Exercise 1 We consider (undirected) graphs as structures of the form $\mathfrak{G} = \langle V, E \rangle$ where *E* is the binary edge relation. Express the following statements in first-order logic.

- (a) All vertices are neighbours.
- (b) The graph contains a triangle.
- (c) Every vertex has exactly three neighbours.
- (d) Every pair of vertices is connected by a path of length at most 3.
- **Exercise 2** Show that the following formulae are valid using tableau proofs.

(a)
$$\varphi \land \psi \rightarrow \psi \land \varphi$$

(b) $\psi \rightarrow ((\varphi \land \psi) \lor \psi)$
(c) $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$
(d) $\varphi \rightarrow \neg \neg \varphi$
(e) $((\varphi \land \psi) \lor \psi) \rightarrow \psi$
(f) $(\varphi \rightarrow \psi) \land (\varphi \rightarrow \vartheta) \rightarrow (\varphi \rightarrow \psi \land \vartheta)$
(g) $(\varphi \rightarrow \psi \land \vartheta) \rightarrow (\varphi \rightarrow \psi) \land (\varphi \rightarrow \vartheta)$
(h) $\neg \neg \varphi \rightarrow \varphi$
(i) $\varphi \lor \neg \varphi$
(j) $\neg (\neg \varphi \land \neg \psi) \rightarrow (\varphi \lor \psi)$
(k) $\varphi \rightarrow \exists x \varphi$
(l) $\forall x \varphi \rightarrow \varphi$
(m) $\forall x R(x, x) \rightarrow \forall x \exists y R(f(x), y)$
(n) $\exists x(\varphi \lor \psi) \rightarrow (\exists x \varphi \lor \exists x \psi)$
(o) $(\exists x \varphi \lor \exists x \psi) \rightarrow \exists x(\varphi \lor \psi)$
(p) $\forall x \varphi \land \forall x \psi \rightarrow \forall x (\varphi \land \psi)$
(q) $\forall x(\varphi \land \psi) \rightarrow \forall x \varphi \land \forall x \psi$

(r) $\forall x \forall y [\varphi(x) \leftrightarrow \varphi(y)] \land \exists x \varphi(x) \rightarrow \forall x \varphi(x)$

Exercise 4 Find all consistent sets for the following sets of rules.

(a)
$$\frac{-\alpha}{\alpha} = \frac{\alpha : \beta}{\delta} = \frac{\alpha : \gamma}{\delta}$$

(b) $\frac{-\alpha}{\alpha} = \frac{\alpha : \beta \gamma}{\beta}$
(c) $\frac{-\alpha}{\alpha} = \frac{\alpha \beta}{\gamma} = \frac{\alpha : \gamma}{\beta}$

Exercise 5 For each of the following subsets $\Phi \subseteq \mathcal{P}(\{\alpha, \beta\})$, find a set of rules *R* such that Φ is the set of all consistent sets for *R*.

- (a) $\{\emptyset, \{\alpha\}, \{\alpha, \beta\}\}$
- (b) $\{\{\alpha\}, \{\beta\}, \{\alpha, \beta\}\}$
- (c) $\{\emptyset, \{\alpha, \beta\}\}$

(d)
$$\{\{\alpha\}, \{\alpha, \beta\}\}$$

Exercise 6 Derive the following additional rules from the basic ones of the Natural Deduction calculus (that is, combine the basic rules to obtain the ones below).

$$\frac{\varGamma \vdash \neg \neg \varphi}{\varGamma \vdash \varphi} \qquad \frac{\varGamma \vdash \varphi}{\varGamma, \Delta \vdash \varphi} \qquad \frac{\varGamma, \neg \varphi \vdash \neg \psi}{\varGamma \vdash \psi \rightarrow \varphi}$$