Exercise 1 Consider the following formulae.

- (a) $(A \leftrightarrow B) \rightarrow (\neg A \wedge C)$
- (b) $(A \rightarrow B) \rightarrow C$
- (c) $A \leftrightarrow B$
- (d) $(A \rightarrow B) \leftrightarrow (A \rightarrow C)$
- (e) $(A \land B) \lor (A \land C)$
- (f) $[A \rightarrow (B \lor \neg A)] \rightarrow (B \rightarrow A)$
- (g) $[(A \lor B) \to (C \to A)] \leftrightarrow (A \lor B \lor C)$

For each of them

- (1) use a truth table to determine if the formula is valid and/or satisfiable;
- (2) convert the formula into CNF using the truth table;
- (3) convert the formula into CNF using equivalence transformations instead;
- (4) write the formula as a set of clauses.

Exercise 2 Which of the following formulae imply each other?

- (a) $A \wedge B$
- (b) $A \lor B$
- (c) $A \rightarrow B$
- (d) $A \leftrightarrow B$
- (e) $\neg A \land \neg B$
- (f) $\neg A$
- (g) $\neg (A \rightarrow B)$

Exercise 3 Encode the following problems as a satisfiability problem for propositional logic:

- (a) the independent set problem: given a graph \mathfrak{G} and a number k, does the graph contain k vertices which are pairwise not connected by an edge to each other?
- (b) the domino tiling problem: given a finite set *D* of square *dominoes*, two relations $H, V \subseteq D \times D$ specifying which pairs of dominoes can be put horizontally/vertically next to each other, and a number *n*, does there exist a tiling of the $n \times n$ grid, i.e., a function $\tau : n \times n \rightarrow D$ such that

$$(\tau(i,j),\tau(i+1,j)) \in H$$
 and $(\tau(i,j),\tau(i,j+1)) \in V$, for all i, j ?

Exercise 4 We can encode *n*-bit numbers via an *n*-tuple of propositional variables A_{n-1}, \ldots, A_0 .

- (a) Write a formula $\varphi(A_1, A_0, B_1, B_0, C_2, C_1, C_0)$ for the addition of 2-bit numbers $(\bar{A} + \bar{B} = \bar{C})$.
- (b) Write a formula $\varphi(A_{n-1}, \ldots, A_0, B_{n-1}, \ldots, B_0, C_n, \ldots, C_0)$ for the addition of *n*-bit numbers.

Exercise 5 Use the DPLL algorithm to determine whether the following formulae are satisfiable.

(a)
$$\neg [(A \rightarrow B) \leftrightarrow (A \rightarrow C)]$$

- (b) $(A \lor B \lor C) \land (B \lor D) \land (A \to D) \land (B \to A)$
- (c) $(A \leftrightarrow B) \rightarrow (\neg A \wedge C)$
- (d) $[A \rightarrow (B \lor \neg A)] \rightarrow (B \rightarrow A)$
- (e) $[(A \lor B) \to (C \to A)] \leftrightarrow (A \lor B \lor C)$

Exercise 6 Use the resolution method to determine which of the following formulae are valid.

- (a) $(A \land \neg B \land C) \lor (\neg A \land \neg B \land \neg C) \lor (B \land C) \lor (A \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land \neg B \land C)$
- (b) $(A \land B) \lor (B \land C \land D) \lor (\neg A \land B) \lor (\neg C \land \neg D)$
- (c) $(\neg A \land B \land \neg C) \lor (\neg B \land \neg C \land D) \lor (\neg C \land \neg D) \lor (A \land B) \lor (\neg A \land B \land C) \lor (\neg A \land C) \lor (A \land \neg B \land C) \lor (A \land \neg B \land D)$

Exercise 7 (optional) Given a finite automaton \mathcal{A} and an input word w, write down a formula $\varphi_{\mathcal{A},w}$ that is satisfiable if, and only if, the automaton \mathcal{A} accepts w.

Exercise 8 Construct the game for the following set of Horn-formulae and determine the winning regions.