\beta+1}(\bot) \\ f^{\alpha}(\bot) \leq f^{\delta}(\bot) & \text{ for all } \alpha < \delta \\ \Rightarrow f^{\alpha+1}(\bot) \leq f^{\delta+1}(\bot) \\ \Rightarrow f^{\delta}(\bot) = \sup_{\alpha < \delta} f^{\alpha}(\bot) \leq f^{\delta+1}(\bot) \\ f^{\alpha}(\bot) \leq \sup_{\beta < \delta} f^{\beta}(\bot) = f^{\delta}(\bot) \end{array}$$

exists α with $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$

Monotonicity
$$f^{\alpha}(\bot) \le f^{\beta}(\bot)$$
 for $\alpha \le \beta$ $\bot \le f(\bot)$

$$\begin{split} & \perp \leq f(\bot) \\ & f^{\alpha}(\bot) \leq f^{\beta}(\bot) \quad \Rightarrow \quad f^{\alpha+1}(\bot) \leq f^{\beta+1}(\bot) \\ & f^{\alpha}(\bot) \leq f^{\delta}(\bot) \quad \text{for all } \alpha < \delta \\ & \Rightarrow f^{\alpha+1}(\bot) \leq f^{\delta+1}(\bot) \\ & \Rightarrow f^{\delta}(\bot) = \sup_{\alpha < \delta} f^{\alpha}(\bot) \leq f^{\delta+1}(\bot) \end{split}$$

$$f^{\alpha}(\bot) \le \sup_{\beta \le \delta} f^{\beta}(\bot) = f^{\delta}(\bot)$$

Existence exists
$$\alpha$$
 with $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$

Least fixed point

$$a = f(a)$$
 fixed point, $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$

$$\begin{array}{ll} \textbf{Monotonicity} & f^{\alpha}(\bot) \leq f^{\beta}(\bot) \text{ for } \alpha \leq \beta \\ \bot \leq f(\bot) \\ f^{\alpha}(\bot) \leq f^{\beta}(\bot) & \Rightarrow & f^{\alpha+1}(\bot) \leq f^{\beta+1}(\bot) \\ f^{\alpha}(\bot) \leq f^{\delta}(\bot) & \text{ for all } \alpha < \delta \\ \Rightarrow f^{\alpha+1}(\bot) \leq f^{\delta+1}(\bot) \\ \Rightarrow f^{\delta}(\bot) = \sup_{\alpha < \delta} f^{\alpha}(\bot) \leq f^{\delta+1}(\bot) \\ f^{\alpha}(\bot) \leq \sup_{\beta < \delta} f^{\beta}(\bot) = f^{\delta}(\bot) \end{array}$$

Existence exists
$$\alpha$$
 with $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$

Least fixed point

$$a = f(a)$$
 fixed point, $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$
 $\bot \le a$

Monotonicity
$$f^{\alpha}(\bot) \le f^{\beta}(\bot)$$
 for $\alpha \le \beta$

$$\begin{array}{lll}
\bot \leq f(\bot) \\
f^{\alpha}(\bot) \leq f^{\beta}(\bot) & \Rightarrow & f^{\alpha+1}(\bot) \leq f^{\beta+1}(\bot) \\
f^{\alpha}(\bot) \leq f^{\delta}(\bot) & \text{for all } \alpha < \delta \\
\Rightarrow f^{\alpha+1}(\bot) \leq f^{\delta+1}(\bot)
\end{array}$$

$$\Rightarrow f^{\delta}(\bot) = \sup_{\alpha < \delta} f^{\alpha}(\bot) \le f^{\delta+1}(\bot)$$

$$f^{\alpha}(\bot) \leq \sup_{\beta < \delta} f^{\beta}(\bot) = f^{\delta}(\bot)$$

Existence exists α with $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$

Least fixed point

$$a = f(a)$$
 fixed point, $f^{\alpha}(\bot) = f^{\alpha+1}(\bot)$

$$\bot \le a \implies f^{\alpha}(\bot) \le f^{\alpha}(a) = a$$

The modal μ -calculus (L_{μ})

Adds recursion to modal logic.

Syntax

$$\varphi ::= P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X)$$
 (*X* positive in $\mu X. \varphi(X)$ and $\nu X. \varphi(X)$)

The modal μ -calculus (L_{μ})

Adds recursion to modal logic.

Syntax

$$\varphi ::= P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X)$$

(*X* positive in $\mu X.\varphi(X)$ and $\nu X.\varphi(X)$)

Semantics

$$F_{\varphi}(X) := \{ s \in S \mid \mathfrak{S}, s \models \varphi(X) \}$$

$$\mu X. \varphi(X) : X_0 := \emptyset, \quad X_{i+1} := F_{\varphi}(X_i)$$

$$\nu X. \varphi(X) : X_0 := S, \quad X_{i+1} := F_{\varphi}(X_i)$$

The modal μ -calculus (L_{μ})

Adds recursion to modal logic.

Syntax

$$\varphi ::= P \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \langle a \rangle \varphi \mid [a] \varphi \mid \mu X. \varphi(X) \mid \nu X. \varphi(X)$$
(*X* positive in $\mu X. \varphi(X)$ and $\nu X. \varphi(X)$)

Semantics

$$F_{\varphi}(X) := \{ s \in S \mid \mathfrak{S}, s \models \varphi(X) \}$$

$$\mu X. \varphi(X) : X_0 := \emptyset, X_{i+1} := F_{\varphi}(X_i)$$

$$\nu X. \varphi(X) : X_0 := S, X_{i+1} := F_{\varphi}(X_i)$$

Examples

$$\mu X(P \lor \diamondsuit X)$$
 a state in P is reachable $\nu X(P \land \diamondsuit X)$ there is a branch with all states in P

Expressive power

Theorem

For every CTL*-formula φ there exists an equivalent formula φ^* of the modal μ -calculus.

Expressive power

Theorem

For every CTL*-formula φ there exists an equivalent formula φ^* of the modal μ -calculus.

Proof (for CTL)

```
P^* := P
(\varphi \wedge \psi)^* := \varphi^* \wedge \psi^*
(\varphi \vee \psi)^* := \varphi^* \vee \psi^*
(\neg \varphi)^* := \neg \varphi^*
(EX\varphi)^* := \Diamond \varphi^*
(AX\varphi)^* := \Box \varphi^*
(E\varphi U\psi)^* := \mu X[\psi^* \vee (\varphi^* \wedge \Diamond X)]
(A\varphi U\psi)^* := \mu X[\psi^* \vee (\varphi^* \wedge \Box X)]
```

The modal μ -calculus (L_{μ})

Theorem

A regular tree language can be defined in the **modal** μ -calculus if, and only if, it is **bisimulation invariant.**

Theorem

Satisfiability of μ -calculus formulae is **decidable** and complete for **exponential time**.

Model checking \mathfrak{S} , $s \models \varphi$ for the modal μ -calculus can be done in time $\mathcal{O}((|\varphi| \cdot |S|)^{|\varphi|})$.

(The satisfiability algorithm uses tree automata and parity games.)

$$\mathfrak{G} = \langle V_{\diamondsuit}, V_{\square}, E, \Omega \rangle \qquad \Omega : V \to \mathbb{N}$$

Infinite plays v_0, v_1, \dots are **won** by Player \diamondsuit if

 $\liminf_{n\to\infty} \Omega(\nu_n) \text{ is even.}$

$$\mathfrak{G} = \langle V_{\diamondsuit}, V_{\square}, E, \Omega \rangle \qquad \Omega : V \to \mathbb{N}$$

Infinite plays v_0, v_1, \dots are **won** by Player \diamondsuit if

 $\liminf_{n\to\infty} \Omega(\nu_n) \text{ is even.}$

$$\mathfrak{G} = \langle V_{\diamondsuit}, V_{\square}, E, \Omega \rangle \qquad \Omega : V \to \mathbb{N}$$

Infinite plays v_0, v_1, \ldots are **won** by Player \diamondsuit if

 $\liminf_{n\to\infty} \Omega(\nu_n) \text{ is even.}$

Theorem

Parity games are **positionally determined:** from each position some player has a positional/memory-less winning strategy.

$$\mathfrak{G} = \langle V_{\diamondsuit}, V_{\square}, E, \Omega \rangle \qquad \Omega : V \to \mathbb{N}$$

Infinite plays v_0, v_1, \ldots are **won** by Player \diamondsuit if

$$\liminf_{n\to\infty} \Omega(\nu_n) \text{ is even.}$$

Theorem

Parity games are **positionally determined:** from each position some player has a positional/memory-less winning strategy.

Theorem

Computing the winning region of a parity game with n positions and d priorities can be done in time $n^{\mathcal{O}(\log d)}$.

game for \mathfrak{S} , $s_0 \models \varphi$? (φ μ -formula in negation normal form)

game for \mathfrak{S} , $s_0 \models \varphi$? ($\varphi \mu$ -formula in negation normal form)

Positions

Player \diamondsuit : $\langle s, \psi \rangle$ for $s \in S$ and ψ a subformula

$$\psi = \psi_0 \lor \psi_1 , \qquad \psi = P \text{ and } s \notin P , \qquad \psi = \mu X. \psi_0 ,$$

$$\psi = \langle a \rangle \psi_0 , \qquad \psi = \neg P \text{ and } s \in P , \qquad \psi = \nu X. \psi_0 ,$$

$$\psi = X .$$

Player \Box : $[s, \psi]$ for $s \in S$ and ψ a subformula

$$\psi = \psi_0 \wedge \psi_1$$
, $\psi = P$ and $s \in P$,
 $\psi = \lceil a \rceil \psi_0$, $\psi = \neg P$ and $s \notin P$.

game for \mathfrak{S} , $s_0 \models \varphi$? ($\varphi \mu$ -formula in negation normal form)

Positions

Player \diamondsuit : $\langle s, \psi \rangle$ for $s \in S$ and ψ a subformula

$$\psi = \psi_0 \lor \psi_1$$
, $\psi = P$ and $s \notin P$, $\psi = \mu X.\psi_0$,
 $\psi = \langle a \rangle \psi_0$, $\psi = \neg P$ and $s \in P$, $\psi = \nu X.\psi_0$,
 $\psi = X$.

Player \Box : $[s, \psi]$ for $s \in S$ and ψ a subformula

$$\psi = \psi_0 \wedge \psi_1$$
, $\psi = P$ and $s \in P$,
 $\psi = [a]\psi_0$, $\psi = \neg P$ and $s \notin P$.

Initial position $\langle s_0, \varphi \rangle$ or $[s_0, \varphi]$

```
game for \mathfrak{S}, s_0 \models \varphi? (\varphi \mu-formula in negation normal form)
```

Edges $((s, \psi) \text{ means either } \langle s, \psi \rangle \text{ or } [s, \psi].)$

$$\langle s, \psi_0 \lor \psi_1 \rangle \to (s, \psi_i),$$

$$[s, \psi_0 \land \psi_1] \to (s, \psi_i),$$

$$\langle s, \mu X. \psi \rangle \to \psi,$$

$$\langle s, \nu X. \psi \rangle \to \psi,$$

$$\langle s, \chi X \rangle \to \langle s, \mu X. \psi \rangle \text{ or } \langle s, \nu X. \psi \rangle,$$

$$\langle s, \langle a \rangle \psi \rangle \to \langle t, \psi \rangle \text{ for every } s \to^a t,$$

$$[s, [a] \psi] \to \langle t, \psi \rangle \text{ for every } s \to^a t.$$

```
game for \mathfrak{S}, s_0 \models \varphi? (\varphi \mu-formula in negation normal form)
Edges ((s, \psi) \text{ means either } \langle s, \psi \rangle \text{ or } [s, \psi].)
           \langle s, \psi_0 \vee \psi_1 \rangle \rightarrow (s, \psi_i),
           [s, \psi_0 \wedge \psi_1] \rightarrow (s, \psi_i),
                \langle s, \mu X. \psi \rangle \rightarrow \psi,
                \langle s, \nu X. \psi \rangle \rightarrow \psi,
                        \langle s, X \rangle \rightarrow \langle s, \mu X. \psi \rangle or \langle s, \nu X. \psi \rangle,
                 \langle s, \langle a \rangle \psi \rangle \rightarrow \langle t, \psi \rangle for every s \rightarrow^a t,
                 [s, [a]\psi] \rightarrow \langle t, \psi \rangle for every s \rightarrow^a t.
```

Priorities (all other priorities big)

$$\Omega(\langle s, \mu X.\psi \rangle) := 2k + 1$$
, if inside of k fixed points. $\Omega(\langle s, \nu X.\psi \rangle) := 2k$.

$$\mathfrak{S} = \mathfrak{T} \longrightarrow \mathfrak{T} P \qquad \varphi = \mu X (P \vee \diamondsuit X)$$

$$\mathfrak{S} = (s) \longrightarrow (t) P \qquad \varphi = \mu X (P \lor \Diamond X)$$

$$(s, \mu X (P \lor \Diamond X)) \longrightarrow (s, P \lor \Diamond X)$$

$$(s, \mu X) \longrightarrow (s, P)$$

$$(t, \mu X (P \lor \Diamond X)) \longrightarrow (t, P \lor \Diamond X)$$

$$(t, X)$$

$$\mathfrak{S} = (\mathfrak{S} \longrightarrow \mathfrak{T}) P \qquad \varphi = \nu X (\diamondsuit X \wedge \mu Y (P \vee \diamondsuit Y))$$

$$\mathfrak{S} = () \longrightarrow () P \qquad \varphi = \nu X (\diamondsuit X \wedge \mu Y (P \vee \diamondsuit Y))$$

Description Logics

Description Logic

General Idea

Extend modal logic with operations that are not bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling, semantic web

Ingredients

- ▶ individuals: elements (Anna, John, Paul, Marry,...)
- concepts: unary predicates (person, male, female,...)
- roles: binary relations (has_child, is_married_to,...)
- ► TBox: terminology definitions
- ► **ABox:** assertions about the world

TBox

```
man := person ∧ male
woman := person ∧ female
father := man ∧ ∃has_child.person
mother := woman ∧ ∃has_child.person
```

ABox

```
man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)
is_married_to(Anna, John)
```

Syntax

Concepts

$$\varphi ::= P \mid \top \mid \bot \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall R\varphi \mid \exists R\varphi \mid (\geq nR) \mid (\leq nR)$$

Terminology axioms

$$\varphi \sqsubseteq \psi$$
 $\varphi \equiv \psi$

TBox Axioms of the form $P \equiv \varphi$.

Assertions

$$\varphi(a)$$
 $R(a,b)$

Extensions

- ▶ operations on roles: $R \cap S$, $R \cup S$, $R \circ S$, $\neg R$, R^+ , R^* , R^-
- extended number restrictions: $(\ge nR)\varphi$, $(\le nR)\varphi$

Algorithmic Problems

- Satisfiability: Is φ satisfiable?
- Subsumption: $\varphi \models \psi$?
- **Equivalence:** $\varphi \equiv \psi$?
- **Disjointness:** $\varphi \wedge \psi$ unsatisfiable?

All problems can be solved with standard methods like **tableaux** or **tree automata**.

Semantic Web: OWL (functional syntax)

```
Ontology(
 Class(pp:man
                 complete
          intersectionOf(pp:person pp:male))
 Class(pp:woman complete
          intersectionOf(pp:person pp:female))
 Class(pp:father complete
          intersectionOf(pp:man
            restriction(pp:has_child pp:person)))
 Class(pp:mother complete
          intersectionOf(pp:woman
            restriction(pp:has_child pp:person)))
  Individual(pp:John type(pp:man))
  Individual(pp:Paul type(pp:man))
  Individual(pp:Anna type(pp:woman)
              value(pp:has_child pp:Paul)
               value(pp:is_married_to pp:John))
  Individual(pp:Marry type(pp:woman))
```